
Math 461 Introduction. Set theory.

Class notes written by Simon Thomas These notes are transcribed from class notes
written by Professor Simon Thomas. The notes follow the notation of Enderton’s A
mathematical introduction to logic but may be read independently.

1 A few introductory remarks

In mathematical reasoning, logical arguments are used to deduce the consequences
(called theorems) of basic assumptions (called axioms).

Question 1.1. What does it mean for one sentence to “follow logically” from another
sentence?

Question 1.2. Suppose that a sentence σ does not follow logically from the set T of
axioms. How can we prove that this is so?

We will begin the course by studying some basic set theory.

Motivation:

1. We will need this material in our study of mathematical logic.

2. Set theory is a foundation for all of mathematics.

3. Set theory is beautiful.

Remark 1.3. In a couple of weeks we will come across a natural set-theoretic statement,
the Continuum Hypothesis, which can neither be proved nor disproved using the classical
axioms of set theory.

2 Basic Set Theory

Notation: {2, 3, 5} = {2, 5, 5, 2, 3}.
{0, 2, 4, 6, . . .} = {x | x is an even natural number}.
x ∈ A means “x is an element of A”.
∅ is the empty set.
N = {0, 1, 2, 3, . . .} is the set of natural numbers.
Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers.
Q = {a/b | a, b ∈ Z, b 6= 0} is the set of rational numbers.
R is the set of real numbers.

Axiom of Extensionality: Suppose that A, B are sets. If for all x,

x ∈ A iff x ∈ B
then A = B.
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Definition 2.1. Suppose that A, B are sets. Then A is a subset of B, written A ⊆ B,
iff for all x,

iff x ∈ A then x ∈ B.

Example 2.2.

1. N ⊆ Z

2. If A is any set then ∅ ⊆ A.

Proposition 2.3. If A ⊆ B and B ⊆ A, then A = B.

Proof. Let x be arbitrary. Since A ⊆ B, if x ∈ A then x ∈ B. Since B ⊆ A, if x ∈ B
then x ∈ A. Hence x ∈ A iff x ∈ B. By the Axion of Extensionality, A = B.

Definition 2.4. Let A, B be sets. The union of A and B, written A ∪ B, is the set
defined by

x ∈ A ∪B iff x ∈ A or x ∈ B.

Proposition 2.5. A ∪ (B ∪ C) = (A ∪B) ∪ C

Proof. Let x be arbitrary. Then x ∈ A ∪ (B ∪ C)
iff x ∈ A or x ∈ B ∪ C
iff x ∈ A or (x ∈ B or x ∈ C)
iff x ∈ A or x ∈ B or x ∈ C
iff (x ∈ A or x ∈ B) or x ∈ C
iff x ∈ A ∪B or x ∈ C
iff x ∈ (A ∪B) ∪ C.

Definition 2.6. Let A, B be sets. The intersection of A and B, written A ∩ B is the
set defined by

x ∈ A ∪B iff x ∈ A and x ∈ B.

Exercise 2.7. Prove that A ∩ (B ∩ C) = (A ∩B) ∩ C.

Proposition 2.8. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof. Let x be arbitrary. Then x ∈ A ∩ (B ∪ C)
iff x ∈ A and x ∈ B ∪ C
iff x ∈ A and (x ∈ B or x ∈ C)
iff (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
iff (x ∈ A ∩B) or (x ∈ A ∩ C)
iff x ∈ (A ∩B) ∪ (A ∩ C).

Exercise 2.9. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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Definition 2.10. Let A, B be sets. The set theoretic difference of A and B, written
ArB, is the set defined by

x ∈ ArB iff x ∈ A and x /∈B.

{1, 2, 3}r{3, 4, 5} = {1, 2}.
NrZ = ∅.
ZrN = {−1,−2,−3, . . .}.
Proposition 2.11. Ar(B ∪ C) = (ArB) ∩ (ArC)

Proof. Let x be arbitrary. Then x ∈ Ar(B ∪ C)
iff x ∈ A and x /∈B ∪ C
iff x ∈ A and not (x ∈ B or x ∈ C)
iff x ∈ A and (x /∈B and x /∈ C)
iff x ∈ A and x /∈B and x /∈ C
iff x ∈ A and x /∈B and x ∈ A and x /∈ C
iff (x ∈ A and x /∈B) and (x ∈ A and x /∈ C)
iff x ∈ ArB and x ∈ ArC
iff x ∈ (ArB) ∩ (ArC).

Exercise 2.12. Prove that Ar(B ∩ C) = (ArB) ∪ (ArC).

3 Functions

Provisional Definition:
Let A, B be sets. Then f is a function from A to B, written f : A→ B, iff f assigns

a unique element f(a) ∈ B to each a ∈ A.
What is the meaning of “assigns”? To illustrate our earlier comments on set theory

as a foundation for mathematics, we shall reduce the notion of a function to the language
of basic set theory.

Basic idea
For example, consider f : R → R defined by f(x) = x2. Then the graph of f is a

subset of R2. We shall identify f with its graph.
To generalize this idea to arbitrary functions, we first need to introduce the idea of

an ordered pair; ie a mathematical object 〈a, b〉 such that

〈a, b〉 = 〈c, d〉 iff a = c and b = d. (∗)

Definition 3.1. Let A and B be sets. Then the Cartesian product of A and B is the
set

A×B = {〈a, b〉 | a ∈ A, b ∈ B}.
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Definition 3.2. f is a function from A to B iff the following conditions hold:

1. f ⊆ A×B

2. For each a ∈ A, there is a unique b ∈ B such that 〈a, b〉 ∈ f .

In this case, the unique such b is said to be the value of f at a and we write f(a) = b.

In order to reduce the notion of a function to basic set theory, we now only need to
find a purely set theoretic object to play the role of 〈x, y〉.
Definition 3.3. 〈x, y〉 = {{x}, {x, y}}.

Finally, we must prove that with this definition, the set 〈x, y〉 satisfies (∗).
Theorem 3.4. 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

Proof. (⇐): Clearly if a = c and b = d then 〈a, b〉 = 〈c, d〉.
(⇒): Conversely, suppose that 〈a, b〉 = 〈c, d〉; ie

{{a}, {a, b}} = {{c}, {c, d}}.
We split our analysis into three cases.

Case 1
Suppose that a = b. Then {{a}, {a, b}} equals

= {{a}, {a, a}}
= {{a}, {a}}
= {{a}}

Since
{{c}, {c, d}} = {{a}}

it follows that
{c} = {c, d} = {a}.

This implies that c = d = a. Hence a = c and b = d.

Case 2
Similarly, if c = d, we obtain that a = c and b = d.

Case 3
Finally suppose that a 6= b and c 6= d. Since

{{a}, {a, b}} = {{c}, {c, d}}
we must have that {a} = {c} or {a} = {c, d}. Since c 6= d the second option is
impossible. Hence {a} = {c} and so a = c.

Also {a, b} = {c} or {a, b} = {c, d}. Clearly the first option is impossible and so
{a, b} = {c, d}. Since a = c, we must have b = d.

2006/01/23 4



Math 461 Functions. Equinumerosity. Statement of Cantor-Bernstein.

Important remark When working with functions, it is almost never necessary to
remember that a function is literally a set of ordered pair as above.

Definition 3.5. The function f : A→ B is an injection (one-to-one) iff

a 6= a′ implies f(a) 6= f(a′).

Definition 3.6. The function f : A → B is a surjection (onto) iff for all b ∈ B, there
exists an a ∈ A such that f(a) = b.

Definition 3.7. If f : A → B and g : B → C are functions, then their composition is
the function g ◦ f : A→ C defined by (g ◦ f)(a) = g(f(a)).

Proposition 3.8. If f : A → B and g : B → C are surjections then g ◦ f : A → C is
also a surjection.

Proof. Let c ∈ C be arbitrary. Since g is surjective, there exists a b ∈ B such that
g(b) = c. Since f is surjective, there exists a ∈ A such that f(a) = b. Hence (g ◦f)(a) =

= g(f(a))
= g(b)
= c

Thus g ◦ f is surjective.

Exercise 3.9. If f : A→ B and g : B → C are injections then g ◦ f : A→ C is also an
injection.

Definition 3.10. The function f : A→ B is a bijection iff f is both an injection and a
surjection.

Definition 3.11. If f : A → B is a bijection, then the inverse f−1 : B → A is the
function defined by

f−1(b) equals the unique a ∈ A such that f(a) = b.

Remark 3.12. 1. It is easily checked that f−1 : B → A is also a bijection.

2. In terms of ordered pairs:

f−1 = {〈b, a〉 | 〈a, b〉 ∈ f}.

4 Equinumerosity

Definition 4.1. Two sets A and B are equinumerous, written A ∼ B, iff there exists a
bijection f : A→ B.

Example 4.2. Let E = {0, 2, 4, . . .} be the set of even natural numbers. Then N ∼ E.
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Proof. We can define a bijection f : N→ E by f(n) = 2n.

Important remark It is often extremely hard to explicitly define a bijection f : N→ A.
But suppose such a bijection exists. Then letting an = f(n), we obtain a list of the
elements of A

a0, a1, a2, . . . , an, . . .

in which each element of A appears exactly once. Conversely, if such a list exists, then
we can define a bijection f : N→ A by f(n) = an.

Example 4.3. N ∼ Z

Proof. We can list the elements of Z by

0, 1,−1, 2,−1, . . . , n,−n, . . .

Theorem 4.4. N ∼ Q

Proof. Step 1 First we prove that N ∼ Q+, the set of positive rational numbers. Form
an infinite matrix where the (i, j)th entry is j/i.

Proceed through the matrix by traversing, alternating between upward and down-
ward, along lines of slope one. At the (i, j)th entry add the number j/i to the list if it
has not already appeared.

Step 2 We have shown that there exists a bijection f : N→ Q+. Hence we can list the
elements of Q by

0, f(0),−f(0), f(1),−f(1), . . .

Definition 4.5. If A is any set, then its powerset is defined to be

P(A) = {B |B ⊆ A}.

Example 4.6.

1. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

2. P({1, 2, . . . n, }) has size 2n.

Theorem 4.7. (Cantor) N ¿ P(N)

Proof. (The diagonal argument) We must show that there does not exist a bijection
f : N → P(N). So let f : N → P(N) be any function. We shall show that f isn’t a
surjection. To accomplish this we shall define a subset S ⊆ N such that f(n) 6= S for all
n ∈ N. We do this via a “time and motion study”. For each n ∈ N, we must perform:

1. the nth decision: is n ∈ S?
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2. the nth task: we must ensure that f(n) 6= S.

We decide to accomplish the nth task with the nth decision. So we decide that

n ∈ S iff n /∈ f(n)

Clearly S and f(n) differ on whether they contain n and so f(n) 6= S. Hence f is not a
surjection.

Discussion Why is this called the “diagonal argument”?

Definition 4.8. A set A is countable iff A is finite or N ∼ A. Otherwise A is uncountable.

eg Q is countable
P(N) is uncounable.

Theorem 4.9. (Cantor) If A is any set, then A ¿ P(A).

Proof. Supose that f : A → P(A) is any function. We shall show that f isn’t a surjec-
tion. Define S ⊆ A by

a ∈ S iff a /∈ f(a).

Then S and f(a) differ on whether they contain a. Thus f(a) 6= S for all a ∈ A.

Definition 4.10. Let A, B be sets.

1. A ¹ B iff there exists an injection f : A→ B.

2. A ≺ B iff A ¹ B and A ¿ B.

Corollary 4.11. If A is any set, then A ≺ P(A).

Proof. Define f : A→ P(A) by f(a) = {a}. Clearly f is an injection and so A ¹ P(A).
Since A ¿ P(A), we have A ≺ P(A).

Corollary 4.12. N ≺ P(N) ≺ P(P(N)) ≺ . . .

Having seen that we have a nontrivial subject, we now try to develop some general
theory.

5 Cantor-Bernstein Theorem

Theorem 5.1. Let A, B, C be sets.

1. A ∼ A

2. If A ∼ B, then B ∼ A.
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3. If A ∼ B and B ∼ C, then A ∼ C.

Exercise 5.2. If A ¹ B and B ¹ C, then A ¹ C.

Theorem 5.3. (Cantor-Bernstein) If A ¹ B and B ¹ A, then A ∼ B.

Proof delayed

Theorem 5.4. If A, B are any sets, then either A ¹ B or B ¹ A.

Proof omitted

This theorem is equivalent to:

Axiom of Choice If F is a family of nonempty sets then there exists a function f such
that f(A) ∈ A for all A ∈ F . (Such a function is called a choice function.)

6 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 6.1. N ∼ Q.

Proof. First define a function f : N→ Q by f(n) = n. Clearly f is an injection and so
N ¹ Q.

Now define a function g : Q→ N as follows. First suppose that 0 6= q ∈ Q. Then we
can uniquely express

q = εa
b

where ε = ±1 and a, b ∈ N are positive and relatively prime. Then we define
g(q) = 2ε+13a5b.

Finally define g(0) = 7. Clearly g is an injection and so Q ¹ N.
By Cantor-Bernstein, N ∼ Q.

Theorem 6.2. R ∼ P(N).

We shall make use of the following result.

Lemma 6.3. (0, 1) ∼ R.

Proof of Lemma 6.3. By Calc I, we can define a bijection f : (0, 1) → R by f(x) =
tan(πx− π/2).
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Proof of Theorem 6.2. By the lemma, it is enough to show that (0, 1) ∼ P(N). We shall
make use of the fact that eact r ∈ (0, 1) has a unique decimal expansion

r = 0.r1r2r3 . . . rn . . .
so that

1. 0 ≤ rn ≤ 9

2. the expansion does not terminate with infinitely many 9s. (This is to avoid two
expansions such as 0.5000 . . . = 0.4999 . . .)

First we define f : (0, 1)→ P(N) as follows. If
r = 0.r0r1r2 . . . rn . . .

then
f(r) = {2r0+1, 3r1+1, . . . , prn+1

n , . . .}
where pn is the nth prime. Clearly f is an injection and so (0, 1) ¹ P(N).

Next we define a function g : P(N)→ (0, 1) as follows: If ∅ 6= S ⊆ N then
g(S) = 0.s0s1s2 . . . sn . . .

where
sn = 0 if n ∈ S
sn = 1 if n /∈ S.

Finally, g(∅) = 0.5. Clearly g is an injection and so P(N) ¹ (0, 1).
By Cantor-Bernstein, (0, 1) ∼ P(N).

The following result says that “N has the smallest infinite size.”

Theorem 6.4. If S ⊆ N, then either S is finite or N ∼ S.

Proof. Suppose that S is infinite. Let
s0, s1, s2, . . . , sn, . . .

be the increasing enumeration of the elements of S. This list witnesses that N ∼ S.

The Continuum Hypothesis (CH) If S ⊆ R, then either S is countable or R ∼ S.

Theorem 6.5. (Godel 1930s, Cohen 1960s) If the axioms of set theory are consistent,
then CH can neither be proved nor disproved from these axioms.

Definition 6.6. Fin(N) is the set of all finite subsets of N.

Theorem 6.7. N ∼ Fin(N).

Proof. First define f : N → Fin(N) by f(n) = {n}. Clearly f is an injection and so
N ¹ Fin(N). Now define g : Fin(N) → N as follows. If s = {s0, s1, s2, . . . , sn} where
s0 < s1 < . . . < sn, then

g(S) = 2s0+13s1+1 . . . psn+1
n

where pi is the ith prime. Also we define g(∅) = 1. Clearly g is an injection and so
Fin(N) ¹ N.

By Cantor-Bernstein, N ∼ Fin(N).
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Exercise 6.8. If a < b are reals, then (a, b) ∼ (0, 1).

Exercise 6.9. If a < b are reals, then [a, b] ∼ (0, 1).

Exercise 6.10. N ∼ N×N.

Exercise 6.11. If A ∼ B and C ∼ D, then A×C ∼ B×D.

Definition 6.12. If A and B are sets, then
BA = {f | f : A→ B}.

Theorem 6.13. P(N) ∼ NN.

Proof. For each S ⊆ N we define the corresponding characteristic function χS : N →
{0, 1} by

χS(n) = 1 if n ∈ S
χS(n) = 0 if n /∈ S

Let f : P(N)→ NN be the function defined by f(S) = χS. Clearly f is an injection and
so P(N) ¹ NN.

Now we define a function g : NN → P(N) by

g(π) = {2π(0)+1, 3π(1)+1, . . . , p
π(n)+1
n , . . .}

where pn is the nth prime. Clearly g is an injection. Hence NN ¹ P(N).
By Cantor-Bernstein, P(N) ∼ NN.

Heuristic Principle Let S be an infinite set.

1. If each s ∈ S is determined by a finite amount of data, then S is countable.

2. If each s ∈ S is determined by infinitely many independent pieces of data, then S
is uncountable.

Definition 6.14. A function f : N → N is eventually constant iff there exists a, b ∈ N
such that

f(n) = b for all n ≥ a.

EC(N) = {f ∈ NN | f is eventually constant }.

Theorem 6.15. N ∼ EC(N).

Proof. For each n ∈ N, let cn : N→ N be the function defined by
cn(t) = n for all t ∈ N.

Then we can define an injection f : N→ EC(N) by f(n) = cn. Hence N ¹ EC(N).
Next we define a function g : EC(N) → N as follows. Let π ∈ EC(N). Let a, b ∈ N

be chosen so that:

1. π(n) = b for all n ≥ a
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2. a is the least such integer.

Then
g(π) = 2π(0)+13π(1)+1 . . . p

π(a)+1
a

where pi is the ith prime. Clearly g is an injection. Thus EC(N) ¹ N.
By Cantor-Bernstein, N ∼ EC(N).

7 The proof of Cantor-Berstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the
following result.

Definition 7.1. If f : A→ B and C ⊆ A, then
f [C] = {f(c) | c ∈ C}.

Lemma 7.2. If f : A→ B is an injection and C ⊆ A, then
f [ArC] = f [A]rf [C].

Proof. Suppose that x ∈ f [ArC]. Then there exists a ∈ ArC such that f(a) = x. In
particular x ∈ f [A]. Suppose that x ∈ f [C]. Then there exists c ∈ C such that f(c) = x.
But a 6= c and so this contradicts the fact that f is an injection. Hence x /∈ f [C] and so
x ∈ f [A]rf [C].

Conversely suppose that x ∈ f [A]rf [C]. Since x ∈ f [A], there exists a ∈ A such
that f(a) = x. Since x /∈ f [C], it follows that a /∈ C. Thus a ∈ ArC and x = f(a) ∈
f [ArC].

Theorem 7.3. (Cantor-Bernstein) If A ¹ B and B ¹ A, then A ∼ B.

Proof. Since A ¹ B and B ¹ A, there exists injections f : A → B and g : B → A. Let
C = g[B] = {g(b) | b ∈ B}.
Claim 7.4. B ∼ C.

Proof of Claim 7.4. The map b 7→ g(b) is a bijection from B to C.

Thus it is enough to prove that A ∼ C. For then, A ∼ C and C ∼ B, which implies
that A ∼ B.

Let h = g ◦ f : A→ C. Then h is an injection.
Define by induction on n ≥ 0.

A0 = A C0 = C
An+1 = h[An] Cn+1 = h[Cn]

Define k : A→ C by k(x) =
= h(x) if x ∈ AnrCn for some n
= x otherwise
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Claim 7.5. k is an injection.

Proof of Claim 7.5. Suppose that x 6= x′ are distinct elements of A. We consider three
cases.

Case 1:
Suppose that x ∈ AnrCn and x′ ∈ AmrCm for some n,m. Since h is an injection,

k(x) = h(x) = x 6= x′ = h(x) = k(x).

Case 2:
Suppose that x /∈ AnrCn for all n and that x′ /∈ AnrCn for all n. Then

k(x) = x 6= x′ = k(x).

Case 3:
Suppose that x ∈ AnrCn and x′ /∈ AmrCm for all m. Then

k(x) = h(x) ∈ h[AnrCn]
and

h[AnrCn] = h[An]rh[Cn] = An+1rCn+1.
Hence k(x) = h(x) 6= x′ = k(x′).

Claim 7.6. k is a surjection.

Proof of Claim 7.6. Let x ∈ C. There are two cases to consider.

Case 1:
Suppose that x /∈ AnrCn for all n. Then k(x) = x.

Case 2:
Suppose that x ∈ AnrCn. Since x ∈ C, we must have that n = m + 1 for some m.

Since
h[AmrCm] = AnrCn,

there exists y ∈ AmrCm such that k(y) = h(y) = x.

This completes the proof of the Cantor-Bernstein Theorem.

Theorem 7.7. R ∼ R×R

Proof. Since (0, 1) ∼ R, it follows that (0, 1)×(0, 1) ∼ R×R. Hence it is enough to prove
that (0, 1) ∼ (0, 1)×(0, 1).

First define f : (0, 1) → (0, 1)×(0, 1) by f(r) = 〈r, r〉. Clearly f is an injection and
so (0, 1) ¹ (0, 1)×(0, 1).

Next define g : (0, 1)×(0, 1) → (0, 1) as follows. Suppose that r, s ∈ (0, 1) have
decimal expansions

r = 0.r0r1 . . . rn . . .
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s = 0.s0s1 . . . sn . . .
Then

g(〈r, s〉) = 0.r0s0r1s1 . . . rnsn . . .
Clearly g is an injection and so (0, 1)×(0, 1) ¹ (0, 1).

By Cantor-Bernstein, (0, 1) ∼ (0, 1)×(0, 1).

Exercise 7.8. RrN ∼ R

Exercise 7.9. RrQ ∼ R

Exercise 7.10. Let Sym(N) = {f | f : N → N is a bijection }. Prove that P(N) ∼
Sym(N).

Definition 7.11. Let A be any set. Then a finite sequence of elements of A is an object
〈a0, a1, . . . , an〉, n ≥ 0

so that each ai ∈ A, chosen so that
〈a0, a1, . . . , an〉 = 〈b0, b1, . . . , bn〉

iff n = m and ai = bi for 0 ≤ i ≤ n.

FinSeq(A) is the set of all finite sequences of elements of A.

Theorem 7.12. If A is a nonempty countable set, then N ∼ FinSeq(A).

Proof. First we prove that N ¹ FinSeq(A). Fix some a ∈ A. Then we define f : N →
FinSeq(A) by

f(n) = 〈a, a, a, a, a, . . . , a︸ ︷︷ ︸
n+ 1 times

〉.

Clearly f is an injection and so N ¹ FinSeq(A).
Next we prove that FinSeq(A) ¹ N. Since A is countable, there exists an injection

e : A→ N. Define g : FinSeq(A)→ N by

g(〈a0, a1, . . . , an〉) = 2e(a0)+1 . . . p
e(an)+1
n

where pi is the nth prime. Clearly g is an injection. Hence FinSeq(A) ¹ N.
By Cantor-Bernstein, N ∼ FinSeq(A).

8 Binary relations

Definition 8.1. A binary relation on a set A is a subset R ⊆ A×A. We usually write
aRb instead of writing 〈a, b〉 ∈ R.

Example 8.2. 1. The order relation on N is given by

{〈n,m〉 | n,m ∈ N, n < m}.
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2. The division relation D on Nr{0} is given by

D = {〈n,m〉 | n,m ∈ N, n divides m}.

Observation Thus P(N×N) is the collection of all binary relations on N. Clearly
P(N×N) ∼ P(N) and so P(N×N) is uncountable.

Definition 8.3. Let R be a binary relation on A.

1. R is reflexive iff xRx for all x ∈ A.

2. R is symmetric iff xRy implies yRx for all x, y ∈ A.

3. R is transitive iff xRy and yRz implies xRz for all x, y, z ∈ A.

R is an equivalence relation iff R is reflexive, symmetric, and transitive.

Example 8.4. Define the relation R on Z by

aRb iff 3|a− b.

Proposition 8.5. R is an equivalence relation.

Exercise 8.6. Let A = {〈a, b〉 | a, b ∈ Z, b 6= 0}. Define the relation S on A by

〈a, b〉S〈c, d〉 iff ad− bc = 0.

Prove that S is an equivalence relation.

Definition 8.7. Let R be an equivalence relation on A. For each x ∈ A, the equivalence
class of x is

[x] = {y ∈ A | xRy}.

Example 8.4 Cont. The distinct equivalence classes are
[0] = {. . . ,−6,−3, 0, 3, 6, . . .}
[1] = {. . . ,−5,−2, 1, 4, 7, . . .}
[2] = {. . . ,−4,−1, 2, 5, 8, . . .}

Definition 8.8. Let A be a nonempty set. Then {Bi | i ∈ I} is a partition of A iff the
following conditions hold:

1. ∅ 6= Bi for all i ∈ I.

2. If i 6= j ∈ I, then Bi ∩Bj = ∅.

3. A =
⋃
i∈I Bi.
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Theorem 8.9. Let R be an equivalence relation on A.

1. If a ∈ A then a ∈ [a].

2. If a, b ∈ A and [a] ∩ [b] 6= ∅, then [a] = [b].

Hence the set of distinct equivalence classes forms a partition of A.

Proof. 1. Let a ∈ A. Since R is reflexive, aRa and so a ∈ [a].

2. Suppose that c ∈ [a]∩ [b]. Then aRc and bRc. Since R is symmetric, cRb. Since R
is transitive, aRb. We claim that [b] ⊆ [a]. To see this, suppose that d ∈ [b]. Then
bRd. Since aRb and bRd, it follows that aRd. Thus d ∈ [a]. Similarly, [a] ⊆ [b]
and so [a] = [b].

Theorem 8.10. Let {Bi | i ∈ I} be a partition of A. Define a binary relation R on A
by

aR b iff there exists i ∈ I such that a, b ∈ Bi.

Then R is an equivalence relation whose equivalence classes are precisely {Bi |i ∈ I}.

Example 8.11. How many equivalence relations can be defined on A = {1, 2, 3}?

Sol’n This is the same as asking how many partitions of A exist.
{{1, 2, 3}},
{{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}},
{{1}, {2}, {3}}

Hence there are 5 equivalence relations on {1, 2, 3}.

Exercise 8.12. How many equivalence relations can be defined on A = {1, 2, 3, 4}?

Challenge Let EQ(N) be the collection of equivalence relations on N. Prove that
EQ(N) ∼ P(N).

9 Linear orders

Definition 9.1. Let R be a binary relation on A.

1. R is irreflexive iff 〈a, a〉 /∈R for all a ∈ A.

2. R satisfies the trichotomy property iff for all a, b ∈ A, exactly one of the following
holds:

aR b, a = b, bR a.
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〈A,R〉 is a linear order iff R is irreflexive, transitive, and satisfies the trichotomy prop-
erty.

Example 9.2. Each of the following are linear orders.

1. 〈N, <〉

2. 〈N, >〉

3. 〈Z, <〉

4. 〈Q, <〉

5. 〈R, <〉

Definition 9.3. Let R be a binary relation on A. Then 〈A,R〉 is a partial order iff R
is irreflexive and transitive.

Example 9.4. Each of the follow are partial orders, but not linear orders.

1. Let A be any nonempty set containing at least two elements. Then 〈P(A),⊂〉 is
a partial order.

2. Let D be the strict divisability relation on N+ = Nr{0}. Then 〈N+, D〉 is a partial
order.

Definition 9.5. Let 〈A,<〉 and 〈B,<〉 be partial orders. A map f : A → B is an
isomorphism iff the following conditions are satisfied.

1. f is a bijection

2. For all x, y ∈ A, x < y iff f(x) < f(y).

In this case, we say that 〈A,<〉 and 〈B,<〉 are isomorphic and write 〈A,<〉∼=〈B,<〉.

Example 9.6. 〈Z, <〉∼=〈Z, >〉

Proof. Let f : Z→ Z be the map defined by f(x) = −x. Clearly f is a bijection. Also,
if x, y ∈ Z, then x < y

iff −x > −y
iff f(x) > f(y).

Thus f is an isomorphism.

Example 9.7. 〈N, <〉6∼= 〈Z, <〉.

Proof. Suppose that f : N→ Z is an isomorphism. Let f(0) = z. Since f is a bijection,
there exists n ∈ N such that f(n) = z − 1. But then n > 0 and f(n) < f(0), which is a
contradiction.
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Exercise 9.8. Prove that 〈Z, <〉6∼= 〈Q, <〉.

Example 9.9. 〈Q, <〉6∼= 〈R, <〉.

Proof. Since Q is countable and R is uncountable, there does not exist a bijection
f : Q→ R. Hence there does not exist an isomorphism f : Q→ R.

Example 9.10. 〈R, <〉6∼= 〈Rr{0}, <〉.

Proof. Suppose that f : Rr{0} → R is an isomorphism. For each n ≥ 1, let rn = f(1/n).
Then

r1 > r2 > . . . > rn > . . . > f(−1).

Let s be the greatest lower bound of {rn | n ≥ 1}. Then there exists t ∈ Rr{0}
such that f(t) = s. Clearly t < 0. Hence f(t/2) > s. But then there exists n ≥ 1
such that rn < f(t/2). But this means that t/2 < 1/n and f(t/2) > f(1/n), which is a
contradiction.

Question 9.11. Is 〈Q, <〉∼=〈Qr{0}, <〉?

Definition 9.12. For each prime p,

Z[1/p] = {a/pn | a ∈ Z, n ∈ N}.

Question 9.13. Is 〈Z[1/2], <〉∼=〈Z[1/3], <〉?

Definition 9.14. A linear order 〈D,<〉 is a dense linear order without endpoints or
DLO iff the following conditions hold.

1. For all a, b ∈ D, if a < b, then there exists c ∈ D such that a < c < b.

2. For all a ∈ D, there exists b ∈ D such that a < b.

3. For all a ∈ D, there exists b ∈ D such that b < a.

Example 9.15. The following are DLOs.

1. 〈Q, <〉

2. 〈R, <〉

3. 〈Qr{0}, <〉

4. 〈Rr{0}, <〉

Theorem 9.16. For each prime p, 〈Z[1/p], <〉 is a DLO.
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Proof. Clearly 〈Z[1/p], <〉 linear order without endpoints. Hence it is enough to show
that Z[1/p] is dense. Suppose that a, b ∈ Z[1/p]. Then there exists c, d ∈ Z and n ∈ N
such that a = c/pn and b = d/pn. Clearly a < a+ (1/pn) ≤ b. Consider

r =
c

pn
+

1

pn
=
cp+ 1

pn+1
∈ Z[1/p].

Then a < r < b.

Theorem 9.17. If 〈A,<〉 and 〈B,<〉 are countable DLOs then 〈A,<〉∼=〈B,<〉.

Corollary 9.18. 〈Q, <〉∼=〈Qr{0}, <〉.

Corollary 9.19. 〈Z[1/2], <〉∼=〈Z[1/3], <〉.

Corollary 9.20. If p is any prime, then 〈Z[1/p], <〉∼=〈Q, <〉.

Proof of Theorem 9.17. Let A = {an | n ∈ N} and B = {bn | n ∈ N}. First define
A0 = {a0} and B0 = {b0} and let f0 : A0 → B0 be the map defined by f0(a0) = b0.

Now suppose inductively that we have defined a function fn : An → Bn such that
the following conditions are satisfied.

1. {a0, . . . , an} ⊆ An ⊆ A.

2. {b0, . . . , bn} ⊆ Bn ⊆ B.

3. fn : An → Bn is an order preserving bijection.

We now extend fn to a suitable function fn+1.

Step 1 If an+1 ∈ An, then let A′n = An, B′n = Bn, and f ′n = fn. Otherwise, suppose for
example that

c0 < c1 < . . . < ci < an+1 < ci+1 < . . . < cm

where An = {c0, . . . , cm}. Choose some element b ∈ B such that fn(ci) < b < fn(ci+1)
and define

A′n = An ∪ {an+1}
B′n = Bn ∪ {b}
f ′n = fn ∪ {〈an+1, b〉}

Step 2 If bn+1 ∈ B′n, then let An+1 = A′n, Bn+1 = B′n, and fn+1 = f ′n. Otherwise,
suppose for example that

d0 < d1 < . . . < dj < bn+1 < dj+1 < . . . < dt
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where B′n = {d0, . . . , dt}. Choose some element a ∈ A such that (f ′n)−1(dj) < a <
(f ′n)−1(dj+1) and define

An+1 = A′n ∪ {a}
Bn+1 = B′n ∪ {bn+1}
fn+1 = f ′n ∪ {〈a, bn+1〉}.

Finally, let f =
⋃
n≥0 fn. Then f : A→ B is an isomorphism.

10 Extensions

Definition 10.1. Suppose that R,S are binary relations on A. Then S extends R iff
R ⊆ R.

Example 10.2. Consider the binary relations R,S on N defined by
R = {〈n,m〉 | n < m}
S = {〈n,m〉 | n ≤ m}

Then S extends R.

Example 10.3. Consider the partial order ≺ on {a, b, c, d, e} which is

{〈d, b〉, 〈d, a〉, 〈d, e〉, 〈d, c〉, 〈a, b〉, 〈e, b〉, 〈c, b〉}.

Then we can extend ≺ to the linear order < defined by the transitive closure of

d < e < c < a < b.

Exercise 10.4. If 〈A,≺〉 is a finite partial order, then we can extend ≺ to a linear
ordering < of A.

Question 10.5. Does the analogous result hold if 〈A,≺〉 is a infinite partial order?

Definition 10.6. If A is a set and n ≥ 1, then

An = {〈a1, . . . , an〉 | a1, . . . , an ∈ A}.

An n-ary relation on A is a subset R ⊆ An.
An n-ary operation on A is a function f : An → A.

11 Propositional logic

“The study of how the truth value of compound statements depends on those of simple
statements.”

A reminder of truth-tables.
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and ∧
A B A ∧B
T T T
T F F
F T F
F F F

or ∨
A B A ∨B
T T T
T F T
F T T
F F F

not ¬
A ¬A
T F
F T

material implication →
A B A→ B
T T T
T F F
F T T
F F T

iff ↔
A B A↔ B
T T T
T F F
F T F
F F T

Now our study actually begins... First we introduce our formal language.

Definition 11.1. The alphabet consists of the following symbols:

1. the sentence connectives
¬,∧,∨,→,↔

2. the punctuation symbols
(, )

3. the sentence symbols
A1, A2, . . . , An, . . . , n ≥ 1
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Remark 11.2. Clearly the alphabet is countable.

Definition 11.3. An expression is a finite sequence of symbols from the alphabet.

Example 11.4. The following are expressions:

(A1 ∧ A2), ((¬ → ())A3

Remark 11.5. Clearly the set of expressions is countable.

Definition 11.6. The set of well-formed formulas (wffs) is defined recursively as follows:

1. Every sentence symbol An is a wff.

2. If α and β are wffs, then so are

(¬α), (α ∧ β), (α ∨ β), (α→ β), (α↔ β)

3. No expression is a wff unless it is compelled to be so by repeated applications of
(1) and (2).

Remark 11.7.

1. From now on we omit clause (3) in any further recursive definitions.

2. Clearly the set of wffs is countably infinite.

3. Because the definition of a wff is recursive, most of the properties of wffs are proved
by induction on the length of a wff.

Example 11.8.

1. (A1 → (¬A2)) is a wff.

2. ((A1 ∧ A2) is not a wff. How can we prove this?

Proposition 11.9. If α is a wff, then α has the same number of left and right paren-
theses.

Proof. We argue by induction on the length n ≥ 1 of the wff α. First suppose that
n = 1. Then α must be a sentence symbol, say An. Clearly the result holds in this case.

Now suppose that n > 1 and that the result holds for all wffs of length less than n.
Then α must have one of the following forms:

(¬β), (β ∧ γ), (β ∨ γ), (β → γ), (β ↔ γ)

for some wffs β, γ of length less than n. By induction hypothesis the result holds for
both β and γ. Hence the result also holds for α.
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Definition 11.10. L is the set of sentence symbols. L̄ is the set of wffs. {T, F} is the
set of truth values.

Definition 11.11. A truth assignment is a function υ : L → {T, F}.

Definition 11.12. Let υ be a truth assignment. Then we define the extension ῡ : L̄ →
{T, F} recursively as follows.

0. If An ∈ L then ῡ(An) = υ(An).
For any α, β ∈ L̄

1. ῡ((¬α)) =
= T if ῡ(α) = F
= F otherwise

2. ῡ((α ∧ β)) =
= T if ῡ(α) = ῡ(β) = T
= F otherwise

3. ῡ((α ∨ β)) =
= F if ῡ(α) = ῡ(β) = F
= T otherwise

4. ῡ((α→ β)) =
= F if ῡ(α) = T and ῡ(β) = F
= T otherwise

5. ῡ((α↔ β)) =
= T if ῡ(α) = ῡ(β)
= F otherwise

Possible problem. Suppose there exists a wff α such that α has both the forms (β → γ)
and (σ∧ϕ) for some wffs β, γ, σ, ϕ. Then there will be two (possibly conflicting) clauses
which define ῡ(α).

Fortunately no such α exists...

Theorem 11.13 (Unique readability). If α is a wff of length greater than 1, then
there exists eactly one way of expressing α in the form:

(¬β), (β ∧ γ), (β ∨ γ), (β → γ), or (β ↔ γ)

for some shorter wffs β, γ.

We shall make use of the following result.

Lemma 11.14. Any proper initial segment of a wff contains more left parentheses than
right parentheses. Thus no proper initial segment of a wff is a wff.
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Proof. We argue by induction on the length n ≥ 1 of the wff α. First suppose that
n = 1. Then α is a sentence symbol, say An. Since An has no proper initial segments,
the result holds vacuously.

Now suppose that n > 1 and that the result holds of all wffs of length less than n.
Then α must have the form

(¬β), (β ∧ γ), (β ∨ γ), (β → γ), or (β ↔ γ)

for some shorter wffs β and γ. By induction hypothesis, the result holds for both β and
γ. We just consider the case when α is (β ∧ γ). (The other cases are similar.) The
proper initial segments of α are:

1. (

2. (β0 where β0 is an initial segment of β

3. (β∧

4. (β ∧ γ0 where γ0 is an initial segment of γ.

Using the induction hypothesis and the previous proposition (Proposition 11.9), we see
that the result also holds for α.

Proof of Theorem 11.13. Suppose, for example, that

α = (β ∧ γ) = (σ ∧ ϕ).

Deleting the first ( we obtain that

β ∧ γ) = σ ∧ ϕ).

Suppose that β 6= σ. Then wlog β is a proper initial segment of σ. But then β isn’t a
wff, which is a contradiction. Hence β = σ. Deleting β and σ, we obtain that

∧γ) = ∧ϕ).

and so γ = ϕ.
Next suppose that

α = (β ∧ γ) = (σ → ϕ).

Arguing as above, we find that β = σ and so

∧γ) =→ ϕ)

which is a contradiction.
The other cases are similar.
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Definition 11.15. Let υ : L → {T, F} be a truth assignment.

1. If ϕ is a wff, then υ satisfies ϕ iff ῡ(ϕ) = T .

2. If Σ is a set of wffs, then υ satisfies Σ iff ῡ(σ) = T for all σ ∈ Σ.

3. Σ is satisfiable iff there exists a truth assignment υ which satisfies Σ.

Example 11.16. 1. Suppose that υ : L → {T, F} is a truth assignment and that
υ(A1) = F and υ(A2) = T . Then υ satisfies (A1 → A2).

2. Σ = {A1, (¬A2), (A1 → A2)} is not satisfiable.

Exercise 11.17. Suppose that ϕ is a wff and υ1, υ2 are truth assignments which agree
on all sentence symbols appearing in ϕ. Then ῡ1(ϕ) = ῡ2(ϕ). (Hint: argue by induction
on the length of ϕ.)

Definition 11.18. Let Σ be a set of wffs and let ϕ be a wff. Then Σ tautologically
implies ϕ, written Σ |= ϕ, iff every truth assignment which satisfies Σ also satisfies ϕ.

Important Observation. Thus Σ |= ϕ iff Σ ∪ {¬ϕ} is not satisfiable.

Example 11.19. {A1, (A1 → A2)} |= A2.

Definition 11.20. The wffs ϕ, ψ are tautologically equivalent iff both {ϕ} |= ψ and
{ψ} |= ϕ.

Example 11.21. (A1 → A2) and ((¬A2)→ (¬A1) are tautologicaly equivalent.

Exercise 11.22. Let σ, τ be wffs. Then the following statements are equivalent.

1. σ and τ are tautologically equivalent.

2. (σ ↔ τ) is a tautology.

(Hint: do not argue by induction on the lengths of the wffs.)

12 The compactness theorem

Question 12.1. Suppose that Σ is an infinite set of wffs and that Σ |= τ . Does there
necessarily exists a finite subset Σ0 ⊆ Σ such that Σ0 |= τ?

A positive answer follows from the following result...

Theorem 12.2 (The Compactness Theorem). Let Σ be a set of wffs. If every finite
subset Σ0 ⊆ Σ is satisfiable, then Σ is satisfiable.
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Definition 12.3. A set Σ of wffs is finitely satisfiable iff every finite subset Σ0 ⊂ Σ is
satisfiable.

Theorem 12.4 (The Compactness Theorem). If Σ is a finitely satisfiable set of
wffs, then Σ is satisfiable.

Before proving the compactness theorem, we present a number of its applications.

Corollary 12.5. If Σ |= τ , then there exists a finite subset Σ0 ⊆ Σ such that Σ0 |= τ .

Proof. Suppose not. Then for every finite subset Σ0 ⊆ Σ, we have that Σ0 6|= τ and hence
Σ0 ∪ {(¬τ)} is satisfiable. Thus Σ ∪ {(¬τ)} is finitely satisfiable. By the Compactness
Theorem, Σ∪{(¬τ)} is satisfiable. But this means that Σ 6|= τ , which is a contradiction.

13 A graph-theoretic application

Definition 13.1. Let E be a binary relation on the set V . Then Γ = 〈V,E〉 is a graph
iff:

1. E is irreflexive; and

2. E is symmetric.

Example 13.2. Let V = {0, 1, 2, 3, 4} and let E = {〈i, j〉 | j = i + 1 mod 5}. This is
called the cycle of length five.

Definition 13.3. Let k ≥ 1. Then the graph Γ = 〈V,E〉 is k-colorable iff there exists a
function χ : V → {1, 2, . . . k}. such that for all a, b ∈ V ,

if aEb, then χ(a) 6= χ(b).

Example 13.4. Any cycle of even length is two-colorable. Any cycle of odd length is
three-colorable but not two-colorable.

Theorem 13.5 (Erdös). A countable graph Γ = 〈V,E〉 is k-colorable iff every finite
subgraph γ0 ⊂ Γ is k-colorable.

Proof. ⇒ Suppose that Γ is k-colorable and let χ : V → {1, 2, . . . , k} is any k-coloring.
Let Γ0 = 〈V0, E0〉 be any finite subgraph of Γ. Then χ0 = χ|V0 is a k-coloring of Γ0.
⇐ In this direction we use the Compactness Theorem.

Step 1 We choose a suitable propositional language. The idea is to have a sentence
symbol for every decision we must make. So our language has sentence symbols:

Cv,i for each v ∈ V, 1 ≤ i ≤ k.

2006/02/27 25



Math 461 Applications and proof of compactness

(The intended meaning of Cv,i is: “color vertex v with color i.”)

Step 2 We write down a suitable set of wffs which imposes a suitable set of constraints
on our truth assignments. Let Σ be the set of wffs of the following forms:

(a) Cv,1 ∨ Cv,2 ∨ . . . ∨ Cv,k for each v ∈ V .

(b) ¬(Cv,i ∧ Cv,j) for each v ∈ V and 1 ≤ i 6= j ≤ k.

(c) ¬(Cv,i ∧ Cw,i) for each pair v, w ∈ V of adjacent vertices and each 1 ≤ i ≤ k.

Step 3 We check that we have chosen a suitable set of wffs.

Claim 13.6. Suppose that υ is a truth assignment which satisfies Σ. Then we can
define a k-coloring χ : Γ→ {1, . . . , k} by

χ(v) = i iff υ(Cv,i) = T.

Proof. By (a) and by (b), for each v ∈ V , there exists a unique 1 ≤ i ≤ k such that
υ(Cv,i) = T . Thus χ : V → {1, . . .} is a function. By (c), if v, w ∈ V are adjacent, then
χ(v) 6= χ(w). Hence χ is a k-coloring.

Step 4 We next prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset.
Let V0 ⊆ V be the finite set of vertices that are mentioned in Σ0. Then the finite
subgraph Γ0 = 〈V0, E0〉 is k-colorable. Let

χ : V0 → {1, . . . , k}

be a k-coloring of Γ0. Let υ0 be a truth assignment such that if v ∈ V0 and 1 ≤ i ≤ k,
then

υ(Cv,i) = T iff χ0(v) = i.

Clearly υ0 satisfies Σ0.
By the Compactness Theorem, Σ is satisfiable. Hence Γ is k-colorable.

14 Extending partial orders

Theorem 14.1. Let 〈A,≺〉 be a countable partial order. Then there exists a linear
ordering < of A which extends ≺.

Proof. We work with the propositional language which has sentence symbols

La,b for a 6= b ∈ A

Let Σ be the following set of wffs:
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(a) La,b ∨ Lb,a for a 6= b ∈ A

(b) ¬(La,b ∧ Lb,a) for a 6= b ∈ A

(c) ((La,b ∧ Lb,c)→ La,c) for distinct a, b, c ∈ A

(d) La,b for distinct a, b ∈ A with a ≺ b.

Claim 14.2. Suppose that υ is a truth assignment which satisfies Σ. Define the binary
relation < on A by

a < b iff υ(La,b) = T.

Then < is a linear ordering of A which extends ≺.

Proof. Clearly < is irreflexive. By (a) and (b), < has the trichotomy property. By (c),
< is transitive. Finally, by (d), < extends ≺.

Next we prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset. Let
A0 ⊆ A be the finite set of elements that are mentioned in Σ0 and consider the partial
order 〈A0,≺0〉. Then there exists a partial ordering <0 of A0 extending ≺0. Let υ0 be
the truth assignment such that if a 6= b ∈ A0, then

υ0(La,b) = T iff a ≤0 b.

Clearly υ0 satisfies Σ0.
By the compactness theorem, Σ is satisfiable. Hence there exists a linear ordering <

of A which extends ≺.

15 Hall’s Theorem

Definition 15.1. Suppose that S is a set and that 〈Si | i ∈ I〉 is an indexed collection
of (not necessarily distinct) subsets of S. A system of distinct representatives is a choice
of elements xi ∈ Si for i ∈ I such that if i 6= j ∈ I, then xi 6= xj.

Example 15.2. Let S = N and let 〈Sn | n ∈ N〉 be defined by

Sn = {n, n+ 1}

Thus S0 = {0, 1}, S1 = {1, 2}, . . . Then we can take xi = i ∈ Si.

Theorem 15.3 (Hall’s Matching Theorem (1935)). Let S be any set and let n ∈
N+. Let 〈S1, S2, . . . , Sn〉 be an indexed collection of subsets of S. Then a necessary and
sufficent condition for the existance of a system of distinct representatives is:

(H) For every 1 ≤ k ≤ n and choice of k distinct indices 1 ≤ i1, . . . , ik ≤ n, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.
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Challange: Prove this!

Problem 15.4. State and prove an infinite analogue of Hall’s Matching Theorem.

First Attempt Let S be any set and let 〈Sn | n ∈ N+〉 be an indexed collection of
subsets of S. Then a necessary and sufficient condition for the existence of a system of
distinct representatives is:

(H∗) For every k ∈ N+ and choice of k distinct indices i1, . . . , ik ∈ N, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.

Counterexample Take S1 = N, S2 = {0}, S3 = {1}, . . ., Sn = {n − 2}, . . . Clearly
(H∗) is satisfied and yet there is no system of distinct representatives.

Question 15.5. Where does the compactness argument break down?

Theorem 15.6 (Infinite Hall’s Theorem). Let S be any set and let 〈Sn |n ∈ N+〉 be
an indexed collection of finite subsets of S. Then a necessary and sufficient condition
for the existence of a system of distinct representatives is:

(H∗) For every k ∈ N+ and choice of k distinct indices i1, . . . , ik ∈ N, we have
|Si1 ∪ . . . ∪ Sik | ≥ k.

Proof. We work with the propositional language with sentence symbols

Cn,x. n ∈ N+, x ∈ Sn.
Let Σ be the following set of wffs:

(a) ¬(Cn,x ∧ Cm,x) for n 6= m ∈ N+, x ∈ Sn ∩ Sm.

(b) ¬(Cn,x ∧ Cn,y) for n ∈ N+, x 6= y ∈ Sn ∩ Sm.

(c) (Cn,x1 ∨ . . . ∨ Cn,xk) for n ∈ N+, where Sn = {x1, . . . , xk}.
Claim 15.7. Suppose that υ is a truth assignment which satisfies Σ. Then we can
define a system of distinct representatives by

x ∈ Sn iff υ(Cn,x) = T.

Proof. By (b) and (c), each Sn gets assigned a unique representative. By (a), distinct
sets Sm 6= Sm get assigned distinct representatives.

Next we prove that Σ is finitely satisfiable. So let Σ0 ⊆ Σ be any finite subset. Let
{i1, . . . , il} be the indices that are mentioned in Σ0. Then {Si1 , . . . Sil} satisfies condition
(H). By Hall’s Theorem, there exists a set of distinct representatives for {Si1 , . . . Sil};
say, xr ∈ Sir . Let υ0 be the truth assignment such that for 1 ≤ r ≤ l and x ∈ Sir ,

υ(Cir,x) = T iff x = xr.

Clearly υ0 satisfies Σ0.
By the Compactness Theorem, Σ is satisfiable. Hence there exists a system of distinct

representatives.
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16 Proof of compactness

Theorem 16.1 (The Compactness Theorem). If Σ is a finitely satisfiable set of
wffs, then Σ is satisfiable.

Basic idea Imagine that for each sentence symbol An, either An ∈ Σ or ¬An ∈ Σ.
Then there is only one possibility for a truth assignment υ which satisfies Σ: namely,

υ(An) = T iff An ∈ Σ.

Presumably this υ works...
In the general case, we extend Σ to a finitely satisfiable set ∆ as above. For technical

reasons, we construct ∆ so that for every wff α, either α ∈ ∆ or ¬α ∈ ∆.

Lemma 16.2. Suppose that Σ is a finitely satisfiable set of wffs. If α is any wff, then
either Σ ∪ {α} is finitely satisfiable or Σ ∪ {¬α} is finitely satisfiable.

Proof. Suppose that Σ ∪ {α} isn’t finitely satisfiable. Then there exists a finite subset
Σ0 ⊆ Σ such that Σ0 ∪ {α} isn’t satisfiable. Thus Σ |= ¬α. We claim that Σ ∪ ¬α is
fintely satisfiable. Let ∆ ⊆ Σ∪{¬α} be any finite subset. If ∆ ⊆ Σ then ∆ is satisfiable.
Hence we can suppose that ∆ = ∆0 ∪ {¬α} for some finite subset ∆0 ⊆ Σ. Since Σ
is finitely satisfiable, ther exists a truth assignment υ which satisfies Σ0 ∩ ∆0. Since
Σ0 |= ¬α, it follows that ῡ(¬α) = T . Hence υ satisfies ∆0 ∪ {¬α}.

Proof of the Compactness Theorem. Let Σ be a finitely satisfiable set of wffs. Let

α1, α2, . . . , αn, . . . n ≥ 1

be an enumeration of all the wffs α ∈ L̄. We shall inductively define an increasing
sequence of finitely satisfiable sets of wffs

∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n ⊆ . . .

First let ∆0 = Σ. Suppose inductively that ∆n has been defined. Then

∆n+1 = ∆n ∪ {αn+1}, if this is finitely satisfiable

= ∆n ∪ {(¬αn+1)}, otherwise.

By the lemma, ∆n+1 is also finitely satisfiable. Finally define

∆ =
⋃

n

∆n.
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Claim 16.3. ∆ is finitely satisfiable.

Proof. Suppose that Φ ⊆ ∆ is a finite subset. Then there exists an n such that Φ ⊆ ∆n.
Since ∆n is finitely satisfiable, Φ is satisfiable.

Claim 16.4. If α is any wff, then either α ∈ ∆ or (¬α) ∈ ∆.

Proof. There exists an n ≥ 1 such that α = αn. By construction, either αn ∈ ∆n+1 or
(¬αn) ∈ ∆n+1; and ∆n+1 ⊆ ∆.

Define a truth assignment υ : L → {T, F} by

υ(Al) = T iff Al ∈ ∆.

Claim 16.5. For every wff α, ῡ(α) = T iff α ∈ ∆.

Proof. We argue by induction on the length m of the wff α. First suppose that m = 1.
Then α is a sentence symbol; say, α = Al. By definition

ῡ(Al) = υ(Al) = T iff Al ∈ ∆.

Now suppose that m > 1. Then α has the form

(¬β), (β ∧ γ), (β ∨ γ), (β → γ), (β ↔ γ)

for some shorter wffs β, γ.

Case 1 Suppose that α = (¬β). Then

ῡ(α) = T iff ῡ(β) = F

iff β /∈∆ by induction hypothesis

iff (¬β) ∈ ∆ by Claim 16.4

iff α ∈ ∆

Case 2 Suppose that α is (β ∨ γ). First suppose that ῡ(α) = T . Then ῡ(β) = T or
ῡ(γ) = T . By induction hypothesis, β ∈ ∆ or γ ∈ ∆. Since ∆ is finitely satisfiable,
{β, (¬(β∨γ))} 6⊆ ∆ and {γ, (¬(β∨γ))} 6⊆ ∆. Hence (¬(β∨γ)) /∈∆ and so (β∨γ) ∈ ∆.

Conversely suppose that (β∨γ) ∈ ∆. Since ∆ is finitely satisfiable, {(¬β), (¬γ), (β∨
Γ)} 6⊆ ∆. Hence (¬β) /∈∆ or (¬γ) /∈∆; and so β ∈ ∆ or γ ∈ ∆. By induction hypothesis,
ῡ(β) = T or ῡ(γ) = T . Hence ῡ(β ∨ γ) = T .

Exercise 16.6. Write out the details for the other cases.

Thus υ satisfies ∆. Since Σ ⊆ ∆, it follows that υ satisfies Σ.
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17 Trees and Konig’s Lemma

Definition 17.1. A partial order 〈T,≺〉 is a tree iff the following conditions are satisfied.

1. There exists a unique minimal element t0 ∈ T called the root.

2. For each t ∈ T , the set
PrT (t) = {s ∈ T | s ≺ t}

is a finite set which is linearly ordered by ≺.

Example 17.2. The complete binary tree is defined to be

T2 = {f | f : n→ {0, 1}}

ordered by
f ≺ g iff f ⊂ g.

Definition 17.3. Let 〈T,≺〉 be a tree.

1. If t ∈ T , then the height of t is defined to be

htT (t) = |PrT (t)|.

2. For each n ≥ 0, the nth level of T is

LevT (n) = {t ∈ T | htT (t) = n}.

3. For each t ∈ T , the set of immediate successors of t is

succT (t) = {s ∈ T | t ≺ s and htT (s) = htT (t) + 1}.

4. T is finitely branching iff each t ∈ T has a finite (possibly empty) set of immediate
successors.

5. A branch B of T is a maximal linearly ordered subset of T .

Example 17.4. Consider the complete binary tree T2. If ϕ : N → {0, 1}, then we can
define a corresponding branch of T2 by

Bϕ = {ϕ|n | n ∈ N}.

Conversely, let B be an arbitrary branch of T2. Let ϕ =
⋃B. Then ϕ : N→ {0, 1} and

B = Bϕ.

Exercise 17.5. Let 〈T,≺〉 be a tree. Then the following are equivalent:
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1. T is finitely branching.

2. LevT (n) is finite for all n ≥ 0.

Lemma 17.6 (König). Suppose that T is an infinite finitely branching tree. Then there
exists an infinite branch B through T .

Remark 17.7. Note that such a branch B necessarily satisfies:

|B ∩ LevT (n)| = 1 for all n ≥ 0.

First we shall give a proof of König’s Lemma, using the Compactness Theorem.

Proof of König’s Lemma. Let 〈T,≺〉 be an infinite finitely branching tree. Then each
level LevT (n) is finite and so T is countably infinite. We shall work with the propositional
language with sentence symbols {Bt | t ∈ T}. Let Σ be the following set of wffs:

(a) Bt1 ∨ . . . ∨Btl where LevT (n) = {t1, . . . , tl} and n ≥ 0.

(b) ¬(Bti ∧Btj) where LevT (n) = {t1, . . . , tl}, n ≥ 0, and 1 ≤ i < j ≤ l.

(c) (Bs → Bt) for s, t ∈ T with s ≺ t.

Claim 17.8. Suppose that υ is a truth assignment which satisfies Σ. Then

B = {t ∈ T | υ(Bt) = T}

is an infinite branch through T .

Proof. By (a) and (b), B intersects every level in a unique point. Suppose that s 6= t ∈ B.
Then wlog we have that htT (s) < htT (t). Let n = htT (s). By (c), B must contain the
predecessor of t in LevT (n), which must be equal to s. Thus s ≺ t. It follows that B is
linearly ordered.

We claim that Σ is finitely satisfiable. Let Σ0 ⊆ Σ be a finite subset. Then there
exists n ≥ 0 such that if t ∈ T is mentioned in Σ0, then htT (t) < n. Choose t0 ∈ LevT (n)
and let υ0 be the truth assignment such that for all t ∈ T with htT (t) < n,

υ0(Bt) = T iff t < t0.

Clearly υ0 satisfies Σ0. By Compactness, Σ is satisfiable and hence T has an infinite
branch.

Next we shall give a direct proof of König’s Lemma.

Proof of König’s Lemma. Let T be an infinite finitely branching tree. We shall define a
sequence of elements tn ∈ T inductively so that the following conditions are satisfied:
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(a) tn ∈ LevT (n)

(b) If m < n then tm ≺ tn.

(c) {s ∈ T | tn ≺ s} is infinite.

First let t0 ∈ LevT (0) be the root. Clearly the above conditions are satisfied.. Assume
inductively that tn has been defined. Then tn has a finite set of immediate successors;
say {a1, . . . , al}. If tn ≺ s and htT (s) > n + 1, then there exists 1 ≤ i ≤ l such that
ai ≺ s. By the pigeon hole principle, there exists 1 ≤ i ≤ l such that ai satisfies (c).
Then we define tn+1 = ai. Clearly B = {tn | n ≥ 0} is an infinite branch through T .

Next we present an application of König’s Lemma.

Theorem 17.9 (Erdös). A countably infinite graph Γ is k-colorable iff every finite
subgraph of Γ is k-colorable.

Proof. (⇒) Trival!
(⇐) Suppose that every finite subgraph of Γ is k-colorable. Let Γ = {v1, v2, . . . , vn, . . .};

and for each n ≥ 1, let Γn = {v1, . . . , vn} and let Cn be the set of k-colorings of Γn. Let
T be the tree with levels defined by

LevT (0) = {∅}
LevT (n) = Cn for n ≥ 0

partially ordered as follows. Suppose that χ ∈ LevT (n) and θ ∈ LevT (m) where 1 ≤
n < m. Then

χ ≺ θ iff χ = θ|{v1, . . . , vn}.
Clearly T is an infinite finitely branching tree. By König’s Lemma, there exists an
infinite branch B = {χn | n ∈ N} through T , where χn ∈ LevT (n). We claim that
χ =

⋃
n χn is a k-coloring of Γ. It is clear that χ : Γ → {1, . . . , k}. Next suppose that

a 6= b ∈ Γ are adjacent vertices. Then there exists n ≥ 1 such that a, b ∈ Γn. By
definition, we have that χ(a) = χn(a) and χ(b) = χn(b). Since χn is a k-coloring of Γn,
it follows that χn(a) 6= χn(b). Thus χ(a) 6= χ(b).

Finally we use König’s Lemma to give a proof of the Compactness Theorem.

Proof of Compactness Theorem. Suppose that Σ is a finitely satisfiable set of wffs in the
propositional language with sentence symbols {A1, A2, . . . , An, . . .}. We define a tree T
as follows.

• LevT (0) = {∅}
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• If n ≥ 1, then LevT (n) is the set of all partial truth assignments υ : {A1, . . . , An} →
{T, F} which satisfy every σ ∈ Σ which only mention A1, . . . , An.

We partially order T as follows. Suppose that υ ∈ LevT (n) and υ′ ∈ LevT (m), where
1 ≤ n < m. Then

υ ≺ υ′ iff υ = υ′|{A1, . . . , An}.
Clearly |LevT (n)| ≤ 2n and so each level LevT (n) is finite.

Claim 17.10. For each n ≥ 0, LevT (n) 6= ∅.

Proof. Clearly we can suppose that n ≥ 1. Let Σn be the set of wffs in Σ which only
involve A1, . . . , An. If Σn is finite, the result holds by the finite satisfiability of Σ. Hence
we can suppose that Σn is infinite; say Σn = {σ1, σ2, . . . , σt, . . .}. For each t ≥ 1, let ∆t =
{σ1, . . . , σt}. Then there exists a partial truth assignment ωt : {A1, . . . , An} → {T, F}
which satisfies ∆t. By the pigeon hole principle, there exists a fixed ω : {A1, . . . , An} →
{T, F} such that ωt = ω for infinitely many t ≥ 1. Clearly ω ∈ LevT (n).

Thus T is an infinite, finitely branching tree. By König’s Lemma, there exists an
infinite branch B = {υn | n ∈ N} through T , where υn ∈ LevT (n). It follows that
υ =

⋃
n υn is a truth assignment which satisfies Σ.

18 First Order Logic

Definition 18.1. The alphabet of a first order language L consists of:

A. Symbols common to all languages (Logical Symbols)

(a) Parentheses (, )

(b) Connectives →,¬
(c) Variables v1, v2, . . . , vn, . . . n ≥ 0

(d) Quantifier ∀
(e) Equality symbol =

B. Symbols particular to the language (Non-logical Symbols)

(a) For each n ≥ 1, a (possibly empty) countable set of n-place predicate symbols.

(b) A (possibly empty) countable set of constant symbols.

(c) For each n ≥ 1, a (possibly empty) countable set of n-place function symbols.

Remark 18.2. It is easily checked that the alphabet is countable.

Definition 18.3. An expression is a finite sequence of symbols from the alphabet.
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Remark 18.4. The set of expressions is countable.

Definition 18.5. The set of terms is defined inductively as follows:

1. Each variable and each constant symbol is a term.

2. If f is an n-place function symbol and t1, . . . , tn are terms, then ft1 . . . tn is a term.

Definition 18.6. An atomic formula is an expression of the form

Pt1 . . . tn

where P is an n-place predicate symbol and t1, . . . , tn are terms.

Remark 18.7. The equality symbol = is a two-place predicate symbol. Hence every
language has atomic formulas.

Definition 18.8. The set of well-formed formulas (wffs) is defined inductively as follows:

1. Every atomic formula is a wff.

2. If α and β are wffs and v is a variable, then

(¬α), (α→ β), and ∀vα

are wffs.

Some abbreviations We usually write

(α ∨ β) instead of ((¬α)→ β)

(α ∧ β) ” (¬(α→ (¬β)))

∃vα ” (¬∀v(¬α))

u = t ” = ut

u 6= t ” (¬ = ut)

We also use common sense in our use of parentheses.

Definition 18.9. Let x be a variable.

1. If α is atomic, then x occurs free in α iff x occurs in α.

2. x occurs free in (¬α) iff x occurs free in α.

3. x occurs free in (α→ β) iff x occurs free in α or x occurs free in β.

4. x occurs free in ∀vα iff x occurs free in α and x 6= v.

Definition 18.10. The wff σ is a sentence iff σ has no free variables.
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19 Truth and Structures

Definition 19.1. A structure A for the first order language L consists of:

1. a non-empty set A, the universe of A.

2. for each n-place predicate symbol P , an n-ary relation PA ⊆ An.

3. for each constant symbol c, an element cA ∈ A.

4. for each function symbol f , an n-ary operation fA : An → A.

Example 19.2. Suppose that L has the following non-logical symbols:

1. a 1-place predicate symbol S

2. a 2-place predicate symbol R

3. a constant symbol c

4. a 1-place function symbol f .

Then we can define a structure

A = 〈A;SA, RA, cA, fA〉

for L as follows:

1. A = {1, 2, 3, 4}

2. SA = {〈2〉, 〈3〉}

3. RA = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 1〉}

4. cA = 1

5. fA : A→ A where 1 7→ 2, 2 7→ 3, 3 7→ 4, and 4 7→ 1.

Target Let L be any first order language. For each sentence σ and each structure A
for L, we want to define

A |= σ

“A satisfies σ” or “σ is true in A”.

Example 19.3 (Example Cont.). Let σ be the sentence

∀x∀y(fx = y → Rxy)

Clearly
A |= σ.
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First we need to define a more involved notion. Let

• ϕ be a wff

• A be a structure for L

• s : V → A be a function, where v is the set of variables.

Then we will define
A |= ϕ[s]

“ϕ is true in A if each free occurence of x in ϕ is interpreted as s(x) in A.”

Step 1
Let T be the set of terms. We first define an extension s̄ : T → A as follows:

1. For each variable v ∈ V , s̄(v) = s(v).

2. For each constant symbol c, s̄(c) = cA.

3. If f is an n-place function symbol and t1, . . . , tn are terms, then

s̄(ft1 . . . tn) = fA(s̄(t1), . . . , s̄(tn)).

Step 2 Atomic formulas.

(a). A |= = t1t2[s] iff s̄(t1) = s̄(t2).

(b). If P is an n-place predicate symbol different from = and t1, . . . , tn are terms, then

A |= Pt1 . . . tn[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA.

Step 3 Other wffs.

(c). A |= (¬α)[s] iff A 6|= α[s].

(d). A |= (α→ β)[s] iff A 6|= α[s] or A |= β[s].

(e). A |= ∀xα[s] iff for all a ∈ A, A |= α[s(x|a)] where s(x|a) is defined by

s(x|a)(y) = s(y), y 6= x

= a, y = x
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Theorem 19.4. Assume that s1, s2 : V → A agree on all free variables (if any) of the
wff ϕ. Then

A |= ϕ[s1] iff A |= ϕ[s2].

Proof slightly delayed.

Corollary 19.5. If σ is a sentence, then either

1. A |= σ[s] for all s : V → A or

2. A 6|= σ[s] for all s : V → A.

Definition 19.6. Let σ be a sentence. Then A |= σ iff A |= σ[s] for all s : V → A.

Exercise 19.7. Let A be a structure and let t be a term. If s1, s2 : V → A agree on all
variables (if any) in t, then s̄1(t) = s̄2(t).

Proof of Theorem 19.4. We argue by induction on the complexity of ϕ.

Case 1 Suppose that ϕ is an atomic formula. First suppose that ϕ is = t1t2. By the
Exercise, s̄1(t1) = s̄2(t1) and s̄1(t2) = s̄2(t2). Hence

A |= = t1t2[s1] iff s̄1(t1) = s̄1(t2)

iff s̄2(t1) = s̄2(t2)

iff A |= = t1t2[s2].

Next suppose that ϕ is Pt1 . . . tn. Again by the Exercise, s̄1(ti) = s̄2(ti) for 1 ≤ i ≤ n.
Hence

A |= Pt1 . . . tn[s1] iff 〈s̄1(t1), . . . , s̄1(tn)〉 ∈ PA
iff 〈s̄2(t1), . . . , s̄2(tn)〉 ∈ PA
iff A |= Pt1 . . . tn[s2].

Case 2 Suppose that ϕ is (¬ψ). Then s1, s2 agree on the free variables of ψ. Hence

A |= (¬ψ)[s1] iff A 6|= ψ[s1]

iff A 6|= ψ[s2] by ind. hyp.

iff A |= (¬ψ)[s2].
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Case 3 A similar argument deals with the case when ϕ is (ψ → θ).

Case 4 Suppose that ϕ is ∀xψ. Then s1, s2 agree on all free variables of ψ except
possibly x. Hence for all a ∈ A, s1(x|a) and s2(x|a) agree on all free variables of ψ.
Thus

A |= ∀xψ[s1] iff for all a ∈ A, A |= ψ[s1(x|a)]

iff for all a ∈ A, A |= ψ[s2(x|a)]

iff A |= ∀xψ[s2].

20 Compactness in first order logic

Definition 20.1. Let Σ be a set of wffs.

(a) A satisfies Σ with s iff A |= σ[s] for all σ ∈ Σ.

(b) Σ is satisfiable iff there exists a structure A and a function s : V → A such that
A satisfies Σ with s.

(c) Σ is finitely satisfiable iff every finite subset of Σ is satisfiable.

One of the deepest results of the course:

Theorem 20.2 (Compactness). Let Σ be a set of wffs in the first order language L.
If Σ is finitely satisfiable, then Σ is satisfiable.

Application of the Compactness Theorem Let L be the language of arithmetic; ie
L has non-logical symbols {+,×, <, 0, 1}. Let

ThN = {σ | σ is a sentence satisfied by 〈N; +,×, <, 0, 1〉}.

Consider the following set Σ of wffs:

ThN ∪ {x > 1 + . . .+ 1︸ ︷︷ ︸
n times

|n ≥ 1}.

We claim that Σ is finitely satisfiable. To see this, suppose that Σ0 ⊆ Σ is any finite
subset; say, Σ0 = T ∪ {x > 1 + . . .+ 1︸ ︷︷ ︸

n1

, . . . , x > 1 + . . .+ 1︸ ︷︷ ︸
nt

}, where T ⊆ ThN. Let

m = max{n1, . . . , nt} and let s : V → N with s(x) = m + 1. Then N satisfies Σ0
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with s. By the Compactness Theorem, there exists a structure A for L and a function
s : V → A such that A satisfies Σ with s. Thus A is a “model of artihmetic” containing
the “infinite natural number” s(x) ∈ A.

Discussion of the order relation in A....
Now we return to the systematic development of first order logic.

Definition 20.3. Let A,B be structures for the language L. A function f : A → B is
an isomorphism iff the following conditions are satisfied.

1. f is a bijection.

2. For each n-ary predicate symbol P and any n-tuple a1, . . . , an ∈ A,

〈a1, . . . , an〉 ∈ PA iff 〈f(a1), . . . , f(an)〉 ∈ P B.

3. For each constant symbol c, f(cA) = cB.

4. For each n-ary function symbol h and n-tuple a1, . . . , an ∈ A,

f(hA(a1, . . . , an)) = hB(f(a1), . . . , f(an)).

We write A∼=B iff A and B are isomorphic.

Theorem 20.4. Suppose that ϕ : A→ B is an isomorphism. If σ is any sentence, then
A |= σ iff B |= σ.

In order to prove the above theorem, we must prove the following more general
statement.

Theorem 20.5. Suppose that ϕ : A → B is an isomorphism and s : V → A. Then for
any wff α

A |= α[s] iff B |= α[ϕ ◦ s].
We shall make use of the following result.

Lemma 20.6. With the above hypotheses, for each term t,

ϕ(s̄(t)) = (ϕ ◦ s)(t).
Proof. Exercise.

Proof of Theorem 20.5. We argue by induction of the complexity of α. First suppose
that α is atomic, say Pt1 . . . tn. Then

A |= Pt1 . . . tn[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA
iff 〈ϕ(s̄(t1)), . . . , ϕ(s̄(tn))〉 ∈ P B
iff 〈(ϕ ◦ s)(t1)), . . . , (ϕ ◦ s)(tn)〉 ∈ P B
iff B |= Pt1 . . . tn[ϕ ◦ s]
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Next suppose that α is ¬β. Then

A |= ¬β[s] iff A 6|= β[s]

iff B 6|= β[ϕ ◦ s]
iff B |= ¬β[ϕ ◦ s]

A similar argument deals with the case when α is (β =⇒ γ).
Finally suppose that α is ∀vβ. Then

A |= ∀vβ[s] iff A |= β[s(v|a)], for all a ∈ A
iff B |= β[ϕ ◦ s(v|a)], for all a ∈ A
iff B |= β[(ϕ ◦ s)(v|ϕ(a))], for all a ∈ A
iff B |= β[(ϕ ◦ s)(v|b)], for all b ∈ B
iff B |= ∀vβ[ϕ ◦ s]

Example 20.7. 〈N, <〉6∼= 〈Z, <〉.

Proof. Consider the sentence σ given by

(∃x)(∀y)(y = x ∨ x < y).

Then 〈N, <〉 |= σ and 〈Z, <〉 6|= σ. Thus 〈N, <〉6∼= 〈Z, <〉.

Example 20.8. 〈Z, <〉6∼= 〈Q, <〉.

Proof. Consider the sentence σ given by

(∀x)(∀y)(x < y → (∃z)(x < z ∧ z < y)).

Definition 20.9. Let T be a set of sentences.

1. A is a model for T iff A |= σ for every σ ∈ T .

2. Mod(T ) is the class of all models of T .

Abbreviation If E is a binary predicate symbol, then we usually write xEy instead of
Exy.

2006/04/03 41



Math 461 Compactness

Example 20.10. Let T be the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(xEy → yEx).

Then Mod(T ) is the class of graphs.

Example 20.11. Let T be the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(∀z)((xEy ∧ yEz)→ xEz)

(∀x)(∀y)(x = y ∨ xEy ∨ yEx)

Then Mod(T ) is the class of linear orders.

Definition 20.12. A class C of structures is axiomatizable iff there is a set T of sentences
such that C = Mod(T ). If there exists a finite set T of sentences such that C = Mod(T ),
then C is finitely axiomatizable.

Example 20.13. The class of graphs is finitely axiomatizable.

Example 20.14. The class of infinite graphs is axiomatizable.

Proof. For each n ≥ 1 let On be the sentence

“There exist at least n elements.”

For example O3 is the sentence

(∃x)(∃y)(∃z)(x 6= y ∧ y 6= z ∧ z 6= x).

Then C = Mod(T ), where T is the following set of sentences:

¬(∃x)(xEx)

(∀x)(∀y)(xEy → yEx)

On, n ≥ 1.

Question 20.15. Is the class of infinite graphs finitely axiomatizable?

Question 20.16. Is the class of finite graphs axiomatizable?

Another application of the Compactness Theorem...
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Theorem 20.17. Let T be a set of sentences in a first order language L. If T has
arbitrarily large finite models, then T has an infinite model.

Proof. For each n ≥ 1, let On be the sentence which says:

“There exist at least n elements.”

Let Σ be the set of sentences T ∪ {On | n ≥ 1}. We claim that Σ is finitely satisfiable.
Suppose Σ0 ⊆ Σ is any finite subset. Then wlog

Σ0 = T ∪ {On1 , . . . ,Ont}.

Let m = max{n1, . . . , nt}. Then there exists a finite model A0 of T such that A0 has at
least m elements. Clearly A0 satisfies Σ0. By the Compactness Theorem, there exists a
model A of Σ. Clearly A is an infinite model of T .

Corollary 20.18. The class F of finite graphs is not axiomatizable.

Proof. Suppose T is a set of sentences such that F = Mod(T ). Clearly there are
arbitrarly large finite graphs and hence T has arbitrarly large finite models. But this
means that T has an infinite model, which is a contradiction.

Corollary 20.19. The class C of infinite graphs is not finitely axiomatizable.

Proof. Suppose that there exists a finite set T = {ϕ1, . . . , ϕn} of sentences such that
C = Mod(T ). Consider the following set T ′ of sentences.

¬(∃x)(xEx)

(∀x)(∀y)(xEy → yEx)

¬(ϕ1 ∧ . . . ∧ ϕn).

Then clearly Mod(T ′) is the class of finite graphs, which is a contradiction.

21 Valid sentences

Definition 21.1. Let Σ be a set of wffs and let ϕ be a wff. Then Σ logically im-
plies/semantically implies ϕ iff for every structure A and for every function s : V → A,
if A satisfies Σ with s, then A satisfies ϕ with s. In this case we write Σ |= ϕ.

Definition 21.2. The wff ϕ is valid iff ∅ |= ϕ; ie, for all structures A and functions
s : V → A, A |= ϕ[s].

Example 21.3. {∀xPx} |= Pc.

Question 21.4. Suppose that Σ is an infinite set of wffs and that Σ |= ϕ. Does there
exist a finite set Σ0 ⊆ Σ such that Σ0 |= ϕ?
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Answer Yes. We shall show that Σ |= ϕ iff there exists a proof of ϕ from Σ. Such a
proof will only use a finite subset Σ0 ⊆ Σ.

We now return to the syntactic aspect of first order languages. We will next define
rigorously the notion of a deduction or proof.

Notation Λ will denote the set of logical axioms. These will be defined explicitly a little
later.

eg (∀x(α→ β)→ (∀xα→ ∀xβ)).

Each logical axiom will be valid.

Definition 21.5. Let Γ be a set of wffs and ϕ a wff. A deduction of ϕ from Γ is a finite
sequence of wffs

〈α1, . . . , αn〉
such that αn = ϕ and for each 1 ≤ i ≤ n, either:

(a) αi ∈ Λ ∪ Γ; or

(b) there exist j, k < i such that αk is (αj → αi).

Remark 21.6. In case (b), we have

〈α1, . . . , αj, . . . , (αj → αi), . . . , αi, . . . , αn〉

We say that αi follows from αj and (αj → αi) by modus ponens (MP).

Definition 21.7. ϕ is a theorem of Γ, written Γ ` ϕ, iff there exists a deduction of ϕ
from Γ.

The two main results of this course...

Theorem 21.8 (Soundness). If Γ ` ϕ, then Γ |= ϕ.

Theorem 21.9 (Completeness (Godel)). If Γ |= ϕ, then Γ ` ϕ.

22 The Logical Axioms Λ

ϕ is a generalization of ψ iff for some n ≥ 0 and variables x1, . . . , xn, we have that ϕ is

∀x1 . . . ∀xnψ.

The logical axioms are all generalizations of all wffs of the following forms:

1. Tautologies.

2. (∀xα→ αxt ), where t is a term which is substitutable for x in α.
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3. (∀x(α→ β)→ (∀xα→ ∀xβ)).

4. (α→ ∀xα), where x doesn’t appear free in α.

5. x = x.

6. (x = y → (α → α′)), where α is atomic and α′ is obtained from α be replacing
some (possibly none) of the occurrences of x by y.

Explanation 1. A tautology is a wff that can be obtained from a propostional tautology
by substituting wffs for sentence symbols.

eg (P → ¬Q)→ (Q→ ¬P )

is a propositional tautology.

(∀xα→ ¬β)→ (β → ¬∀xα)

is a first order tautology.

Explanation 2. αxt is the result of replacing each free occurrence of x by t. We say
that t is substitutable for x in α iff no variable of t gets bound by a quantifier in αxt .

eg Let α be ¬∀y(x = y). Then y is not substitutable for x in α. Note that in this
case

∀xα→ αxt

becomes
∀x¬∀y(x = y)→ ¬∀y(y = y)

which is not valid. So we need the above restriction.

Explanation 4. A typical example is

Pyz → ∀xPyz.

Here “∀x” is a “dummy quantifier” which does nothing. Note that

x = 0→ ∀x(x = 0)

is not valid. So we need the above restriction.
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23 Some examples of deductions

Example 23.1. `(Px→ ∃yPy)

Proof. Note that (Px → ∃yPy) is an abbreviation of (Px → ¬∀y¬Py). The following
is a deduction from ∅.

1. (∀y¬Py → ¬Px)→ (Px→ ¬∀y¬Py) [Axiom 1]

2. (∀y¬Py → ¬Px) [Axiom 2]

3. (Px→ ¬∀y¬Py) [MP, 1, 2]

Example 23.2. `∀x(Px→ ¬∀y¬Py)

Proof. The following is a deduction from ∅.

1. ∀x((∀y¬Py → ¬Px)→ (Px→ ¬∀y¬Py)) [Axiom 1]

2. ∀x(∀y¬Py → ¬Px) [Axiom 2]

3. ∀x((∀y¬Py → ¬Px) → (Px → ¬∀y¬Py)) → (∀x(∀y¬Py → ¬Px) → ∀x(Px →
¬∀y¬Py)) [Axiom 3]

4. ∀x(∀y¬Py → ¬Px)→ ∀x(Px→ ¬∀y¬Py) [MP, 1, 3]

5. ∀x(Px→ ¬∀y¬Py)) [MP, 2, 4]

24 Soundness Theorem

Theorem 24.1 (Soundness). If Γ ` ϕ, then Γ |= ϕ.

We shall make use of the following result.

Lemma 24.2. Every logical axiom ϕ ∈ Λ is valid

Proof. We just consider the case where ϕ has the form

(α→ ∀xα)

where x isn’t free in α. Let A be any structure and s : V → A. If A 6|= α[s], then A |=
(α→ ∀xα)[s]. So suppose that A |= α[s]. Let a ∈ A be any element. Then s and s(x|a)
agree on the free variables of α. Hence A |= α[s(x|a)] and so A |= (α→ ∀xα)[s].
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Remark 24.3. The other cases are equally easy, except for the case of

(∀xα→ αxt )

which is harder. We will give a detailed proof of this case later.

Exercise 24.4. Show that

(∀x(α→ β)→ (∀xα→ β))

is valid.

Proof of the Soundness Theorem. We argue by induction on the minimal length n ≥ 1
of a deduction that if Γ ` ϕ, then Γ |= ϕ.

First suppose that n = 1. Then ϕ ∈ Γ ∪ Λ. If ϕ ∈ Γ then clearly Γ |= ϕ. If ϕ ∈ Λ,
then the lemma (24.2) says that ϕ is valid. Thus ∅ |= ϕ and so Γ |= ϕ.

Now suppose that n > 1. Let

〈α1, . . . , αn = ϕ〉

be a deduction of ϕ from Γ. Then ϕ must follow from MP from two earlier wffs θ and
(θ → ϕ). Note that proper initial segments of deductions from Γ are also deductions
from Γ. Thus Γ ` θ and Γ ` (θ → ϕ) via deductions of length less than n. By induction
hypothesis, Γ |= θ and Γ |= (θ → ϕ). Let A be any structure and s : V → A. Suppose
that A satisfies Γ with s. Then A |= θ[s] and A |= (θ → ϕ)[s]. Hence A |= ϕ[s]. Thus
Γ |= ϕ.

Definition 24.5. A set Γ of wffs is inconsistent iff there exists a wff β such that Γ ` β
and Γ ` ¬β. Otherwise, Γ is consistent.

Corollary 24.6. If Γ is satisfiable, then Γ is consistent.

Proof. Suppose that Γ is satisfiable. Let A satisfy Γ with s : V → A. Now suppose that
Γ is inconsistent; say Γ ` β and Γ ` ¬β. By Soundness Γ |= β and Γ |= ¬β. But this
means that A |= β[s] and A |= ¬β[s], which is a contradiction.

25 Meta-theorems

Now we turn to the proof of the Completeness Theorem. First we need to prove a
number of “Meta-Theorems”.

Theorem 25.1 (Generalization). If Γ ` ϕ and x doesn’t occur free in any wff of Γ,
then Γ ` ∀xϕ.
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Remark 25.2. Note that if c is a constant symbol, then

{x = c} ` x = c.

However,
{x = c} 6̀ ∀x(x = c).

How do we know this? By the Soundness Theorem, it is enough to show that

{x = c} 6|= ∀x(x = c).

Proof of Generalization Theorem. We argue by induction on the minimal length n of a
deduction of ϕ from Γ that Γ ` ∀xϕ.

First suppose that n = 1. Then ϕ ∈ Γ ∪ Λ.

Case 1 Suppose that ϕ ∈ Λ. Then ∀xϕ ∈ Λ and so Γ ` ∀xϕ.

Case 2 Suppose that ϕ ∈ Γ. Then x doesn’t occur free in ϕ and so (ϕ → ∀xϕ) ∈ Λ.
Hence the following is a deduction of ∀xϕ from Γ.

1. ϕ [in Γ]

2. ϕ→ ∀xϕ [Ax 4]

3. ∀xϕ [MP, 1, 2]

Now suppose that n > 1. Then in a deduction of minimal length, ϕ follows from
earlier wffs θ and (θ → ϕ) by MP. By induction hypothesis, Γ`∀xθ and Γ`∀x(θ → ϕ).
Hence the following is a deduction of ∀xϕ from Γ.

1. . . . deduction of ∀xθ from Γ.

n. ∀xθ

n+1. . . . deduction of ∀x(θ → ϕ) from Γ.

n+m. ∀x(θ → ϕ)

n+m+1. ∀x(θ → ϕ)→ (∀xθ → ∀xϕ) [Ax 3]

n+m+2. ∀xθ → ∀xϕ [MP, n+m, n+m+ 1]

n+m+3. ∀xϕ [MP, n, n+m+ 2]
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Definition 25.3. {α1, . . . , αn} tautologically implies β iff

(α1 → (α2 → . . . (αn → β) . . .))

is a tautology.

Theorem 25.4 (Rule T). If Γ`α1, . . . ,Γ`αn and {α1, . . . , αn} tautologically implies
β, the Γ ` β.

Proof. Obvious, via repeated applications of MP.

Theorem 25.5 (Deduction). If Γ ∪ {γ} ` ϕ, then Γ ` (γ → ϕ).

Proof. We argue by induction on the minimal length n of a deduction of ϕ from Γ∪{γ}.
First suppose that n = 1.

Case 1 Suppose that ϕ ∈ Γ ∪ Λ. Then the following is a deduction from Γ.

1. ϕ [in Γ ∪ Λ]

2. (ϕ→ (γ → ϕ)) [Ax 1]

3. (γ → ϕ) [MP, 1, 2]

Case 2 Suppose that ϕ = γ. In this case (γ → ϕ) is a tautology and so Γ ` (γ → ϕ).
Now suppose that n > 1. Then in a deduction of minimal length ϕ follows from

earlier wffs θ and (θ → ϕ) by MP. By induction hypothesis, Γ ` (γ → θ) and Γ ` (γ →
(θ → ϕ)). Clearly {(γ → θ), (γ → (θ → ϕ))} tautologically implies (γ → ϕ). By Rule
T, Γ ` (γ → ϕ).

Theorem 25.6 (Contraposition). Γ ∪ {ϕ} ` ¬ψ iff Γ ∪ {ψ} ` ¬ϕ.

Proof. Suppose that Γ ∪ {ϕ} ` ¬ψ. By the deduction theorem Γ ` (ϕ→ ¬ψ). By Rule
T, Γ` (ψ → ¬ϕ). Hence Γ∪{ψ}`ψ amd Γ∪{ψ}` (ψ → ¬ϕ). By Rule T, Γ∪{ψ}`¬ϕ.

The other direction is similar.

Theorem 25.7 (Reductio Ad Absurdum). If Γ∪ {ϕ} is inconsistent, then Γ `¬ϕ.

Proof. Suppose that Γ ∪ {ϕ} ` β and Γ ∪ {ϕ} ` ¬β. By the Deduction Theorem ,
Γ ` (ϕ→ β) and Γ ` (ϕ→ ¬β). Since {(ϕ→ β), (ϕ→ ¬β)} tautologically implies ¬ϕ,
Rule T gives Γ ` ¬ϕ.

Remark 25.8. If Γ is inconsistent, then Γ ` α for ever wff α.

Proof. Suppose that Γ ` β and Γ ` ¬β. Clearly

(β → (¬β → α))

is a tautology. By Rule T, Γ ` α.
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26 Applications: some theorems about equality

Eq 1.
`∀x(x = x)

Proof. This is a logical axiom.

Eq 2.
`∀x∀y(x = y → y = x)

Proof. 1. `x = y → (x = x→ y = x) [Ax 6]

2. `x = x [Ax 5]

3. `x = y → y = x [Rule T, 1, 2]

4. `∀y(x = y → y = x) [Gen, 3]

5. `∀x∀y(x = y → y = x) [Gen, 4]

Eq 3.
`∀x∀y∀z(x = y → (y = z → x = z))

Proof. 1. `y = x→ (y = z → x = z) [Ax 6]

2. `x = y → y = x [Shown in proof of Eq 2]

3. `x = y → (y = z → x = z) [Rule T, 1, 2]

4. `∀x∀y∀z(x = y → (y = z → x = z)) [Gen cubed, 3]

27 Generalization on constants

Theorem 27.1 (Generalization on constants). Assume that Γ ` ϕ and that c is a
constant symbol which doesn’t occur in Γ. Then there exists a variable y (which doesn’t
occur in ϕ) such that Γ ` ∀yϕcy.

Furthermore, there exists a deduction of ∀yϕcy from Γ in which c doesn’t occur.

Remark 27.2. Intuitively, suppose that Γ says nothing about c and that Γ`ϕ(c). Then
Γ ` ∀yϕ(y). In other words, to prove ∀yϕ(y), let c be arbitrary and prove ϕ(c).
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Remark 27.3. Suppose that Γ is a consistent set of wffs in the language L. Let L+ be
the language obtained by adding a new constant symbol c. Then Γ is still consistent in
L+.

Why? Suppose not. Then there exists a wff β in L+ such that Γ`β ∧¬β in L+. By
the above theorem, for some variable y which doesn’t occur in β,

Γ ` ∀y(βcy ∧ ¬βcy)

via a deduction that doesn’t involve c. Since

∀y(βcy ∧ ¬βcy)→ (βcy ∧ ¬βcy)

is a logical axiom,
Γ ` βcy ∧ ¬βcy

in L. This implies that Γ is inconsistent in L, which is a contradiction.

Proof of Generalization on Constants. Suppose that

(∗) 〈α1, . . . , αn〉

is a deduction of ϕ from Γ. Let y be a variable which doesn’t occur in any of the αi.
We claim that

(∗∗) 〈(α1)cy, . . . , (αn)cy〉
is a deduction of ϕcy from Γ. We shall prove that, for all i ≤ n, either (αi)

c
y ∈ Γ ∪ Λ or

(αi)
c
y follows from earlier wffs in (∗∗) via MP.

Case 1 Suppose that αi ∈ Γ. Since c doesn’t occur in Γ, it follows that (αi)
c
y = αi ∈ Γ.

Case 2 Suppose that αi ∈ Λ. Then it is easily checked that (αi)
c
y ∈ Λ.

Case 3 Suppose there exist j, k < i such that αk is (αj → αi). Then (αk)
c
y is ((αj)

c
y →

(αi)
c
y). Hence (αi)

c
y follows from (αk)

c
y and (αj)

c
y by MP.

Let Φ be the finite subset of Γ which occurs in (∗∗). Then Φ ` ϕcy via a deduction
in which c doesn’t occur. By the Generalization Theorem, since y doesn’t occur free in
Φ, it follows that Φ ` ∀yϕcy via a deduction in which c doesn’t occur. It follows that
Γ ` ∀yϕcy via a deduction in which c doesn’t occur.

Exercise 27.4. 1. Show by induction on ϕ that if y doesn’t occur in ϕ, then x is
substitutable for y in ϕxy and (ϕxy)

y
x = ϕ.

2. Find a wff ϕ such that (ϕxy)
y
x 6= ϕ.

Corollary 27.5. Suppose that Γ ` ϕxc , where c is a constant symbol that doesn’t occur
in Γ or ϕ. Then Γ ` ∀xϕ, via a deduction in which c doesn’t occur.
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Proof. By the above theorem, Γ`∀y(ϕxc )
c
y for some variable y which doesn’t occur in ϕxc .

Since c doesn’t occur in ϕ, (ϕxc )
c
y = ϕxy . Thus Γ ` ∀yϕxy . By the exercise, the following

is a logical axiom: ∀yϕxy → ϕ. Thus ∀yϕxy ` ϕ. Since x doesn’t occur free in ∀yϕxy ,
Generalization gives that ∀yϕxy ` ∀xϕ. Hence Deduction yields that `∀yϕxy → ∀xϕ.
Since Γ ` ∀yϕxy , Rule T gives Γ ` ∀xφ.

Theorem 27.6 (Existence of Alphabetic Variants). Let ϕ be a wff, t a term and
x a variable. Then there exists a wff ϕ′ (which differs from ϕ only in the choice of
quantified variables) such that:

(a) ϕ ` ϕ′ and ϕ′ ` ϕ.

(b) t is substitutable for x in ϕ′.

Proof Omitted

28 Completeness

Now we are ready to begin the proof of:

Theorem 28.1 (Completeness). If Γ |= ϕ, then Γ ` ϕ.

We shall base our strategy on the following observation.

Proposition 28.2. The following statements are equivalent:

(a) The Completeness Theorem: ie if Γ |= ϕ, then Γ ` ϕ.

(b) If Γ is a consistent set of wffs, then Γ is satisfiable.

Proof. (a) ⇒ (b)
Suppose that Γ is consistent. Then there exists a wff ϕ such that Γ 6̀ ϕ. By Com-

pleteness, Γ 6|= ϕ. Hence there exists a structure A and a function s : V → A such that
A satisfies Γ with s and A 6|= ϕ[s]. In particular, Γ is satisfiable.

(b) ⇒ (a)
Suppose that Γ 6̀ ϕ. Applying Reductio ad Absurdum, Γ ∪ {¬ϕ} is consistent. It

follows that Γ ∪ {¬ϕ} is satisfiable and hence Γ 6|= ϕ.

Now we prove:

Theorem 28.3 (Completeness’). If Γ is a consistent set of wffs in a countable lan-
guage L, then there exists a countable structure A and s : V → A such that A satisfies
Γ with s.
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Proof. Step 1 Expand L to a larger language L+ by adding a countably infinte set of
new constant symbols. Then Γ remains consistent as a set of wffs in L+.

Proof of Step 1. Suppose not. Then there exists a wff β of L+ such that Γ ` β ∧ ¬β in
L+. Suppose that c1, . . . , cn includes the new constants (if any) which appear in β. By
Generalization on Constants, there are variables y1, . . . , yn such that:

(a) Γ ` ∀y1 . . . ∀yn(β′ ∧ ¬β ′), where β ′ is the result of replacing each ci by yi; and

(b) the deduction doesn’t involve any new constants.

Since yi is substitutable for yi in β′, we obtain that Γ ` β ′ ∧ ¬β ′. But this means
that Γ is inconsistent in the original language L, which is a contradiction.

Step 2 (We add witnesses to existential wffs.) Let

〈ϕ1, x1〉, 〈ϕ2, x2〉, . . . , 〈ϕn, xn〉, . . .

enumerate all pairs 〈ϕ, x〉, where ϕ is a wff of L+ and x is a variable. Let θ1 be the wff

¬∀x1ϕ1 → (¬ϕ1)x1
c1
,

where c1 is the first new constant which doesn’t occur in ϕ1. If n > 1, then θn is the wff

¬∀xnϕn → (¬ϕn)xncn ,

where cn is the first new constant which doesn’t occur in {ϕ1, . . . , ϕn} ∪ {θ1, . . . , θn−1}.
Let

Θ = Γ ∪ {θn | n ≥ 1}.
Claim 28.4. Θ is consistent.

Proof. Suppose not. Let n ≥ 0 be the least integer such that Γ ∪ {θ1, . . . , θn+1} is
inconsistent. By Reductio ad Absurdum,

Γ ∪ {θ1, . . . , θn} ` ¬θn+1.

Recall that θn+1 has the form

¬∀xϕ→ ¬ϕxc .
By Rule T,

Γ ∪ {θ1, . . . , θn} ` ¬∀xϕ.
and
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Γ ∪ {θ1, . . . , θn} ` ϕxc .
Since c doesn’t occur in Γ ∪ {θ1, . . . , θn} ∪ {ϕ}, we have that

Γ ∪ {θ1, . . . , θn} ` ∀xϕ.
But this contradicts the minimality of n, or the consistency of Γ if n = 0.

Step 3 We extend Θ to a consistent set of wffs ∆ such that for every wff ϕ of L+, either
ϕ ∈ ∆ or ¬ϕ ∈ ∆.

Proof. Let α1, α2, . . . , αn, . . . enumerate all the wffs of L+. We define inductively an
increasing sequence of consistent sets of wffs

∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆n ⊆ . . .

as follows

• ∆0 = Θ

• Suppose that ∆n has been defined. If ∆n ∪ {αn+1} is consistent, then we set
∆n+1 = ∆ ∪ {αn+1}.
Otherwise, if ∆n ∪ {αn+1} is inconsistent, then ∆ ` ¬αn+1 so we can set ∆n+1 =
∆ ∪ {¬αn+1}.

Finally let ∆ = ∪n≥0∆n. Clearly ∆ satisfies our requirements.

Notice that ∆ is deductively closed; ie if ∆ ` ϕ, then ϕ ∈ ∆. Otherwise, ¬ϕ ∈ ∆
and so ∆ ` ϕ and ∆ ` ¬ϕ, which contradicts the consistency of ∆.

Step 4 For each of the following wffs ϕ, ∆ ` ϕ and so ϕ ∈ ∆.

Eq 1 ∀x(x = x).

Eq 2 ∀x∀y(x = y → y = x).

Eq 3 ∀x∀y∀z((x = y ∧ y = z)→ x = z).

Eq 4 For each n-ary predicate symbol P

∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ . . . ∧ xn = yn)→ (Px1 . . . xn ↔ Py1 . . . yn)
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Eq 5 For each n-ary function symbol f

∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ . . . ∧ xn = yn)→ (fx1 . . . xn = fy1 . . . yn)

Similarly, since ∆ is deductively closed and ∀x∀y(x = y → y = x) ∈ ∆, if t1, t2 are
any terms, then (t1 = t2 → t2 = t1) ∈ ∆ etc.

Step 5 We construct a structure A for L+ as follows.
Let T be the set of terms in L+. Define a relation E on T by

t1Et2 iff (t1 = t2) ∈ ∆.

Claim 28.5. E is an equivalence relation.

Proof. Suppose that t ∈ T . Then (t = t) ∈ ∆ and so tEt. Thus E is reflexive.
Next suppose that t1Et2. Then (t1 = t2) ∈ ∆. Since (t1 = t2 → t2 = t1) ∈ ∆, it

follows that (t2 = t1) ∈ ∆. Thus t2Et1 and so E is symmetric.
Similarly E is transitive.

Definition 28.6. For each t ∈ T , let

[t] = {s ∈ T | tEs}.

Then we define
A = {[t] | t ∈ T}.

Definition 28.7. For each n-ary predicate symbol P , we define an n-ary relation PA

on A by
〈[t1], . . . , [tn]〉 ∈ PA iff Pt1 . . . tn ∈ ∆.

Claim 28.8. PA is well-defined.

Proof. Suppose that [s1] = [t1], . . . , [sn] = [tn]. We must show that

Ps1 . . . sn ∈ ∆ iff Pt1 . . . tn ∈ ∆.

By assumption, (s1 = t1) ∈ ∆, . . . , (sn = tn) ∈ ∆. Since

[(s1 = t1 ∧ . . . ∧ sn = tn)→ (Ps1 . . . sn ↔ Pt1 . . . tn)] ∈ ∆,

the result follows.

Definition 28.9. For each constant symbol c, cA = [c].

Definition 28.10. For each n-ary function symbol f , we define an n-ary operation
fA : An → A by

fA([t1], . . . , [tn]) = [ft1 . . . tn].
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Claim 28.11. fA is well-defined.

Proof. Similar.

Finally we define s : V → A by s(x) = [x].

Claim 28.12 (Target). For every wff ϕ of L+,

A |= ϕ[s] iff ϕ ∈ ∆.

We shall make use of the following result.

Claim 28.13. For each term t ∈ T , s̄(t) = [t].

Proof. By definition, the result holds when t is a variable or a constant symbol. Suppose
that t is ft1 . . . tn. Then by induction hypothesis, s̄(t1) = [t1], . . . , s̄(tn) = [tn]. Hence

s̄(ft1 . . . tn) = fA(s̄(t1), . . . , s̄(t1))

= fA([t1], . . . , [t1])

= [ft1, . . . , t1]

Proof of Target Claim. We argue by induction on the complexity of ϕ. First suppose
that ϕ is atomic.

Case 1 Suppose that ϕ is t1 = t2. Then

A |= (t1 = t2)[s] iff s̄(t1) = s̄(t2)

iff [t1] = [t2]

iff (t1 = t2) ∈ ∆

Case 2 Suppose that ϕ is Pt1 . . . tn. Then

A |= Pt1 . . . tn[s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA
iff 〈[t1], . . . , [tn]〉 ∈ PA
iff Pt1 . . . tn ∈ ∆

Next we consider the case when ϕ isn’t atomic.

Case 3 Suppose that ϕ is ¬ψ. Then

A |= ¬ψ[s] iff A 6|= ψ[s]

iff ψ /∈∆

iff ¬ψ ∈ ∆
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Case 4 The case where ϕ is (θ → ψ) is similar.

Case 5 Finally suppose that ϕ is ∀xψ. We shall make use of the following result.

Lemma 28.14 (Substitution). If the term t is substitutable for x in ψ, then

A |= ψxt [s] iff A |= ψ[s(x|s̄(t))].

Proof. Omitted.

Recall that ϕ is ∀xψ. By construction, for some constant c,

(¬∀ψ → ¬ψxc ) ∈ ∆ (*)

First suppose that A |= ∀xψ[s]. Then, in particular, A |= ψ[s(x|[c])] and so A |=
ψ[s(x|s̄(c))]. By the Substitution Lemma, A |= ψxc [s]. Hence by induction hypothesis,
ψxc ∈ ∆ and so ¬ψxc /∈∆. By (*), ¬∀xψ /∈∆ and so ∀xψ ∈ ∆.

Conversely, suppose that A 6|= ∀xψ[s]. Then there exists a term t ∈ T such that
A 6|= ψ[s(x|[t])]. Thus A 6|= ψ[s(x|s̄(t))]. Let ψ ′ be an alphabetic variant of ψ such that
t is substitutable for x in ψ′. Then A 6|= ψ′[s(x|s̄(t))]. By the Substitution Lemma,
A 6|= (ψ′)xt [s]. By induction hypothesis, (ψ′)xt /∈∆. Since t is substitutable for x in ψ′ is
follows that (∀xψ′ → (ψ′)xt ) ∈ ∆. Hence ∀xψ′ /∈∆ and so ∀xψ /∈∆.

Finally letA0 be the structure for L obtained fromA by forgetting the interpretations
of the new constant symbols. Then A0 satisfies Γ with s.

This completes the proof of the Completeness Theorem.

Corollary 28.15. Γ |= ϕ iff Γ ` ϕ.

Theorem 28.16. Let Γ be a set of wffs in a countable first order language. If Γ is
finitely satisfiable, then Γ is satisfiable in some countable structure.

Proof. Suppose that every finite subset Γ0 ⊆ Γ is satisfiable. By Soundness, every finite
subset Γ0 ⊆ Γ is consistent. Hence Γ is consistent. By Completeness’, Γ is satisfiable in
some countable structure.

Theorem 28.17. Let T be a set of sentences in a first order language L. If the class
C = Mod(T ) is finitely axiomatizable, then there exists a finite subset T0 ⊆ T such that
C = Mod(T0).

Proof. Suppose that C = Mod(T ) is finitely axiomatizable. Then there exists a sentence
σ such that C = Mod(σ). Since Mod(T ) = Mod(σ), it follows that T |= σ. By the
Completeness Theorem, T ` σ and hence there exists a finite subset T0 ⊆ T such that
T0 ` σ. By Soundness, T0 |= σ. Hence

C = Mod(T ) ⊆ Mod(T0) ⊆ Mod(σ) = C

and so C = Mod(T0).
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Definition 28.18. Let A, B be structures for the first-order language L. Then A and
B are elementarily equivalent, written A ≡ B, iff for every sentence σ of L,

A |= σ iff B |= σ.

Remark 28.19. IfA∼=B, thenA ≡ B. Howevery, the converse does not hold, eg consider
a nonstandard model of arithmetic.

Definition 28.20. A consistent set of sentences T is said to be complete iff for every
sentence σ, either T ` σ or T ` ¬σ.

Example 28.21. Let A be any structure and let

Th(A) = {σ | σ is a sentence such that A |= σ}.
Then Th(A) is a complete theory.

Theorem 28.22. If T is a complete theory in the first-order language L and A, B are
models of T , then A ≡ B.

Proof. Let σ be any sentence. Then either T ` σ or T ` ¬σ. Suppose that T ` σ. By
Soundness, T |= σ. Hence A |= σ and B |= σ. Similarly if T ` ¬σ, then A |= ¬σ and
B |= ¬σ.

Theorem 28.23 (Los-Vaught). Let T be a consistent theory in a countable language
L. Suppose that

(a) T has no finite models.

(b) If A, B are countably infinite models of T , then A∼=B.

Then T is complete.

Proof. Suppose not. Then there exists a sentence σ such that T 6̀ σ and T 6̀ ¬σ. Hence
T ∪ {¬σ} and T ∪ {σ} are both consistent. By Completeness, there exists countable
structures A and B such that A |= T ∪ {¬σ} and B |= T ∪ {σ}. By (a), A and B must
be countably infinite. Hence, by (b), A∼=B. But this contradicts the fact that A |= ¬σ
and B |= σ.

Corollary 28.24. Let TDLO be the theory of dense linear orders without endpoints.
Then TDLO is complete.

Proof. Clearly TDLO has no finite models. Also, if A, B are countable dense linear orders
without endpoints, then A∼=B. Hence TDLO is complete.

Corollary 28.25. 〈Q, <〉 ≡ 〈R, <〉.
Proof. 〈Q, <〉 and 〈R, <〉 are both models of the complete theory TDLO.

The rationals 〈Q, <〉 are a countable linear order in which “every possible finite
configuration is realized.”
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