Molubur tiling of.

Into to 3-mifels
2021-02.c3
lecture 3
Saul Schleimer
\qquad
Lasttime: Connect sums

- classification of manifolds
- Overview of Thurston geometries
- S^{3} geometry
(I) $S^{2} \times \mathbb{R}$ geometry: $x=11 S^{2} \times \mathbb{R}$ (usual metric)

Take $G \approx \operatorname{Isom}(X) \cong I \operatorname{som}\left(S^{2}\right) \times I \operatorname{som}(\mathbb{R})$
The manifolds with (G, X) structures care exactly noncompact : $S^{2} \times \mathbb{R}, P^{2} \times \mathbb{R}, P^{3}-\{p t\}$
compact: $S^{2} \times S^{1}, S^{2} \hat{x} S^{1}, P^{2} \times S^{1}, P^{3} \# P^{3}\left[P^{3}=\mathbb{R} \mathbb{P}^{3}\right]$
trusted S^{2} bund/ S !. © connect s um
Exercise: Find all covering maps among theses.
(II) Torus bundles: Set $n=\pi^{2}, A \in S C(2, \mathbb{Z})$

Define $M_{A}=\pi^{2} \times I /(1,1) \sim\left(A_{x, 0}\right)$ Then
M_{A} has geometry $\left\{\begin{array}{c}\mathbb{F}^{3} \\ N_{i} \\ \text { Roll }\end{array}\right\}$ of A is $\left\{\begin{array}{l}\text { periodic } \\ \text { reducible } \neq J d \\ \text { Anosov }\end{array}\right\}$
Proposition: If M has \mathbb{E}^{3}, Nil, or sole geom then M is (at most four foll) careered by such a Corns bundle. [M compact]

Ircuple:

There are five \mathbb{E}^{3} torus bundles [fin and efts of

$$
S L(2, \mathbb{Z})]
$$

Exercise: Find the last arieurtable $\mathbb{E}^{3} \mathrm{inf}$.
Example: set $H(\mathbb{R})=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\}$
Define $H(\mathbb{R})$ similarly: Then $\left.H(\mathbb{R}) / H(\mathbb{Z}) \cong M_{(11}^{1} 1\right)$
Rok: $S o l v \mathbb{R}_{\varphi}^{2} \nmid \mathbb{R}$ is 3 dim lie grape. Nit.

$$
t \cdot(x, y)=\left(e^{t} x, e^{-t} y\right)
$$

(III) Hyperbaric surfaces:

Suppose $F=S_{y}^{P}$ is a
hyperbolic surface with fin volume $F=S_{2}^{3}$ genus g and punctures P. Suppose $f: F \rightarrow F$ is a homeomorphism Then:

$$
\text { Mf is }\left\{\begin{array}{l}
H^{2} \times \mathbb{R} \text { geom } \\
\frac{\text { toroidal }}{H^{3} \text { geom }}
\end{array}\right\} \text { if f } i \text { it }\left\{\begin{array}{l}
\text { periodic } \\
\text { reducible } \\
\text { pseudo Anosov }
\end{array}\right\}
$$

lose core respectively exercise, exercise. Thurftm's double limit tHeorem. [Thurslon, ital, perelman<compat>...] Eyerase: Any closed conn Ht $^{2} \times \mathbb{R}$ geom manifdd is (at most four fold) covered by a bundle as above.

Theorem [Agol, Katra Wowkevic, Manning, Wise]
Any caused conn HH^{3} geom rfd i covered by a surface bundle as above.
Rule : work of Lee Mosher, tao $L i$ on culbulated 3 -mfals.
(IV) Seffort fibered spaces:

Defunotion: Suppose M is conn, cot ($a m \neq \phi$ allured).
A seffert fibered space structure on M is a one-dimil foliation \mathcal{F} where all leaves $L \in \mathcal{F}$ are circles.
Wouning: F need not be unigere when it exist!
Examples: (1) The Hop fiburtion $S^{\prime} \rightarrow S^{3} \rightarrow S^{2}$
Think: $S^{3} \subset \mathbb{T}^{2}$ and the fitters ane intersections $\begin{aligned} & S O(2) \rightarrow S^{\prime \prime}(2) \rightarrow " \not P^{\prime}\end{aligned}$ s^{3} with "lines" in \mathbb{C}^{2}. Erevase: Fix conventions and draw the Hop finvertion in \mathbb{R}^{3}
[Is it right handed or left handed?]
(2) Fix a Rem metric on a surface F then

$$
S^{\prime} \rightarrow U T(F) \rightarrow F \text { is a SFS str }
$$

This still works even if $F B$ an orbifold.
Exercise: Suppose (M, F) is SES. Fix L a leaf. Prove that there are $p, q \in \mathbb{Z}(\operatorname{gcd}(p, q)=1, p \geqslant q \geqslant 1)$ and a folistd neighbourhood $V \subset M$ of L so that

Corollary:
$(m, f) / s^{\prime}$ is a 2 dimil orbifold.

Remark: A SFS (M, F) B determined by the base orbifoll $B=(n, F) / s^{\prime}$, the self inaoviounts (p, q_{i}) ahunt crit fibers (ie. when $p \neq 1$) and the ever class.
Exercise: Fax (M, F) a SES. Fix L a leaf
(1) prove $P B$ determined by L, (as 3 \& \mathbb{P} / \mathbb{Z})
(2) Prove $p=q=1$ for all but finitely many fibers.
(1) $\widetilde{P S(D, R)}$-geometry: Fix F opt conn closed surfed with constant corr $(+1,0,-1)$ Then

$$
\begin{aligned}
& \text { UTF has }\left\{\begin{array}{c}
S^{3} \\
E^{3} \\
\widetilde{P S L}
\end{array}\right\} \text { geom as } X(F)\left\{\begin{array}{l}
>0 \\
=0 \\
<0
\end{array}\right\} \\
& \text { Exercises: } \operatorname{PSL}(2, \mathbb{R}) \bumpeq \operatorname{Ism}^{+}\left(\mathbb{H}^{2}\right) \cong U T \mathbb{H}^{2}
\end{aligned}
$$

Rule: $\overparen{\operatorname{PSC}(2, \mathbb{R})} \hat{=\mathbb{R}^{3}}$

$$
\cong \dot{D}^{2} \times S^{\prime}\left[\begin{array}{c}
\text { open solid } \\
\text { for }
\end{array}\right]
$$

Evcomples: suppose $J \subset H^{2}$ B a regular tessellation, Let $\frac{1}{}$ be the symmetries of T. Thin $\operatorname{PSC}(2 \mathbb{R}) / \Delta$ is a $\widetilde{P S L}$ manifold.
Quillon: $S_{L}(z, R) / S_{L}(2, \mathbb{Z}) \cong S^{3}-C$ trefoil $S C(2, \mathbb{Z}) \cong \Delta_{2,3, \infty}$ tricuple pram \cong sym of modular tiling.
(VI) Ht^{3}-geometry:

Example [Riley, Thurstm] $F=$
the "punctured" (λ_{11}^{1}) map then $M_{f} \cong S^{3}-(5)$
Riley: finds reps $\pi_{1}\left(s^{3}-k\right) \rightarrow I$ som $^{+}\left(H_{H^{3}}\right) \quad$ pig. 8 undo.

$$
\Leftrightarrow \operatorname{PSL}(2, \mathbb{Q})
$$

Exercise: $\operatorname{Isom}^{+}\left(H^{3}\right) \xlongequal{\cong} \operatorname{PS}((0, \mathbb{C})$

$$
H^{3} \cong \operatorname{SO}(3) \backslash \operatorname{PSL}(2, \mathbb{Q})
$$

Than [Riley I: The fig 8 complement is a 12 fold cover of $H^{3} / \operatorname{PSL}(2, \mathbb{Z}[\omega])$
$\omega^{2}+\omega+1=0$
Example: $H^{3} / \operatorname{PSL}\left(2, \mathbb{Z}[i J)\right.$ is covered by $S^{3}-\sqrt{\omega^{2}}{ }_{\text {wi }}$
whitehead link.
Question: What is a Thurston geometry?
Answer: Fix X a 3 -dimensional momitidd with Metric let $G \cong$ From (x) we call (G, x) a therston geom
If $(1) G$ acts transitively
(2) there B sire $\Gamma<G$ acting "nicely" with X / Γ compact.
(3) $\pi_{1}(X)=1$

Def: x is homoogen off (1)
x is isotropic if $G_{x}=$ stab contains a copy of $f 0(3)$
Question: where we the "their geom" in din 4?
Answer: ??
Question: Do these geometries "softie" or are they "all"? Answer: They are all.
(II) Transrevsality: A pair of transverse omb. surfaces in a s-oufd intersect in one-manifold
Refs: Chapter 1 of Hewpel [PL]
Chapter 2 of Hirsch $\left[C^{\infty}\right]$

More aver: A surface s trannerose to a two devil folotion F is transverse to the leaves except at fantsly many points which are modelled on the following ["isolated critics pts"]
Pictures

side view

birds eye
cup H

$$
\text { cap }+1
$$

saddle -1
name / x
111) Alexander's Toorem is [Jordan-Sihonflies Thu]

Chm: Suppose $S<S^{3}$ is a (PL or smooth) embedded two sphere. then S separates S^{3}, with say $S^{3}-S=D U E$ and $D V S \cong \mathbb{E} \cong \cong \mathbb{B}^{3}$.

Def: Suppose M, N are mfd with boundary suppose $D C \partial M, E \subset \partial N$ use emp. disks. $F \cdot X: D \rightarrow \mathbb{E}$ avi res. Define $\quad M \not \#_{\partial} N=N H N / \varphi \quad \overbrace{m} \underbrace{\text { glue }}_{N}$

Proposition 2.1: $M^{3} \not \# \mathbb{B}^{3} \cong M^{3}$ Hint use a collar $\partial M X I<M$.

