Please let me know if any of the problems are unclear, have typos, or have mistakes. Please turn in your solution to Exercise 1.6 on Friday (2020-01-17) before noon.

Exercise 1.1. Suppose that $X = S^2 \times S^4$ and $Y = \mathbb{CP}^3$.

- 1. Check that X and Y are compact, connected, oriented manifolds without boundary (of the same dimension).
- 2. Prove that $\pi_1(X)$ and $\pi_1(Y)$ are both trivial.
- 3. Give a CW–complex structure on each of X and Y.
- 4. Using this, or otherwise, compute the homology groups of X and of Y.

Exercise 1.2. [Harder.] Repeat Exercise 1.1 with $X = S^2 \times S^2$ and $Y = \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$. Here # is the oriented connect sum operation.

Exercise 1.3. Suppose that G is a group. If x, y are elements of G then the element $[x, y] = xyx^{-1}y^{-1}$ is their *commutator*. We define [G, G] < G to be the subgroup generated by commutators.

• Prove that [G, G] is a normal subgroup of G.

We define G^{ab} to be the quotient G/[G,G]. For $x \in G$ let [x] be its image in G^{ab} .

• Prove that G^{ab} is abelian.

This gives a function $G \mapsto G^{ab}$ from groups to abelian groups called *abelianisation*. If $f: G \to H$ is a homomorphism, we define $f^{ab}: G^{ab} \to H^{ab}$ via $f^{ab}([g]) = [f(g)]$.

- Prove that f^{ab} is well-defined
- Prove that abelianisation is functorial.

Exercise 1.4. Suppose that G is a group. Its centre Z(G) is the subgroup

$$Z(G) = \{ x \in G \mid xy = yx \text{ for all } y \in G \}$$

Note that Z(G) is abelian. Prove that passing to the centre is not functorial. (That is, there is no function on morphisms making $G \mapsto Z(G)$ into a functor.)

Exercise 1.5. Let \mathcal{P} be the category of pairs of topological spaces. Let \mathcal{A} be the category of abelian groups. Fix k a positive integer. Define $F: \mathcal{P} \to \mathcal{A}$ to be the functor $F(X, A) = H_k(X, A)$. Define $G: \mathcal{P} \to \mathcal{A}$ to be the functor $G(X, A) = H_{k-1}(A)$. Prove that the connecting homomorphism $\delta: F \to G$ is a natural transformation.

Exercise 1.6. In each of the following, C_* is a chain complex of abelian groups. For each, decide if C_* is exact, compute the homology groups $H_*(C)$, and compute the cohomology groups $H^*(C;\mathbb{Z})$. If it is short exact, decide if it splits.

- 1. $0 \to \mathbb{Z} \to 0$
- 2. $0 \to \mathbb{Z} \xrightarrow{1} \mathbb{Z} \to 0$
- 3. $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{1} \mathbb{Z}/2\mathbb{Z} \to 0$
- 4. $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}/2\mathbb{Z} \to 0$
- 5. $0 \to \mathbb{Z} \xrightarrow{u} \mathbb{Z}^2 \xrightarrow{v} \mathbb{Z} \to 0$ where *u* is the column vector $\binom{p}{q}$, where *v* is the row vector (q, -p), and where gcd(p, q) = 1.

For the next two problems we fix an abelian group G and we define $A^* = \text{Hom}(A, G)$.

Exercise 1.7. Suppose that $A \to B \to C \to 0$ is an exact sequence of abelian groups. Prove that $A^* \leftarrow B^* \leftarrow C^* \leftarrow 0$ is also exact. [Thus we say that the functor $\operatorname{Hom}(\cdot, G)$ is *right exact.*]

Exercise 1.8. Suppose that $0 \to A \to B \to C \to 0$ is a split short exact sequence of abelian groups. Prove that $0 \leftarrow A^* \leftarrow B^* \leftarrow C^* \leftarrow 0$ is again a split short exact sequence.