Intro to three-rnanifflds Lecture four 2021-02-10
Geometries
Surface bundles
Seifert filled spaces
Trangreasality. $\quad\left[\begin{array}{l}\text { Soul Schleimer } \\ \text { office lours in } \\ \text { Warwick Tears } \\ \text { Fviclays 12:30-13:30 }\end{array}\right.$
(1) Schonflies conjecture: Does a CAT S^{n-1} em in S^{n} bound CAT B^{n} on each side?

Cat 1 2 3	4	$\geqslant 5$		
Top		$J C T$	X	X

Question What is the counter example in $n=3$, Top?
Answer: Recursive construction of the Alexander

pick two disks

Add two horns pick four disks

- The blue loop 13 nell nomotepic on complement of any finite stage but not in complement of the limit.

(II) Collars: Manifold M with boundary ∂M has a collor $N \cong \partial M \times I \subset M$ is correctway use this to prove
Prop 2.2: $M^{3} \frac{\#}{a} \mathbb{B}^{3} \cong M^{3} \frac{B^{3}}{1,1, M} \cong \frac{T 1}{11} M$
(III) Isotopy and andbent rolopy : Suppose $X c Y$ (3) subspace. A map $f: X \times I \rightarrow Y$ is called an isotopy if (define $f_{t}: X \rightarrow Y$ by $f_{t}(x)=f(x, t)$)
* for all t, f_{t} is an embedding and $f_{0}: X \rightarrow Y$ is the inclusion
Picture: $Y \cong D^{2}$

Definition: A isotopy $f: Y \times I \rightarrow Y$ is called an ambient isotopy of X when applied to $X \subset Y$
(IV) Alexanders Theorem: Suppose $S \subset S^{3}$ is a (PL or smooth) exurb. two sphere. Then $S^{3}-S$ has two components $D_{1} E$ and

$$
(D \cup S, S) \cong(E \cup S, S) \cong\left(B^{3}, S^{2}\right) .
$$

Equiv: There B an amp. iSotopy of S to the round S^{2}.
Proof: Pick $x \in S^{3}$, off of S. $\left.S^{3}-\varepsilon_{x}\right\} \cong \mathbb{R}^{3}$. Fix
F a flistion of \mathbb{R}^{3} say by horiz planes
Mire (isotope) s to be transverse to 7 .
We vow use a double induction. The fret measure of complexity is $n=$ nom of saddles of 5 wot \mathcal{F} $n=0$ Then there is exactly one max and ore min

et S into small annul: (and two disc) using $H\left(t_{i}\right)=$ plane of height t_{i} and apply
JCT [and work] to cumulus \hat{A}_{i} between $H\left(t_{i}\right), H\left(t_{i+1}\right)$
Exercise: A_{i} bounds $D_{i} \cong D^{2} \times I A_{i}$ Apply Prop 2.2.
$n=1$ Suppose the is one max and two ming (other case is similar)
Piceous:

Near the saddle

In both cases there is a disk D in He level $H(c)$ of the sidle that, with a disk of S bounds a three boll ${ }^{B}$ by the $n=0$ case.
Isotope E across B to cancell a min. with the saddle. Thus the new position of S bounds a ballBurton (one dim.)
 $n=0$ here.
$n \geqslant 2$ Pick any level $H=H(t)$ which 3 regular (misses crit points) and has $\geqslant 1$ saddle abler. and below. By trawsuresaloty snot is a collection of m embedded, disjoint closed curves.
We take $m=$ \# of curses to be the
second measure of complexity. $[m$ finite bl $s c o t$ ind and snit
$m=0$ impossible as S is conn. and it separoles.
$m \geqslant 1$ Pick $\alpha c S \cap H$ on innermost
[INT]
compment of siH (innermost in H). Let $D C H$ be the disk bounded by α. Let $E_{1}^{\prime} R^{\prime \prime}$ be the dishes of $S-\alpha$. Set $S^{\prime}=D \cup E^{\prime}, S^{\prime \prime}=D \cup E^{\prime \prime}$
Cartoon:

Note that in total s'us" has one new pax. and one new min. [This procedure 3 called surgery or compression of S along $D]$
Case 1: Both S^{\prime} and $S^{\prime \prime}$ have saddles. Induct and find three balls B^{\prime} and $B^{\prime \prime}$ banded by $S^{\prime}, S^{\prime \prime}$.
Case 1a: $B^{\prime} \cap B^{\prime \prime}=\phi$, Then [Prop 2.2]

Cause $1 b$: $B^{\prime} \subset B^{\prime \prime}$. Then [Prop 2.2]
$B^{\prime \prime}-\left(B^{\prime} \cup(D \times I)\right)$ is a three ball. Done.

Cause Ic: $B^{\prime \prime} \subset B^{\prime}$ similar.

Case 2: Suppose S^{\prime} has no saddles. By $n=0$ cause S^{\prime} bounds. Isotope E^{\prime} across 3 -ball and past D. [as in $n=1$ cause I. So we reduce m by one.
case 3.: Suppose $S^{\prime \prime}$ has no sidles.-. (Alex. Exercise: Prove the following theorem, also due to Alexunder.
Theorem ${ }^{23}$ Suppose $T \subset S^{3}$ is a (PL or smooth) mb two-torus. Then T bands a solid torus $\left(D^{2} \times S^{\prime}\right)$ on at least one side.
Exercise: what about genus two (RL or smooth)?

(I) Irreducibility;

Lemma: Suppose M is 3 mol. Suppose $\alpha \subset M$ is an em loop. Suppose A, B, C are disks in M st. $A \cap B=B \cap C=C \cap A=\alpha$ set $S_{A}=B \cup C, S_{B}=C \cup A, S_{c}=A \cup B_{o}$ If any two of S_{A}, S_{B}, S_{c} bound three balls then so cloes the third.
Proof: Suppose S_{A}, S_{B} bound balk $D_{A}, D_{B} A$ If $D_{A} \wedge D_{B}=C$ then $D_{A} \cup D_{B}$ is a three ball [prop 2.2]

Suppose $D_{B} \subset D_{A}$ thus $S_{C} \subset D_{A}$ and so, by Alex The bounds a three bull. If $D_{A} \subset D_{B}$ the proof is similar. //
definition: Call M^{3} irreducible of avery $S^{2} \subset M^{3}$ bounds a three ball.
Examples: $s^{3}, \mathbb{B}^{3}, \mathbb{R}^{3}$
Exercise: Suppose $\hat{M} \rightarrow M$ is the univ cover: If \hat{m} is irred then so is M. Deduce \mathbb{I}^{3} is irred. Lemma: $M \not S^{3} \cong M$. Pf: Alex tho and Alexander Trick y
Alex Trick: Suppose f : $B^{3} \rightarrow B^{3}$ is homed and $f\left(\partial B^{3}=I d\right.$. Then f is isotopic to Id. [Ref Thruster] on smooth setting
Definition: call M prime if $M \cong N \neq P$ implies $N \cong S^{3}$ or $P \cong S^{3}$.
Lemma:
(1) Irred \Rightarrow prime
(2) Prime \Rightarrow irred (or $M \cong S^{2} x S$ or $M \cong S^{2} \hat{x} S^{\prime}$)
(II) Independent sphere systems

Definition: M three-infd. $S=\amalg S_{i}$ a collection of emb-spheres in M. Call S indef if no component of $M-S$ is a "punctured three-sphere" (ie. $S^{3}-4 B^{3} / s$)
Lemma: Suppose $S \subset M$ is indep. Suppose D is a dist in M st. $D A S=O D$. Then one of S^{\prime} or $S^{\prime \prime}$ (obtained by comp. Salong D) is indef

$$
\left.D \bigcup_{S_{i}} \int_{S_{i}^{\prime \prime}} \quad \begin{array}{l}
S^{\prime}=\left(S-S_{i}\right) \cup S_{i}^{\prime}\left[\frac{P f}{}:\right. \text { Apply } \\
S^{\prime \prime}=\left(S-S_{i}\right) \cup S_{1}^{\prime \prime} \\
2.4
\end{array}\right]
$$

Question: In dim 4 is there a prime decomp. theorem?
Answer: Well probably first we need the Scharfties conjecture [in locally flat category we need the surgery theory.-].
Question: How does compactness plus transversality produce finiteness?
Answer: Trauswrality implies the intersections (for reg leaves) are submaniflds. Now use compactness. [Hirsch's book. Diff Topology I
Question Do people cave about analytic unfols?
Answer: Yes! Hedge conjecture!
Question: Another definition of lens spaces?

