Please let me know if any of the problems are unclear or have typos.
Exercise 5.1. Revise the definitions and then prove the following. Suppose that $K$ is a field and $V=\left\{V_{i}, \partial_{i}\right\}$ is a finite, exact sequence of vector spaces over $K$.

- Prove that $V$ splits as a direct sum of exact sequences of length two.
- Deduce that the alternating sum $\sum(-1)^{i} \operatorname{dim} V_{i}$ vanishes.
- Show by means of an example that the splitting need not be canonical.

Exercise 5.2. Find an example for, or disprove, the following statement.

- There is a connected, compact three-manifold $M$ so that $\partial M \cong P^{2}$.

Exercise 5.3. Suppose that $K \subset S^{3}$ is a knot and let $X_{K}=S^{3}-n(K)$ be its exterior. Show that $X_{K}$ is irreducible.

Exercise 5.4. Suppose that $K \subset S^{3}$ is a knot. Let $N_{K}=N(K)$ be a closed tubular neighborhood of $K$; take $n(K)$ to be its interior. Set $X_{K}=S^{3}-n(K)$ and take $T=\partial X_{K}=\partial N_{K}$. We define the meridian and longitude to be oriented simple closed curves $\mu$ and $\lambda$ in $T$ which die in $H_{1}\left(N_{K}\right)$ and $H_{1}\left(X_{K}\right)$ respectively.

- Prove that $\mu$ and $\lambda$ are well-defined (up to orientation and isotopy).
- Prove that the algebraic intersection number $\mu \cdot \lambda$ is plus or minus one.

Exercise 5.5. For each knot $K$ with at most six crossings compute $g(K)$, its minimal Seifert genus. Show that $g(K)=0$ if and only if $K$ is the unknot.

Exercise 5.6. Compute the mapping class group (homeomorphisms up to isotopy) of the solid torus $D^{2} \times S^{1}$.

Exercise 5.7. Suppose that $K$ and $K^{\prime}$ are non-trivial oriented knots. Define $M=$ $X_{K} \cup_{A} X_{K^{\prime}}$ by gluing a meridional annulus of $\partial X_{K}$ to a meridional annulus of $\partial X_{K^{\prime}}$. Show that $M$ is again a knot complement; the resulting knot $L$ is called the connect sum $K \# K^{\prime}$. Draw $L$ and show it is a satellite knot. (Some care with orientations is needed to make the connect sum well-defined.)

