Into to 3. mfels Moliliur 2021-02-03 filing of Lecture 3 H2 Saul Schleimer Last time ; · Connect sums · Classification of manifolds. · avernment of Thurston geometroes (I) S²× R geometry: X = S²× R (usual motoric) Take G= Isom (X) = Isom (S) × Isom (R) The manifolds with (G,X) structures are exactly Noncompact: SXIR, P2×IR, P3- 4pt3 compact: $S^2 \times S'$, $S^2 \times S'$, $P^2 \times S'$, $P^3 \# P^3 [P^3 = IRIP^3]$ "trusted S' bund 15". "connects om Exercise: Find all covening maps among theses. Torus bundles: Set $F = T^2$, A e SL (2, \mathbb{Z}) Define $M_A = T^2 \times I/(G, 1) - (A_{X,0})$ Then My has geometry of Nil off A is periodic Nil off A is periodic reducible # 5d ((periodic Propusition: If M was E? Nil, or Solu goon then M is (at most four fold) covered by such a torus bindle. [M compact]

To B B Exercite: Find the last arrentable E³ mfd. Example: set H(R) = 5 $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & i \end{pmatrix} = \begin{pmatrix} x, y, z \in \mathbb{R} \\ x, y, z \in \mathbb{R} \end{pmatrix}$ Before H(Z) similarly, Then $H(R)/H(Z) \cong M_{(6!)}$ Rule: So(v ≅ $R^2 \lor R$ > 3 dim Lie group, Nit. $\pm \cdot (\pi, y) = (e^{\pm}\pi, e^{\pm}y)$ (II) Hyperbolic surface: Suppose $F = S_f^P$ is a b b hyprarbolic surface with fin volume $F = S_2^3$ genus y and punctures p. Suppose f: F > F is a homeomorphism. Then: Mf is { H² × IR geom } Aff f iz { periodiz toroidal Ht³ geom } Aff f iz { periodiz reducible pscudo Anuson these are respectively exercise, exercise. Thurston's double limit Hearcm. [Thurston, Otal, Perelman --] Exercise: Any clused conv 142×12 goon manifold is (at most four fold) concered by a bundle as above.

Theorem [Agol, Katra Wouldovic, Manning, Wise.] A out clused conn (H³ geom mfd 3 covered by a surface bundle as above. Ruik: Nork of Lee Mocher, Tao Li on adjulated 3-mfds (I) Seifert fibered sprices : Petinition: Suppose M is conv. pot (OM = of allowed). A safert flurred space structure on M is a one-dime foliation 7 where all leaves LEJ are circles. Mouning: I need not be unique when it exists! Examples: (1) The Hopf fibration S'->S³->S² Think: S3 c Q2 and the files are intersections of S3 with "lines" in C2. Exercise: Fix conventions and draw the Hopf fibration in IR Is it right handed or left handed?] (2) Fix a Riem metric on a surface F thin $S' \rightarrow UT(F) \rightarrow F$ is a SFS str. This still works even if FB an arbital. Exercise: Suppose (M, F) is SFS. Fix La leaf. Prove that there are $p,q \in \mathbb{Z}$ (g(d(p,q) = 1, p = 7, q = 1)) and a felicited neighbour hand VCM of L so that $(V, \mathcal{F}|X) \cong (D^2 \times \mathbb{I}_{(\mathcal{T}, \Omega - (e^{2\pi i \frac{1}{p}} \times , 0))}, ([pt] \times \mathbb{I}))$ conditions: (M.F)/21 is 277 By rotation D2 KS' a 2-olmit orbifold.

Remark: A SFS (M,F) is deturnined by the lose orbifold B= (M,F)/s1, the seif inacriants (Pigi) about crit fibers (i.e. when P=1) and the enter class. Exercise: Fix (M,F) a SES. Fix La leaf. (3) prove p is determined by L (as is ge Z/pZ) (2) prove p=g=1 for all but finitely many fibers. DPSCO, R)-geometry: Fix F cpt com closed surface with construct curv (+1,0,-1) Thur UTF has $\begin{cases} S^{3} \\ E^{3} \\ PSL \end{cases}$ geom as $\chi(F) \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$ Every code of $PSL(2, IR) \triangleq Isourt(H^{2}) \cong UT H^{2}$ Runk: $PSL(2, IR) \triangleq R^{3} \triangleq D^{2} \times S^{1}$ [open solid] Examples: Suppose TCHP' & a regular tessellation, Let A be the symmetries of T. This PSL (ZIR)/A is a PSZ manifold. Quillen: $SL(2,\mathbb{R})/SL(2,\mathbb{Z}) \cong S^3 - CS$ $\exists SL(2,\mathbb{Z}) \cong \Delta_{2,3,\infty}$ triangle group $\equiv sym of modulow filling.$

(II) Ht - geometry: Example [Riley , Thurston] F= OS, f: F->F the "punctured" (f!) mp then Mg = S³-(G) Riley: finds veps I, (SB-K) -> Ison+(IH3) Rig. 8 unot. $\in PSL(2, \mathbb{C})$ Exercite : Isont (Ht3) = PSL (Q, C) $\mathbb{H}^{3} \cong \mathbb{S}(3)/\mathbb{P}(1,\mathbb{C})$ Then (Rbey I: The fig & complement is a 12 fold cover of Ht³/PSL(2,ZEWJ) w²tert1=0 Bample: H³/PSL(2,ZEIJ) is covered by S³-GP whitehead link. of H3/PSL(2,ZEWJ) Question: What is a thurstorn geometry? Answer: Fix X a 3-dimensional wanifold with metnic let G=Isom(X). we call (G,X) a thurston geom If (1) Gracts tremstively (2) there & sime 125 acting "nicely" with X/p compact. = $(\mathbf{S}) \mathbf{I}_{\mathbf{I}}(\mathbf{X}) = \mathbf{1}_{\mathbf{I}}$ Ref: X 13 howagen off (1) X is isotropic iff Gx=Stuby contains a copy of 80(3). Question: what are the "thur geom" in dim 4? Answer: ?? Question : Is these geometries "suffice" or are they all"? Answer: They are all.

(TI) Transversality: A pair of transverse and surfaces in a 3-rufd intersect in one-manifold T Refs: chapter 1 of Hempel [PL] Chapter 2 of Hirsch [C^{od}] More arear A surface S transverse to a two devil followtion I is transverse to the leaves except at fontely many points which are modelled on the following Eisolated critical pts"] side wow Richards (a) (a) filds =ye cap +1 saddle -1 name /7 cup H (III) Alexander's Thorream [Jordan-Schönflics Thin] This Suppose S=S3 is a (PL or smooth) endedded ouro sphere. Thun S separates 53, with say $S^3 - S = D \perp E$ and $D \vee S \cong E \vee S \cong B^3$. DCOM, ECON une comb. disks. Fix Q: D-> E mi red. Define N#N = MHN/4 CIDN CO

Propo	setion 2	1: M	$^{3} \oplus \mathbb{B}^{3} \cong \mathbb{M}^{3}$	
Hent	Use a	collar	∂MXI <m. <="" th=""><th>(B^3)</th></m.>	(B^3)
				$M^{3} \cong M$
• • • • •				
		· · · · ·		
		· · · · ·		
		· · · · ·		