Introduction to three manifolds
Last time:

- Sphere Theorem (Statement)
- Normal maps and classes.

Corollary (of sphere theorem): Suppose M^{3} is closed, conn, oriented. If $\pi_{2}(m) \neq \mathbb{1}$ then either
(s) M is a connect sum or
(*) $M \cong \mathbb{R} \mathbb{P}^{3}$ or $S^{2} \times S^{1}$
Moral: π_{2} is not so important in the theory of three-maniflds. π_{1} really is important. The disk theorem (which sort of follows from the techniques we'se been developing) controls some of π_{1}.
(I) PL Area: Suppose $f: S \rightarrow(m, K)$ is a normal map Define $\Gamma_{f}=f^{-1}\left(K^{(2)}\right)$; is a finite graph in S.
Define $l(f)=\sum_{\gamma \in \Gamma^{(2)}}$ length $(f(\gamma))$
Define $A(f)=(w(f), l(f))$ ordered lexicographically This is the PL area
Theorem 5.3 [existence]
Fix (m, k). Suppose $\sigma \neq \varnothing$
 is a normal class of maps
Then there is some $f \in G$ that is novonal and realises inf $\{A(g) \mid g \in G, g$ normal $\}$
Proof: set $A_{\infty}=\inf \xi$.
3. Define $g \in G$
to be straight if g is normal and for every $\gamma \in \Gamma_{g}^{(1)}$ we have $g(\gamma) 13$ straight in the containing $\lambda^{2} \in K^{(2)}$ we restrict to such g.
Fix a minimising sequence
$\left(g_{n}\right)_{n \in \mathbb{N}}<C$ of straight maps with $A_{n}=A\left(g_{n}\right) \rightarrow A_{\infty}$ (from above). Note we have $W_{L} L 0$ so that $\left.\begin{array}{l}w\left(g_{n}\right) \leqslant w \\ l\left(g_{n}\right) \leqslant L\end{array}\right\}$ for all n.
In any fare Δ^{0} of $K^{(2)}$ we see of most $\binom{W}{2}$ arcs of $g_{n}(s)$ (we are assuming Δ^{2} embeds in M) and each such are has length at most L.
Define $\Gamma_{n}=\Gamma_{g_{n}}$ \&o $g_{n} l \Gamma_{n}$ has bounded combinatorics and length.
Claim: For some open set $U \subset M$, with $K^{(0)} \subset U$. we hare $g_{n}(\delta) \cap u=\phi$ (for all n).
Proof: Suppose not, Then there is a verthex $v \in K^{(0)}$ an edge $e \in K^{(1)}$ and points $x_{n} \in g_{n}(S)$ so that
(*) $x_{n} \in e$ and
(*) $x_{n} \longrightarrow v$.
Recall g_{n} is normal so $\delta-\Gamma_{n}$ is a union of disks. So Γ_{n} is connected. So $g_{n}\left(\Gamma_{n}\right)$ is

- connected,
* contains x_{n}, and
- has at most $\binom{w}{2} \cdot\left(\#\right.$ faces of $\left.K^{(2)}\right)$ edges.

Thus in the hyp metric on $K^{(2)}-K^{(\infty)}$ $g_{n}\left(\Gamma_{n}\right)$ has bounded diameter [Rok: The metric or $K^{(2)}-K^{(0)}$ may not be complete \cdots but that is not a problem - Apply the "dog on leash" principle: © for suff. (urge $n, g_{n}\left(r_{n}\right)$ 13 contained in star (v). So g_{n} is

null-homotopic, a contradiction If Claim So there is some compact set $Q \subset K^{(2)}$ so that, for all n, we have $g_{n}\left(\Gamma_{n}\right) \subset Q$. Puss to subsequences to arrange
(*) $\Gamma_{n} \cong \Gamma_{m}$ (som as graphs) for all min
Say $\Gamma_{n}=\Gamma_{\infty}$ for all n.
Pass to further subseq so that
($*$) for all $p \in \Gamma_{\infty}, g_{n}(p) \longrightarrow g_{\infty}(p)$
some point. [suffices to deal with

$$
p \in \Gamma_{\infty}^{(0)}
$$

Thus we have $g_{\infty}: S \rightarrow(m, k)$ and for large $n, g_{n} \simeq g_{\infty}$ (homotopic) [use straight line So $g_{\infty} \in \sigma \quad$ homotopy I homotopy I
$\left(g_{n}\right)=A_{\infty}$ as desired.
This proves Tim 5.3 [Existence].

Lemma 5.4: Suppose $f: S \rightarrow(M, k)$ is straight and minimising in its homotopy class. Suppose $a \in \Gamma_{f}^{(0)}$ and $e \in K^{(1)}$ with $f(a) \in e$. γ_{i} be the edges of Γ_{f} meeting a. Let θ_{i} be the angle between e and $f\left(\sigma_{i}\right)$. Then f is balanced at a :
 That is: $\quad \sum \cos \left(\theta_{i}\right)=0$
That 3 , we do rot see a picture like this:
where all $\theta_{i}<\pi / 2$

Proof: we use a variational argument:
More $f\left(a_{0}\right)$ of by distance h (veryysmall)
The length of $f\left(\gamma_{i}\right)$ increases by
$-\cos \left(\theta_{i}\right) \cdot h+O\left(h^{2}\right)$
[That is, curative only contributes to length to
second order ...]
At the minimum length
the first order terms cancel, so $\sum_{1}^{\prime} \cos \left(\theta_{i}\right)=0$.
(IT) Faces of straight maps:
Sup. $f: S \rightarrow(M, K)$ straight. $\Gamma_{f}=f^{-1}\left(K^{(2)}\right)$. Note
$\cos -\Gamma_{f}$ (component) is a disk. we homotope of to ensure
(*) if $\mid a c 1=3$ (triangle)
then $f(c)$ is a linear triangle in $\Delta^{3} A_{0}$
(v) If $|\partial C|=4$ (quad)
then we choose a diagonal $d \subset C$ and make $f(d)$ straight
let $c-d=c^{\prime} \cup c^{\prime \prime}$ and require
$f\left(C^{\prime}\right), f\left(C^{\prime \prime}\right)$ be linear triangles.
Choose diagonals consistently. Now we have
Corollary: Suppose $f: S \rightarrow M_{M} K$
$g: T \rightarrow(M, K)$ are PL minimal.
Suppose at $S, b \in T$ have
$f(a)=g(b) \in e \in K^{(1)}$.
Then the are open sets $U \subset \Gamma_{f}+V \subset \Gamma_{g}$ with $a \in U, b \in Y$ so that ether

(*) $f(u)=g(v)$ $\left[\begin{array}{l}\text { Note difference } \\ \text { from Cassonis notes }\end{array}\right]$
(*) $g(V)$ meets both sides of $f(u)$.
Picture
 saddle intersection
Proof: Let $\alpha_{i} \subset \Gamma_{f}, \beta_{i} c \Gamma_{g}$ be the adj edges. to a, b in S, T respectively

Let $e \in K^{(1)}$ be the edge containing $f(a)=g(b)$ Let θ_{i}, ϕ_{0} be the angle of $\alpha ; \beta_{i}$ withe For a contradiction suppose f is above g at $f(a)=g(b)$. So
$\theta_{i} \leqslant \phi_{i}$ for all i and $\theta_{i}<\phi_{i}$ for sore:

$$
\text { Thus } \sum_{i} \cos \left(\theta_{i}\right)>\sum_{i} \cos \left(\phi_{i}\right)
$$

choice of diagonals
mack once per quad type per tetrahedron.
Rank: We realise (!) that the diagonals
 so contribute to leA) (and also the angles θ (etc).
(III) Dujointress of minimal surfaces

Picture of the ox change and round off trick

up one dimension: surfaces in 3 -mfd
Def: A mop $f: s^{2} \rightarrow m$ is essential if it is not null-homotopic.
Recall, any disk surgery of an os map f gives maps $f^{\prime}, f^{\prime \prime}$ at least one of which is ess.

Lemma 5.5: Suppose $f_{g}: S^{2} \rightarrow(M, K)$ are least cevea and essential. suppose f, g both 1-1.
Then either
(冈) $f\left(s^{2}\right)=g\left(s^{2}\right)$
(8) $f\left(s^{2}\right) \cap g\left(s^{2}\right)=\varnothing$.

Proof
(11) Suppose $f \cap g \neq \phi$ and f tromsuerse to g : Suppose also f ag misses $K^{(1)}$. So fix C a compt of the intersection C is simple so cuts $f(S)$ in to disks D, D and cuts $g(S)$ into disks $E E^{\prime}$.
Define $A(D)=(w(D), l(D))$
just as for closed surfaces.
Suppose $A(D)=\min \left\{\begin{array}{l}A(D), A\left(D^{\prime}\right) \\ A(E), A\left(E^{\prime}\right)\end{array}\right\}$

Defche $h, h^{\prime}: s^{2} \longrightarrow(m, k)$ ienmersions with

$$
h\left(S^{2}\right)=D \cup E, h^{\prime}\left(S^{2}\right)=D \bigcup_{e} E^{\prime}
$$

suppose h is esse (at least one is, by above).
Normalise, surges, straighten h to obtain h^{*} If we reduce $\omega(h)$ then as $A(h) \leq A(f)=A(g)$ we have $A\left(h^{*}\right)<A(h) *$.
Exercise: $h\left(s^{2}\right) \cap \Delta^{2}$ has no loops.
Finally, if we straighten h in a face then $l\left(h^{*}\right)<l(h) \leqslant l(f)=l(g)$
(2) Suppose fig meets $K^{(1)}$ or fig not transverse.

