Intro to 8 -mfrs : $\left[\begin{array}{ll}\text { lecture 6 } & 2021-02-24 \\ \text { saul Schleimer }\end{array}\right]$
Last time: - Truangulatiors

- Normal surfaces
- I-bundles
- Hagen kneser finite mess
(*) Remark HK finiteness gives an upper bound but does not give examples (at least not obviously)
sphere Theorean: Suppose $\pi_{2}(M) \neq \mathbb{1}$. Then, for any triang K of $M,(M, K)$ contains a enl, normal essential two sphere.
(I) Existence of connect sum decomp:

Theorem: Fix on (cot, conn) three-mfd then there is a constant $k(M)$ so that of S is an indep sys. of two spores then $|S| \leqslant k(M)$.
Proof Fix K a triangulation of M with t tetrahedera. If S is indep then there $\overline{5}$ some S^{\prime} normal indep system with $\left|S^{\prime}\right|=|s|$.
thus $k(M) \leqslant 20 t$ by til finiteness.
Fry the indep sys S. Isotope S to be transverse to K. No component of S lies inside any Δ^{3}. Here are our complexities (in order of importance)
(1) $\operatorname{wt}(s)=$ weight of $s=\left|\operatorname{s} \cap K^{(1)}\right|$
(2) $l_{p}(s)=$ loops of s in faces of $k^{(2)}$
(3) $n d(S)=$ non-disks of s
($\left.{ }^{1} 1\right)$
= sum of (neg. Euler char) of

Note: If $l_{p}(S)$ or $\operatorname{nd}(S)>0$ then S is not normal.
(3) Suppose nd $(s)>0$. Let $P \subset x_{\Delta}^{-1}(s)$ be the offending component.
Exercise: There is a disk surgery of P in \triangle This viduces nd (s) [Hint Aleoamaters tum]

Question why doesn't wot or lp increase? Answer: Te sweeny is inside \triangle.
Note: by Leman 2.6 after disk surgery and deleting a sphere (if necessary) we have a new system S^{\prime} Thus we way assume $X_{\Delta}^{-1}(s)$ is a coll of disks.
(2) Suppose $l p(s)>0$. Pick an innermost loop $c \subset \Delta^{2}$ some face of K.
So C bounds a surety disk $D<\Delta^{2}$ and done as above.
(1) Suppose some face Δ^{2} has a "bent arc" Let C be an outer most bent are Let D be the disk (bigon) cut out of Δ^{2} by c we perform ar ambient sotopy on S, moving C across D.
Picture

$$
\omega t\left(S^{\prime}\right)=\omega t(S)-2 .
$$

This gets rid of all bent arcs. Finally suppose that some component C of $S \cap \partial \Lambda^{3}$ has length at least five.
Picture
 that is boo at $X_{\Delta}^{-1}(S) \cap \partial \Lambda$
Everaige: Thus O meets some edge of Δ^{3} at least twice this gores a baseball unore as above.

Conduce: we find a indep sys. S^{\prime} with $\left|\delta^{\prime}\right|=|s|$ and s^{\prime} has no long normal curves, no bent ares, no loops, no non -disks.
Thus S^{1} is normal. If
Corollary: Suppose M cAt conn. Then M has a decamp $M \cong \not \#_{i}$ as a finite conn.
sum of prime manifolds.
Question: But disk surgery increases the \# f spheresky one?
Answer: Yes, so we throw one of them away.
(II) Uniqueness:

Theorem 3.4: Suppose M_{e} is closed, conn, oriented. Suppose $M \cong \prod_{i=1}^{\prod_{53}} M_{i} \cong \prod_{j=1}^{l} N_{j}$, with all M_{i}, N_{j} prime and not ${ }^{i=1} s^{3} \quad \sigma=1$. then $k=l$ and (after recording) $M_{i} \cong N_{i}$ for all i.
(arient preserving homeoJ
Proof: suppose all spheres in M Eeparifle
(so all M_{i}, N_{j} are irred, no copies of $s^{\prime} \times s^{2}$)
Suppose SCM realises the first decamp $M \cong \# M_{i}$
Suppose $\sum \subset M$ is a two sphere cutting of $N_{1}^{*} \leq N_{1}-\dot{B}^{3}$
Isotope s to be Prousverse to \sum
Case 1: Sn $\mathcal{L} \neq \phi$ so pick $c<\sin$ innermost in Σ, let $D C \Sigma$ be tho disk bounded by C.

Cartoon:

So D lies in m_{1}^{*} (after renumbirby.)
Note that C bounds - pair of disks

Pick one of those say E. So Du In bounds a punctived B^{3} in $m_{1}^{*}\left[M_{1}\right.$ is irred $]$

Thus we way surgors along D and get new system
S^{\prime} that still realises $M \cong \# m_{i}$ and

$$
\left|S^{\prime} \cap \Sigma_{1}^{\prime}\right|<|\sin |
$$

Cure: $\sin =\varnothing$.
case 2 a some component $S_{i} \subset S$ lies in N_{1} Since N_{1} is irred, S_{i} is parallel to \sum_{c} and some $u_{i} \bumpeq N_{1}$ as desired.
cause $2 b: \sum_{i}^{+}$lies in some M_{i}^{*}. Similar.
$2 a$

(26)

Suppose now that M contains non-separating
two solano two spheres.
tet \sum_{i} be a mosel system realising
$N \cong \# N_{j} \quad$ [Question: Do we need to also Question: ${ }^{\text {cut we need to also }}$,
Let S be a system of r spheres so that $M-n(S)$ is conn and all spheres in $M-n(S)$ are separating.
Thant is

$$
M \cong\left(\underset{i=1}{\#} s^{1} \times s^{2}\right) \#\left(\underset{i=r+1}{\#} M_{i}\right)
$$

We now find a sequence of disk surgeries

$$
S \underset{D_{1}}{ } S^{\prime} \xrightarrow[D^{\prime}]{ } S^{\prime \prime} \xrightarrow[D^{\prime \prime}]{ } S^{\prime \prime \prime} \rightarrow S^{(n)}
$$

So that $\quad\left(S^{(p+1)} \cap \sum_{1}\left|<\left|S^{(P)} \cap \sum_{i}^{\prime}\right|\right.\right.$
we deduce then $\left\{N_{j}\right\}$ also has r copies of $S^{1} \times S^{2}$
Remains to show: $M-n\left(S^{(P)}\right) \cong M-n\left(S^{(P+1)}\right)$
Picture:

Must under stand how cutting along $S_{1} S_{1}$
"connotes" with sirgery along
Define and thin Define $V H Y=M-(n(S U P)$ and think. His finishes the proof of Existance and uniqueness \#.

Question: Wheat goes wrong in dim 4?
Answer: well the unigheness fails - perhaps
the "slides" ave wore dengerons than they appear?
(III) Incompressible surfaces skip!
III) Heegaard splittings skip!
(1) PL-minimal surfaces: The meeks-Yau proof of the sphere theorem relies on the theory of minimal surfaces in riem. 3 infols. Here the exuitnuce results are delicate. Instead well use a "combinatorial" version where existence is a simple compactness argument.
totally general set up: Well simplify our lives by assuming all char
 maps are embeddings
We now produce a thy of normal maps
Fix K a triangulation with X_{\triangle} emb for all \triangle Suppose $f: S \rightarrow M$ is a map Homotope f to be transverse to $K^{(k)}$ for all k.
Define: $w f(f)=\left|f^{-1}\left(K^{(1)}\right)\right|$
LemmaS.1: M, K, f, S as above. After homotepy we may ussome
(1) f is least weight in homotopy class.
(2) for each let Δ in K we have, for each component c of $f^{-1}(\partial A)$, either $f(c) 3$ a loop in a face or $f(c)$ is a normal curve of length $\leqslant 4$.

Note that after Lemma 5.1 we still do not know f is an embedding.
Question: Is there a sphere theorem in higher dimensions?
Anemer: In dim $n \geqslant 5$, a generic map of a surface $S \rightarrow M^{n}$ B an erukeding.
So indeed efts of $\pi_{2}(M)$ can be "deaned up"
Question: No, no, we care about $\pi_{n-1}\left(M^{n}\right)$.
Answer: The 3 -din'l proof will not generdice...
Ill guess there is no corresponding statement.
Idea: Take N to be an $n-1$ dimil splevial space form $\left(N \wedge S^{n-1} / \Gamma\right)$ and define $N=N \times S^{1}$
[for us, consider $P^{2} \times S^{1}$].
Better: Set $x=s^{2} x s^{2}$. Show x irreducible. But $\pi_{3}(x)$ is non-trivial due to the Hopf map. Exercise

