Inter to three-mfds
Lecture 7 2021-03-03
Soul schlestmer
Lost time: Existence and uniqueness of connect sum decompositions of 3 -mffls
Question: what a bout prime decamp in dim 4?
Answer: $\left(S^{2} \times S^{2}\right) \# \overline{\mathbb{C P}^{2}} \cong \mathbb{C} \mathbb{P}^{2} \# \overline{\mathbb{P}} \mathbb{P}^{2} \# \overline{\mathbb{C P}^{2}}$
(1) Matier complesrity: "Suppose M is a apt conn three-manfold.
Def: The matueev complexity of M is

$$
c(m)=\min \left\{n \in \mathbb{N} \left\lvert\, \begin{array}{l}
\text { there is some triang } K \\
\\
\text { of } m \text { with } n \text { tetrahedral }
\end{array}\right.\right\}
$$

Example: $c\left(S^{3}\right)=1$ [Ruck: orig. definition instead counts \# of vertices in special spine for m so $c\left(S^{3}\right)=$ $c\left(\mathbb{R} \mathbb{P}^{3}\right)=c(L(3,1))=0$ for all other irred infds diff agree..
Rok: Suppose $M \neq S^{3}$. Define $M_{0}=S^{3}$

$$
M_{n+1}=M_{n} \# M
$$

Exercise: $c\left(M_{n}\right)$ is linear in n.
[give upper and lower bounds]
open: compote, for p, q, the complexity of $L(p, q)$
Exercise; Suppose $S y$ is the surface of genus g.
(e) Show $S_{g} \times S^{\prime}$ is irred.
(*) Show $c\left(S_{y} \times S^{\prime}\right)$ is linear in g.

Exercise: We call M (closed, conn) toroidal if $\mathbb{Z}^{2}<\pi_{1}(m)$. Find irred, ator.mfds m_{n} so that $c\left(m_{n}\right)$ grows linearly with $n_{\text {; }}$
(II) Sphere theorem:

Thu 6.1: Suppose M^{3} is a closed conn 3.wfel, suppose $\pi_{2}(m) \neq 1$, then, either M^{3} contains an emb. $\mathbb{R P}^{2}$ or M is not prime.
Question: whet about dimension four?
Exercise: Show $X=S^{2} \times S^{2}$ is irreducible
But $\pi_{3}(x) \cong \mathbb{Z}^{2}$.
(III) PL minimal surfaces: Given $f: S \rightarrow M$ wed like to "improve" f to make it be in "good position": namely so it is self transverse.
Reanatk: we cannot hope to improve f to become an embedding. Fy consider a finite covering $p: \frac{7}{T} \rightarrow s$ of surfaces. define $L: S \xrightarrow[S]{ } S \Sigma^{1}$ and define

$$
\pi \longmapsto(x, 1)
$$

io p
we should try, to homotope of so self intersections are tromeverse

Definition: A uhitenee umbrella (branch point)
is a map modelled on $f: \mathbb{C} \longrightarrow \mathbb{C} \times \mathbb{R}$

to have at worst
simple branch points.
Lemma 5.1 - Suppose (m, k) is Friang 3 mfd
suppose s is a closed surface. Fix $f: S \rightarrow M$
Via homotopy we may ensure
(1) f is transverse to K.
(1) f is least weight in homotopy class

$$
\left(\omega t(f)=\omega(f)=\mid f^{-1}\left(k^{\prime \prime}\right) t\right)
$$

(2) for each tet Δ^{3} of k, for each component c of $f^{-1}(\partial \Delta)$, the curve $f(c)<\partial \Delta^{3}$ is either (i) a loop in a face (simple closed curve)
(ii) normal curve of length $\leqslant 4$.

Good

Bad

has "u hing number"

Pictures:

Proof: Homotope $f: S \rightarrow M$ to arrange (O) and (1) We also arrange that the self intersections of f (lie in one-submfd of M) are transverse to K
 points

We now must eliminate double paints in faces coming from curves of the following kind Fix Δ^{3} let C be a curve of $f^{-1}\left(a d^{3}\right)$. Suppose $f \mid C$ is not injective. Say $P i q \in C$ map to $x=f(p)=f(q)$ in a fire Δ^{2} of Δ^{3}

Cartoon Fix $F \subset s-f^{-1}\left(a \Delta^{3}\right)$ the component uneeting C and so that $f(F) \subset \Delta^{3}$.

Romp: F is a subsurface of S by tremsuevsality. Fit α prop omb in F, an arc convecting P to of Let $N=N(\alpha)$ be a very small product leigh of α in F.
local picture
Pf $\alpha^{\prime}, \alpha^{\prime \prime}$ are
the compts of $\partial N-C$
let γ_{p}, γ_{q} be the
compts of $\partial N-\left(\alpha^{\prime} \cup \alpha^{\prime}\right)$
Arrange for $f\left(\gamma_{p}\right), f\left(\gamma_{y}\right)$
strictly contained in Δ^{2}.
In \triangle^{2}

op rus from p^{\prime} to $P^{\prime \prime}$ γ_{q} runs from $q^{\prime \prime}$ to g^{\prime}

In Δ^{3}

$$
\frac{n}{\text { Carton of }}
$$

$$
f(N)
$$

$f(N) \subset \Delta^{3}$
Pick arc β^{\prime} in Δ^{2} conn $f\left(p^{\prime}\right)$ to $f\left(q^{\prime}\right)$ and also

$$
\text { " } \beta^{\prime \prime}{ }^{\prime \prime}{ }^{\prime} f^{\prime}\left(p^{\prime \prime}{ }^{\prime} f^{\prime \prime}\right)
$$

Pick them close to π to ensure

$$
\left(\beta^{\prime} \cup \beta^{\prime \prime}\right) \cap f(s)=\partial \beta^{\prime} \cup \partial \beta^{\prime \prime}
$$

Homotope f (sup in small neigh of $N)$ to make $f(N)$ lie in Δ^{2} with $f\left(\alpha^{\prime}\right)=\beta^{\prime}, f\left(\alpha^{\prime \prime}\right)=\beta^{\prime \prime}$
 Now push cimage of N out of Δ^{3}

Picture after homotopy There 3 , we remare a double point in a face ot the cost of produang a Whitney umbrella in a
 tetrahedron. The rest of the proof is similar to normal ising sphere systems. (that is get sid of bent arcs long normal curves via weight reducing homolopies I // 5.1
estion: In your finial pictore $f(\alpha)$ is
Question: In your finial pictore $f(x)$ is
a point?
Answer on right; fix that inside the reigh tetra.

Definition: $M i K, S$ as before A map $f: s \rightarrow(n, k)$ is normal if
(i) $f \pitchfork K$ (transverse)
(ii) all curves of $f \cap \partial \Delta^{3}$ normal
(iii) all opts of $f \cap \Delta^{3}$ are disks.
[That is, the opts of $f^{\prime \prime}\left(\Delta^{3}\right)$ are disks D : and $f \mid D_{i}$ is embedding]
Def: A collection $\left\{f_{\alpha}: S_{\sigma} \xrightarrow{\longrightarrow}(m, k)\right\}_{\alpha}=\zeta$ of raps 3 a normal class if
(i) B closed under homotopy
(a) 6 does not contain a qull-homotopic rap
(iii) E is closed under disk surgery along null homotopic (in M) separating (in S)
simple closed coves (inS).

glue in two copies of D and extend $f \mid S-n(C)$ vi taro copies of H.
Example: Suppose $F \xrightarrow{t} M \rightarrow \delta^{\prime}$ is a surface bundle then the homotory class of f is a normal class [Exercise]
Exerize: Call $f: F \rightarrow M$ π_{1}-injective of the induced homomorphism $f_{4}: \pi_{1}(F) \rightarrow \pi_{1}(M)$ is ivjective. Snow the homotopy class of f is a normal class.
Lemma 5.2: Suppose 6 B 1 normal class Then for any triong K of $M ; G$ contains a normed map. Proof: Exercise./l
IV) Hyperbolic faces: Suppose (m, k) is triang-3-mfel. We place a metric on $K^{(2)}-K^{(0)}$ as fallows.
(1) edges somotvic to \mathbb{R}
(2) faces isometric to ideal triangle in HH^{2} (glued to edges via isometries).
$\left[\begin{array}{l}\text { Rok there are choices here and the metric } \\ \text { on } K^{(2)}-K^{(1)} \text { may not be complete. }\end{array}\right]$
Pictures

we use the Klein mode
(i) Geodesics are \mathbb{N}^{2} live segments
(ii) vertices are inf far away.
we arrange inters so that the affine structures $\left.\begin{array}{rl}\text { coming from (a) klein model } \\ \text { (b) model tetrahedral }\end{array}\right\}$ agree.
(V) PL area (after Taco and Rubinstein)

Dafinotion: Suppose $f: S \rightarrow(m, k)$ is a normal an ap. so $\Gamma=\Gamma_{f}=f^{-1}\left(k^{(2)}\right)$ is a finite graph in S. Let $\left\{\gamma_{i}\right\}$ be the edges of Γ. so $f\left(\gamma_{i}\right)$ is
an are in some fuce Δ of $k^{(2)}$.
Define $l(f)=$ length $(f)=\sum_{i}$ length $\left(f\left(\gamma_{i}\right)\right)$
The PL aren of f is
$A(f)=(\omega(f), \ell(f))$ ardered lexicograp.
Poctre

