Class notes written by Simon Thomas These notes are transcribed from class notes written by Professor Simon Thomas. The notes follow the notation of Enderton's A mathematical introduction to logic but may be read independently.

1 A few introductory remarks

In mathematical reasoning, logical arguments are used to deduce the consequences (called theorems) of basic assumptions (called axioms).

Question 1.1. What does it mean for one sentence to "follow logically" from another sentence?

Question 1.2. Suppose that a sentence σ does not follow logically from the set T of axioms. How can we prove that this is so?

We will begin the course by studying some basic set theory.

Motivation:

1. We will need this material in our study of mathematical logic.
2. Set theory is a foundation for all of mathematics.
3. Set theory is beautiful.

Remark 1.3. In a couple of weeks we will come across a natural set-theoretic statement, the Continuum Hypothesis, which can neither be proved nor disproved using the classical axioms of set theory.

2 Basic Set Theory

Notation: $\{2,3,5\}=\{2,5,5,2,3\}$.
$\{0,2,4,6, \ldots\}=\{x \mid x$ is an even natural number $\}$.
$x \in A$ means " x is an element of A ".
\emptyset is the empty set.
$\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers.
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers.
$\mathbb{Q}=\{a / b \mid a, b \in \mathbb{Z}, b \neq 0\}$ is the set of rational numbers.
\mathbb{R} is the set of real numbers.

Axiom of Extensionality: Suppose that A, B are sets. If for all x,

$$
x \in A \quad \text { iff } \quad x \in B
$$

then $A=B$.

Definition 2.1. Suppose that A, B are sets. Then A is a subset of B, written $A \subseteq B$, iff for all x,

$$
\text { iff } x \in A \quad \text { then } \quad x \in B
$$

Example 2.2.

1. $\mathbb{N} \subseteq \mathbb{Z}$
2. If A is any set then $\emptyset \subseteq A$.

Proposition 2.3. If $A \subseteq B$ and $B \subseteq A$, then $A=B$.
Proof. Let x be arbitrary. Since $A \subseteq B$, if $x \in A$ then $x \in B$. Since $B \subseteq A$, if $x \in B$ then $x \in A$. Hence $x \in A$ iff $x \in B$. By the Axion of Extensionality, $A=B$.

Definition 2.4. Let A, B be sets. The union of A and B, written $A \cup B$, is the set defined by

$$
x \in A \cup B \quad \text { iff } \quad x \in A \quad \text { or } \quad x \in B
$$

Proposition 2.5. $A \cup(B \cup C)=(A \cup B) \cup C$
Proof. Let x be arbitrary. Then $x \in A \cup(B \cup C)$
iff $x \in A$ or $x \in B \cup C$
iff $x \in A$ or $(x \in B$ or $x \in C)$
iff $x \in A$ or $x \in B$ or $x \in C$
iff $(x \in A$ or $x \in B)$ or $x \in C$
iff $x \in A \cup B$ or $x \in C$
iff $x \in(A \cup B) \cup C$.
Definition 2.6. Let A, B be sets. The intersection of A and B, written $A \cap B$ is the set defined by

$$
x \in A \cup B \quad \text { iff } \quad x \in A \quad \text { and } \quad x \in B .
$$

Exercise 2.7. Prove that $A \cap(B \cap C)=(A \cap B) \cap C$.
Proposition 2.8. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Proof. Let x be arbitrary. Then $x \in A \cap(B \cup C)$
iff $x \in A$ and $x \in B \cup C$
iff $x \in A$ and $(x \in B$ or $x \in C)$
iff $(x \in A$ and $x \in B)$ or $(x \in A$ and $x \in C)$
iff $(x \in A \cap B)$ or $(x \in A \cap C)$
iff $x \in(A \cap B) \cup(A \cap C)$.
Exercise 2.9. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Definition 2.10. Let A, B be sets. The set theoretic difference of A and B, written $A \backslash B$, is the set defined by

$$
x \in A \backslash B \quad \text { iff } \quad x \in A \quad \text { and } \quad x \notin B .
$$

$\{1,2,3\} \backslash\{3,4,5\}=\{1,2\}$.
$\mathbb{N} \backslash \mathbb{Z}=\emptyset$.
$\mathbb{Z} \backslash \mathbb{N}=\{-1,-2,-3, \ldots\}$.
Proposition 2.11. $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
Proof. Let x be arbitrary. Then $x \in A \backslash(B \cup C)$
iff $x \in A$ and $x \notin B \cup C$
iff $x \in A$ and not $(x \in B$ or $x \in C)$
iff $x \in A$ and $(x \notin B$ and $x \notin C)$
iff $x \in A$ and $x \notin B$ and $x \notin C$
iff $x \in A$ and $x \notin B$ and $x \in A$ and $x \notin C$
iff $(x \in A$ and $x \notin B)$ and $(x \in A$ and $x \notin C)$
iff $x \in A \backslash B$ and $x \in A \backslash C$
iff $x \in(A \backslash B) \cap(A \backslash C)$.
Exercise 2.12. Prove that $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.

3 Functions

Provisional Definition:

Let A, B be sets. Then f is a function from A to B, written $f: A \rightarrow B$, iff f assigns a unique element $f(a) \in B$ to each $a \in A$.

What is the meaning of "assigns"? To illustrate our earlier comments on set theory as a foundation for mathematics, we shall reduce the notion of a function to the language of basic set theory.

Basic idea

For example, consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Then the graph of f is a subset of \mathbb{R}^{2}. We shall identify f with its graph.

To generalize this idea to arbitrary functions, we first need to introduce the idea of an ordered pair; ie a mathematical object $\langle a, b\rangle$ such that

$$
\begin{equation*}
\langle a, b\rangle=\langle c, d\rangle \quad \text { iff } \quad a=c \quad \text { and } \quad b=d \tag{*}
\end{equation*}
$$

Definition 3.1. Let A and B be sets. Then the Cartesian product of A and B is the set

$$
A \times B=\{\langle a, b\rangle \mid a \in A, b \in B\}
$$

Definition 3.2. f is a function from A to B iff the following conditions hold:

1. $f \subseteq A \times B$
2. For each $a \in A$, there is a unique $b \in B$ such that $\langle a, b\rangle \in f$.

In this case, the unique such b is said to be the value of f at a and we write $f(a)=b$.
In order to reduce the notion of a function to basic set theory, we now only need to find a purely set theoretic object to play the role of $\langle x, y\rangle$.

Definition 3.3. $\langle x, y\rangle=\{\{x\},\{x, y\}\}$.
Finally, we must prove that with this definition, the set $\langle x, y\rangle$ satisfies (*).
Theorem 3.4. $\langle a, b\rangle=\langle c, d\rangle$ iff $a=c$ and $b=d$.
Proof. (\Leftarrow) : Clearly if $a=c$ and $b=d$ then $\langle a, b\rangle=\langle c, d\rangle$.
(\Rightarrow) : Conversely, suppose that $\langle a, b\rangle=\langle c, d\rangle$; ie

$$
\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\} .
$$

We split our analysis into three cases.

Case 1

Suppose that $a=b$. Then $\{\{a\},\{a, b\}\}$ equals

$$
\begin{aligned}
& =\{\{a\},\{a, a\}\} \\
& =\{\{a\},\{a\}\} \\
& =\{\{a\}\}
\end{aligned}
$$

Since

$$
\{\{c\},\{c, d\}\}=\{\{a\}\}
$$

it follows that

$$
\{c\}=\{c, d\}=\{a\} .
$$

This implies that $c=d=a$. Hence $a=c$ and $b=d$.

Case 2

Similarly, if $c=d$, we obtain that $a=c$ and $b=d$.

Case 3

Finally suppose that $a \neq b$ and $c \neq d$. Since

$$
\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}
$$

we must have that $\{a\}=\{c\}$ or $\{a\}=\{c, d\}$. Since $c \neq d$ the second option is impossible. Hence $\{a\}=\{c\}$ and so $a=c$.

Also $\{a, b\}=\{c\}$ or $\{a, b\}=\{c, d\}$. Clearly the first option is impossible and so $\{a, b\}=\{c, d\}$. Since $a=c$, we must have $b=d$.

Important remark When working with functions, it is almost never necessary to remember that a function is literally a set of ordered pair as above.

Definition 3.5. The function $f: A \rightarrow B$ is an injection (one-to-one) iff

$$
a \neq a^{\prime} \quad \text { implies } \quad f(a) \neq f\left(a^{\prime}\right) .
$$

Definition 3.6. The function $f: A \rightarrow B$ is a surjection (onto) iff for all $b \in B$, there exists an $a \in A$ such that $f(a)=b$.

Definition 3.7. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, then their composition is the function $g \circ f: A \rightarrow C$ defined by $(g \circ f)(a)=g(f(a))$.

Proposition 3.8. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjections then $g \circ f: A \rightarrow C$ is also a surjection.

Proof. Let $c \in C$ be arbitrary. Since g is surjective, there exists a $b \in B$ such that $g(b)=c$. Since f is surjective, there exists $a \in A$ such that $f(a)=b$. Hence $(g \circ f)(a)=$ $=g(f(a))$
$=g(b)$ $=c$
Thus $g \circ f$ is surjective.
Exercise 3.9. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injections then $g \circ f: A \rightarrow C$ is also an injection.

Definition 3.10. The function $f: A \rightarrow B$ is a bijection iff f is both an injection and a surjection.

Definition 3.11. If $f: A \rightarrow B$ is a bijection, then the inverse $f^{-1}: B \rightarrow A$ is the function defined by

$$
f^{-1}(b) \text { equals the unique } a \in A \text { such that } f(a)=b
$$

Remark 3.12. 1. It is easily checked that $f^{-1}: B \rightarrow A$ is also a bijection.
2. In terms of ordered pairs:

$$
f^{-1}=\{\langle b, a\rangle \mid\langle a, b\rangle \in f\}
$$

4 Equinumerosity

Definition 4.1. Two sets A and B are equinumerous, written $A \sim B$, iff there exists a bijection $f: A \rightarrow B$.

Example 4.2. Let $\mathbb{E}=\{0,2,4, \ldots\}$ be the set of even natural numbers. Then $\mathbb{N} \sim \mathbb{E}$.

Proof. We can define a bijection $f: \mathbb{N} \rightarrow \mathbb{E}$ by $f(n)=2 n$.

Important remark It is often extremely hard to explicitly define a bijection $f: \mathbb{N} \rightarrow A$. But suppose such a bijection exists. Then letting $a_{n}=f(n)$, we obtain a list of the elements of A

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

in which each element of A appears exactly once. Conversely, if such a list exists, then we can define a bijection $f: \mathbb{N} \rightarrow A$ by $f(n)=a_{n}$.

Example 4.3. $\mathbb{N} \sim \mathbb{Z}$
Proof. We can list the elements of \mathbb{Z} by

$$
0,1,-1,2,-1, \ldots, n,-n, \ldots
$$

Theorem 4.4. $\mathbb{N} \sim \mathbb{Q}$
Proof. Step 1 First we prove that $\mathbb{N} \sim \mathbb{Q}^{+}$, the set of positive rational numbers. Form an infinite matrix where the $(i, j)^{\text {th }}$ entry is j / i.

Proceed through the matrix by traversing, alternating between upward and downward, along lines of slope one. At the $(i, j)^{\text {th }}$ entry add the number j / i to the list if it has not already appeared.

Step 2 We have shown that there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{Q}^{+}$. Hence we can list the elements of \mathbb{Q} by

$$
0, f(0),-f(0), f(1),-f(1), \ldots
$$

Definition 4.5. If A is any set, then its powerset is defined to be

$$
\mathcal{P}(A)=\{B \mid B \subseteq A\}
$$

Example 4.6.

1. $\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.
2. $\mathcal{P}(\{1,2, \ldots n\}$,$) has size 2^{n}$.

Theorem 4.7. (Cantor) $\mathbb{N} \nsim \mathcal{P}(\mathbb{N})$
Proof. (The diagonal argument) We must show that there does not exist a bijection $f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$. So let $f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ be any function. We shall show that f isn't a surjection. To accomplish this we shall define a subset $S \subseteq \mathbb{N}$ such that $f(n) \neq S$ for all $n \in \mathbb{N}$. We do this via a "time and motion study". For each $n \in \mathbb{N}$, we must perform:

1. the $n^{\text {th }}$ decision: is $n \in S$?
2. the $n^{\text {th }}$ task: we must ensure that $f(n) \neq S$.

We decide to accomplish the $n^{\text {th }}$ task with the $n^{\text {th }}$ decision. So we decide that

$$
n \in S \quad \text { iff } \quad n \notin f(n)
$$

Clearly S and $f(n)$ differ on whether they contain n and so $f(n) \neq S$. Hence f is not a surjection.

Discussion Why is this called the "diagonal argument"?
Definition 4.8. A set A is countable iff A is finite or $\mathbb{N} \sim A$. Otherwise A is uncountable.
eg \mathbb{Q} is countable
$\mathcal{P}(\mathbb{N})$ is uncounable.
Theorem 4.9. (Cantor) If A is any set, then $A \nsim \mathcal{P}(A)$.
Proof. Supose that $f: A \rightarrow \mathcal{P}(A)$ is any function. We shall show that f isn't a surjection. Define $S \subseteq A$ by

$$
a \in S \quad \text { iff } \quad a \notin f(a) .
$$

Then S and $f(a)$ differ on whether they contain a. Thus $f(a) \neq S$ for all $a \in A$.
Definition 4.10. Let A, B be sets.

1. $A \preceq B$ iff there exists an injection $f: A \rightarrow B$.
2. $A \prec B$ iff $A \preceq B$ and $A \nsim B$.

Corollary 4.11. If A is any set, then $A \prec \mathcal{P}(A)$.
Proof. Define $f: A \rightarrow \mathcal{P}(A)$ by $f(a)=\{a\}$. Clearly f is an injection and so $A \preceq \mathcal{P}(A)$. Since $A \nsim \mathcal{P}(A)$, we have $A \prec \mathcal{P}(A)$.

Corollary 4.12. $\mathbb{N} \prec \mathcal{P}(\mathbb{N}) \prec \mathcal{P}(\mathcal{P}(\mathbb{N})) \prec \ldots$
Having seen that we have a nontrivial subject, we now try to develop some general theory.

5 Cantor-Bernstein Theorem

Theorem 5.1. Let A, B, C be sets.

1. $A \sim A$
2. If $A \sim B$, then $B \sim A$.
3. If $A \sim B$ and $B \sim C$, then $A \sim C$.

Exercise 5.2. If $A \preceq B$ and $B \preceq C$, then $A \preceq C$.
Theorem 5.3. (Cantor-Bernstein) If $A \preceq B$ and $B \preceq A$, then $A \sim B$.
Proof delayed
Theorem 5.4. If A, B are any sets, then either $A \preceq B$ or $B \preceq A$.
Proof omitted

This theorem is equivalent to:
Axiom of Choice If \mathcal{F} is a family of nonempty sets then there exists a function f such that $f(A) \in A$ for all $A \in \mathcal{F}$. (Such a function is called a choice function.)

6 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 6.1. $\mathbb{N} \sim \mathbb{Q}$.
Proof. First define a function $f: \mathbb{N} \rightarrow \mathbb{Q}$ by $f(n)=n$. Clearly f is an injection and so $\mathbb{N} \preceq \mathbb{Q}$.

Now define a function $g: \mathbb{Q} \rightarrow \mathbb{N}$ as follows. First suppose that $0 \neq q \in \mathbb{Q}$. Then we can uniquely express

$$
q=\epsilon \frac{a}{b}
$$

where $\epsilon= \pm 1$ and $a, b \in \mathbb{N}$ are positive and relatively prime. Then we define

$$
g(q)=2^{\epsilon+1} 3^{a} 5^{b} .
$$

Finally define $g(0)=7$. Clearly g is an injection and so $\mathbb{Q} \preceq \mathbb{N}$.
By Cantor-Bernstein, $\mathbb{N} \sim \mathbb{Q}$.
Theorem 6.2. $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.
We shall make use of the following result.
Lemma 6.3. $(0,1) \sim \mathbb{R}$.
Proof of Lemma 6.3. By Calc I, we can define a bijection $f:(0,1) \rightarrow \mathbb{R}$ by $f(x)=$ $\tan (\pi x-\pi / 2)$.

Proof of Theorem 6.2. By the lemma, it is enough to show that $(0,1) \sim \mathcal{P}(\mathbb{N})$. We shall make use of the fact that eact $r \in(0,1)$ has a unique decimal expansion

$$
r=0 . r_{1} r_{2} r_{3} \ldots r_{n} \ldots
$$

so that

1. $0 \leq r_{n} \leq 9$
2. the expansion does not terminate with infinitely many 9 s . (This is to avoid two expansions such as $0.5000 \ldots=0.4999 \ldots$)
First we define $f:(0,1) \rightarrow \mathcal{P}(\mathbb{N})$ as follows. If

$$
r=0 . r_{0} r_{1} r_{2} \ldots r_{n} \ldots
$$

then

$$
f(r)=\left\{2^{r_{0}+1}, 3^{r_{1}+1}, \ldots, p_{n}^{r_{n}+1}, \ldots\right\}
$$

where p_{n} is the $n^{\text {th }}$ prime. Clearly f is an injection and so $(0,1) \preceq \mathcal{P}(\mathbb{N})$.
Next we define a function $g: \mathcal{P}(\mathbb{N}) \rightarrow(0,1)$ as follows: If $\emptyset \neq S \subseteq \mathbb{N}$ then

$$
g(S)=0 . s_{0} s_{1} s_{2} \ldots s_{n} \ldots
$$

where

$$
\begin{aligned}
& s_{n}=0 \text { if } n \in S \\
& s_{n}=1 \text { if } n \notin S .
\end{aligned}
$$

Finally, $g(\emptyset)=0.5$. Clearly g is an injection and so $\mathcal{P}(\mathbb{N}) \preceq(0,1)$.
By Cantor-Bernstein, $(0,1) \sim \mathcal{P}(\mathbb{N})$.
The following result says that " \mathbb{N} has the smallest infinite size."
Theorem 6.4. If $S \subseteq \mathbb{N}$, then either S is finite or $\mathbb{N} \sim S$.
Proof. Suppose that S is infinite. Let

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{n}, \ldots
$$

be the increasing enumeration of the elements of S. This list witnesses that $\mathbb{N} \sim S$.

The Continuum Hypothesis (CH) If $S \subseteq \mathbb{R}$, then either S is countable or $\mathbb{R} \sim S$.
Theorem 6.5. (Godel 1930s, Cohen 1960s) If the axioms of set theory are consistent, then CH can neither be proved nor disproved from these axioms.

Definition 6.6. $\operatorname{Fin}(\mathbb{N})$ is the set of all finite subsets of \mathbb{N}.
Theorem 6.7. $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.
Proof. First define $f: \mathbb{N} \rightarrow \operatorname{Fin}(\mathbb{N})$ by $f(n)=\{n\}$. Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{Fin}(\mathbb{N})$. Now define $g: \operatorname{Fin}(\mathbb{N}) \rightarrow \mathbb{N}$ as follows. If $s=\left\{s_{0}, s_{1}, s_{2}, \ldots, s_{n}\right\}$ where $s_{0}<s_{1}<\ldots<s_{n}$, then

$$
g(S)=2^{s_{0}+1} 3^{s_{1}+1} \ldots p_{n}^{s_{n}+1}
$$

where p_{i} is the $i^{\text {th }}$ prime. Also we define $g(\emptyset)=1$. Clearly g is an injection and so $\operatorname{Fin}(\mathbb{N}) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.

Exercise 6.8. If $a<b$ are reals, then $(a, b) \sim(0,1)$.
Exercise 6.9. If $a<b$ are reals, then $[a, b] \sim(0,1)$.
Exercise 6.10. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.
Exercise 6.11. If $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.
Definition 6.12. If A and B are sets, then

$$
B^{A}=\{f \mid f: A \rightarrow B\} .
$$

Theorem 6.13. $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.
Proof. For each $S \subseteq \mathbb{N}$ we define the corresponding characteristic function $\chi_{S}: \mathbb{N} \rightarrow$ $\{0,1\}$ by

$$
\begin{aligned}
& \chi_{S}(n)=1 \text { if } n \in S \\
& \chi_{S}(n)=0 \text { if } n \notin S
\end{aligned}
$$

Let $f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N}^{\mathbb{N}}$ be the function defined by $f(S)=\chi_{S}$. Clearly f is an injection and so $\mathcal{P}(\mathbb{N}) \preceq \mathbb{N}^{\mathbb{N}}$.

Now we define a function $g: \mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$ by

$$
g(\pi)=\left\{2^{\pi(0)+1}, 3^{\pi(1)+1}, \ldots, p_{n}^{\pi(n)+1}, \ldots\right\}
$$

where p_{n} is the $n^{\text {th }}$ prime. Clearly g is an injection. Hence $\mathbb{N}^{\mathbb{N}} \preceq \mathcal{P}(\mathbb{N})$.
By Cantor-Bernstein, $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.

Heuristic Principle Let S be an infinite set.

1. If each $s \in S$ is determined by a finite amount of data, then S is countable.
2. If each $s \in S$ is determined by infinitely many independent pieces of data, then S is uncountable.

Definition 6.14. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is eventually constant iff there exists $a, b \in \mathbb{N}$ such that

$$
f(n)=b \text { for all } n \geq a \text {. }
$$

$\mathrm{EC}(\mathbb{N})=\left\{f \in \mathbb{N}^{\mathbb{N}} \mid f\right.$ is eventually constant $\}$.
Theorem 6.15. $\mathbb{N} \sim \operatorname{EC}(\mathbb{N})$.
Proof. For each $n \in \mathbb{N}$, let $c_{n}: \mathbb{N} \rightarrow \mathbb{N}$ be the function defined by $c_{n}(t)=n$ for all $t \in \mathbb{N}$.
Then we can define an injection $f: \mathbb{N} \rightarrow \mathrm{EC}(\mathbb{N})$ by $f(n)=c_{n}$. Hence $\mathbb{N} \preceq \mathrm{EC}(\mathbb{N})$.
Next we define a function $g: \operatorname{EC}(\mathbb{N}) \rightarrow \mathbb{N}$ as follows. Let $\pi \in \operatorname{EC}(\mathbb{N})$. Let $a, b \in \mathbb{N}$ be chosen so that:

1. $\pi(n)=b$ for all $n \geq a$
2. a is the least such integer.

Then

$$
g(\pi)=2^{\pi(0)+1} 3^{\pi(1)+1} \ldots p_{a}^{\pi(a)+1}
$$

where p_{i} is the $i^{\text {th }}$ prime. Clearly g is an injection. Thus $\operatorname{EC}(\mathbb{N}) \preceq \mathbb{N}$.
By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{EC}(\mathbb{N})$.

7 The proof of Cantor-Berstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the following result.

Definition 7.1. If $f: A \rightarrow B$ and $C \subseteq A$, then $f[C]=\{f(c) \mid c \in C\}$.

Lemma 7.2. If $f: A \rightarrow B$ is an injection and $C \subseteq A$, then $f[A \backslash C]=f[A] \backslash f[C]$.

Proof. Suppose that $x \in f[A \backslash C]$. Then there exists $a \in A \backslash C$ such that $f(a)=x$. In particular $x \in f[A]$. Suppose that $x \in f[C]$. Then there exists $c \in C$ such that $f(c)=x$. But $a \neq c$ and so this contradicts the fact that f is an injection. Hence $x \notin f[C]$ and so $x \in f[A] \backslash f[C]$.

Conversely suppose that $x \in f[A] \backslash f[C]$. Since $x \in f[A]$, there exists $a \in A$ such that $f(a)=x$. Since $x \notin f[C]$, it follows that $a \notin C$. Thus $a \in A \backslash C$ and $x=f(a) \in$ $f[A \backslash C]$.

Theorem 7.3. (Cantor-Bernstein) If $A \preceq B$ and $B \preceq A$, then $A \sim B$.
Proof. Since $A \preceq B$ and $B \preceq A$, there exists injections $f: A \rightarrow B$ and $g: B \rightarrow A$. Let $C=g[B]=\{g(b) \mid b \in B\}$.
Claim 7.4. $B \sim C$.
Proof of Claim 7.4. The map $b \mapsto g(b)$ is a bijection from B to C.
Thus it is enough to prove that $A \sim C$. For then, $A \sim C$ and $C \sim B$, which implies that $A \sim B$.

Let $h=g \circ f: A \rightarrow C$. Then h is an injection.
Define by induction on $n \geq 0$.

$$
\begin{array}{ll}
A_{0}=A & C_{0}=C \\
A_{n+1}=h\left[A_{n}\right] & C_{n+1}=h\left[C_{n}\right]
\end{array}
$$

Define $k: A \rightarrow C$ by $k(x)=$
$=h(x)$ if $x \in A_{n} \backslash C_{n}$ for some n
$=x$ otherwise

Claim 7.5. k is an injection.
Proof of Claim 7.5. Suppose that $x \neq x^{\prime}$ are distinct elements of A. We consider three cases.

Case 1:

Suppose that $x \in A_{n} \backslash C_{n}$ and $x^{\prime} \in A_{m} \backslash C_{m}$ for some n, m. Since h is an injection,

$$
k(x)=h(x)=x \neq x^{\prime}=h(x)=k(x) .
$$

Case 2:

Suppose that $x \notin A_{n} \backslash C_{n}$ for all n and that $x^{\prime} \notin A_{n} \backslash C_{n}$ for all n. Then

$$
k(x)=x \neq x^{\prime}=k(x) .
$$

Case 3:

Suppose that $x \in A_{n} \backslash C_{n}$ and $x^{\prime} \notin A_{m} \backslash C_{m}$ for all m. Then

$$
k(x)=h(x) \in h\left[A_{n} \backslash C_{n}\right]
$$

and

$$
h\left[A_{n} \backslash C_{n}\right]=h\left[A_{n}\right] \backslash h\left[C_{n}\right]=A_{n+1} \backslash C_{n+1} .
$$

Hence $k(x)=h(x) \neq x^{\prime}=k\left(x^{\prime}\right)$.
Claim 7.6. k is a surjection.
Proof of Claim 7.6. Let $x \in C$. There are two cases to consider.

Case 1:

Suppose that $x \notin A_{n} \backslash C_{n}$ for all n. Then $k(x)=x$.

Case 2:

Suppose that $x \in A_{n} \backslash C_{n}$. Since $x \in C$, we must have that $n=m+1$ for some m. Since

$$
h\left[A_{m} \backslash C_{m}\right]=A_{n} \backslash C_{n},
$$

there exists $y \in A_{m} \backslash C_{m}$ such that $k(y)=h(y)=x$.
This completes the proof of the Cantor-Bernstein Theorem.
Theorem 7.7. $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$
Proof. Since $(0,1) \sim \mathbb{R}$, it follows that $(0,1) \times(0,1) \sim \mathbb{R} \times \mathbb{R}$. Hence it is enough to prove that $(0,1) \sim(0,1) \times(0,1)$.

First define $f:(0,1) \rightarrow(0,1) \times(0,1)$ by $f(r)=\langle r, r\rangle$. Clearly f is an injection and so $(0,1) \preceq(0,1) \times(0,1)$.

Next define $g:(0,1) \times(0,1) \rightarrow(0,1)$ as follows. Suppose that $r, s \in(0,1)$ have decimal expansions

$$
r=0 . r_{0} r_{1} \ldots r_{n} \ldots
$$

$$
s=0 . s_{0} s_{1} \ldots s_{n} \ldots
$$

Then

$$
g(\langle r, s\rangle)=0 . r_{0} s_{0} r_{1} s_{1} \ldots r_{n} s_{n} \ldots
$$

Clearly g is an injection and so $(0,1) \times(0,1) \preceq(0,1)$.
By Cantor-Bernstein, $(0,1) \sim(0,1) \times(0,1)$.
Exercise 7.8. $\mathbb{R} \backslash \mathbb{N} \sim \mathbb{R}$
Exercise 7.9. $\mathbb{R} \backslash \mathbb{Q} \sim \mathbb{R}$
Exercise 7.10. Let $\operatorname{Sym}(\mathbb{N})=\{f \mid f: \mathbb{N} \rightarrow \mathbb{N}$ is a bijection $\}$. Prove that $\mathcal{P}(\mathbb{N}) \sim$ $\operatorname{Sym}(\mathbb{N})$.

Definition 7.11. Let A be any set. Then a finite sequence of elements of A is an object $\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle, n \geq 0$
so that each $a_{i} \in A$, chosen so that

$$
\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=\left\langle b_{0}, b_{1}, \ldots, b_{n}\right\rangle
$$

iff $n=m$ and $a_{i}=b_{i}$ for $0 \leq i \leq n$.
$\operatorname{FinSeq}(A)$ is the set of all finite sequences of elements of A.
Theorem 7.12. If A is a nonempty countable set, then $\mathbb{N} \sim \operatorname{FinSeq}(A)$.
Proof. First we prove that $\mathbb{N} \preceq \operatorname{FinSeq}(A)$. Fix some $a \in A$. Then we define $f: \mathbb{N} \rightarrow$ $\operatorname{FinSeq}(A)$ by

$$
f(n)=\langle\underbrace{a, a, a, a, a, \ldots, a}_{n+1 \text { times }}\rangle .
$$

Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{FinSeq}(A)$.
Next we prove that $\operatorname{FinSeq}(A) \preceq \mathbb{N}$. Since A is countable, there exists an injection $e: A \rightarrow \mathbb{N}$. Define $g: \operatorname{FinSeq}(A) \rightarrow \mathbb{N}$ by

$$
g\left(\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle\right)=2^{e\left(a_{0}\right)+1} \ldots p_{n}^{e\left(a_{n}\right)+1}
$$

where p_{i} is the $n^{\text {th }}$ prime. Clearly g is an injection. Hence $\operatorname{FinSeq}(A) \preceq \mathbb{N}$.
By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{FinSeq}(A)$.

8 Binary relations

Definition 8.1. A binary relation on a set A is a subset $R \subseteq A \times A$. We usually write $a R b$ instead of writing $\langle a, b\rangle \in R$.

Example 8.2. 1. The order relation on \mathbb{N} is given by

$$
\{\langle n, m\rangle \mid n, m \in \mathbb{N}, n<m\} .
$$

2. The division relation D on $\mathbb{N} \backslash\{0\}$ is given by

$$
D=\{\langle n, m\rangle \mid n, m \in \mathbb{N}, n \text { divides } m\}
$$

Observation Thus $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ is the collection of all binary relations on \mathbb{N}. Clearly $\mathcal{P}(\mathbb{N} \times \mathbb{N}) \sim \mathcal{P}(\mathbb{N})$ and so $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ is uncountable.

Definition 8.3. Let R be a binary relation on A.

1. R is reflexive iff $x R x$ for all $x \in A$.
2. R is symmetric iff $x R y$ implies $y R x$ for all $x, y \in A$.
3. R is transitive iff $x R y$ and $y R z$ implies $x R z$ for all $x, y, z \in A$.
R is an equivalence relation iff R is reflexive, symmetric, and transitive.
Example 8.4. Define the relation R on \mathbb{Z} by

$$
a R b \quad \text { iff } \quad 3 \mid a-b
$$

Proposition 8.5. R is an equivalence relation.
Exercise 8.6. Let $A=\{\langle a, b\rangle \mid a, b \in \mathbb{Z}, b \neq 0\}$. Define the relation S on A by

$$
\langle a, b\rangle S\langle c, d\rangle \quad \text { iff } \quad a d-b c=0 .
$$

Prove that S is an equivalence relation.
Definition 8.7. Let R be an equivalence relation on A. For each $x \in A$, the equivalence class of x is

$$
[x]=\{y \in A \mid x R y\} .
$$

Example 8.4 Cont. The distinct equivalence classes are

$$
\begin{aligned}
& {[0]=\{\ldots,-6,-3,0,3,6, \ldots\}} \\
& {[1]=\{\ldots,-5,-2,1,4,7, \ldots\}} \\
& {[2]=\{\ldots,-4,-1,2,5,8, \ldots\}}
\end{aligned}
$$

Definition 8.8. Let A be a nonempty set. Then $\left\{B_{i} \mid i \in I\right\}$ is a partition of A iff the following conditions hold:

1. $\emptyset \neq B_{i}$ for all $i \in I$.
2. If $i \neq j \in I$, then $B_{i} \cap B_{j}=\emptyset$.
3. $A=\bigcup_{i \in I} B_{i}$.

Theorem 8.9. Let R be an equivalence relation on A.

1. If $a \in A$ then $a \in[a]$.
2. If $a, b \in A$ and $[a] \cap[b] \neq \emptyset$, then $[a]=[b]$.

Hence the set of distinct equivalence classes forms a partition of A.
Proof. 1. Let $a \in A$. Since R is reflexive, $a R a$ and so $a \in[a]$.
2. Suppose that $c \in[a] \cap[b]$. Then $a R c$ and $b R c$. Since R is symmetric, $c R b$. Since R is transitive, $a R b$. We claim that $[b] \subseteq[a]$. To see this, suppose that $d \in[b]$. Then $b R d$. Since $a R b$ and $b R d$, it follows that $a R d$. Thus $d \in[a]$. Similarly, $[a] \subseteq[b]$ and so $[a]=[b]$.

Theorem 8.10. Let $\left\{B_{i} \mid i \in I\right\}$ be a partition of A. Define a binary relation R on A by

$$
a R b \text { iff there exists } i \in I \text { such that } a, b \in B_{i} \text {. }
$$

Then R is an equivalence relation whose equivalence classes are precisely $\left\{B_{i} \mid i \in I\right\}$.
Example 8.11. How many equivalence relations can be defined on $A=\{1,2,3\}$?

Sol'n This is the same as asking how many partitions of A exist.

$$
\begin{aligned}
& \{\{1,2,3\}\}, \\
& \{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\}, \\
& \{\{1\},\{2\},\{3\}\}
\end{aligned}
$$

Hence there are 5 equivalence relations on $\{1,2,3\}$.
Exercise 8.12. How many equivalence relations can be defined on $A=\{1,2,3,4\}$?

Challenge Let $\mathrm{EQ}(\mathbb{N})$ be the collection of equivalence relations on \mathbb{N}. Prove that $\mathrm{EQ}(\mathbb{N}) \sim \mathcal{P}(\mathbb{N})$.

9 Linear orders

Definition 9.1. Let R be a binary relation on A.

1. R is irreflexive iff $\langle a, a\rangle \notin R$ for all $a \in A$.
2. R satisfies the trichotomy property iff for all $a, b \in A$, exactly one of the following holds:

$$
a R b, a=b, b R a .
$$

$\langle A, R\rangle$ is a linear order iff R is irreflexive, transitive, and satisfies the trichotomy property.

Example 9.2. Each of the following are linear orders.

1. $\langle\mathbb{N},<\rangle$
2. $\langle\mathbb{N}\rangle$,
3. $\langle\mathbb{Z},<\rangle$
4. $\langle\mathbb{Q},<\rangle$
5. $\langle\mathbb{R},<\rangle$

Definition 9.3. Let R be a binary relation on A. Then $\langle A, R\rangle$ is a partial order iff R is irreflexive and transitive.

Example 9.4. Each of the follow are partial orders, but not linear orders.

1. Let A be any nonempty set containing at least two elements. Then $\langle\mathcal{P}(A), \subset\rangle$ is a partial order.
2. Let D be the strict divisability relation on $\mathbb{N}^{+}=\mathbb{N} \backslash\{0\}$. Then $\left\langle\mathbb{N}^{+}, D\right\rangle$ is a partial order.

Definition 9.5. Let $\langle A,<\rangle$ and $\langle B,<\rangle$ be partial orders. A map $f: A \rightarrow B$ is an isomorphism iff the following conditions are satisfied.

1. f is a bijection
2. For all $x, y \in A, x<y$ iff $f(x)<f(y)$.

In this case, we say that $\langle A,<\rangle$ and $\langle B,<\rangle$ are isomorphic and write $\langle A,<\rangle \cong\langle B,<\rangle$.
Example 9.6. $\langle\mathbb{Z},<\rangle \cong\langle\mathbb{Z},>\rangle$
Proof. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the map defined by $f(x)=-x$. Clearly f is a bijection. Also, if $x, y \in \mathbb{Z}$, then $x<y$
iff $-x>-y$
iff $f(x)>f(y)$.
Thus f is an isomorphism.
Example 9.7. $\langle\mathbb{N},<\rangle \neq\langle\mathbb{Z},<\rangle$.
Proof. Suppose that $f: \mathbb{N} \rightarrow \mathbb{Z}$ is an isomorphism. Let $f(0)=z$. Since f is a bijection, there exists $n \in \mathbb{N}$ such that $f(n)=z-1$. But then $n>0$ and $f(n)<f(0)$, which is a contradiction.

Exercise 9.8. Prove that $\langle\mathbb{Z},<\rangle \neq\langle\mathbb{Q},<\rangle$.
Example 9.9. $\langle\mathbb{Q},<\rangle \neq\langle\mathbb{R},<\rangle$.
Proof. Since \mathbb{Q} is countable and \mathbb{R} is uncountable, there does not exist a bijection $f: \mathbb{Q} \rightarrow \mathbb{R}$. Hence there does not exist an isomorphism $f: \mathbb{Q} \rightarrow \mathbb{R}$.

Example 9.10. $\langle\mathbb{R},<\rangle \neq\langle\mathbb{R} \backslash\{0\},<\rangle$.
Proof. Suppose that $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ is an isomorphism. For each $n \geq 1$, let $r_{n}=f(1 / n)$. Then

$$
r_{1}>r_{2}>\ldots>r_{n}>\ldots>f(-1)
$$

Let s be the greatest lower bound of $\left\{r_{n} \mid n \geq 1\right\}$. Then there exists $t \in \mathbb{R} \backslash\{0\}$ such that $f(t)=s$. Clearly $t<0$. Hence $f(t / 2)>s$. But then there exists $n \geq 1$ such that $r_{n}<f(t / 2)$. But this means that $t / 2<1 / n$ and $f(t / 2)>f(1 / n)$, which is a contradiction.

Question 9.11. Is $\langle\mathbb{Q},<\rangle \cong\langle\mathbb{Q} \backslash\{0\},<\rangle$?
Definition 9.12. For each prime p,

$$
\mathbb{Z}[1 / p]=\left\{a / p^{n} \mid a \in \mathbb{Z}, n \in \mathbb{N}\right\} .
$$

Question 9.13. Is $\langle\mathbb{Z}[1 / 2],<\rangle \cong\langle\mathbb{Z}[1 / 3],<\rangle$?
Definition 9.14. A linear order $\langle D,<\rangle$ is a dense linear order without endpoints or DLO iff the following conditions hold.

1. For all $a, b \in D$, if $a<b$, then there exists $c \in D$ such that $a<c<b$.
2. For all $a \in D$, there exists $b \in D$ such that $a<b$.
3. For all $a \in D$, there exists $b \in D$ such that $b<a$.

Example 9.15. The following are DLOs.

1. $\langle\mathbb{Q},<\rangle$
2. $\langle\mathbb{R},<\rangle$
3. $\langle\mathbb{Q} \backslash\{0\},<\rangle$
4. $\langle\mathbb{R} \backslash\{0\},<\rangle$

Theorem 9.16. For each prime $p,\langle\mathbb{Z}[1 / p],<\rangle$ is a $D L O$.

Proof. Clearly $\langle\mathbb{Z}[1 / p],<\rangle$ linear order without endpoints. Hence it is enough to show that $\mathbb{Z}[1 / p]$ is dense. Suppose that $a, b \in \mathbb{Z}[1 / p]$. Then there exists $c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a=c / p^{n}$ and $b=d / p^{n}$. Clearly $a<a+\left(1 / p^{n}\right) \leq b$. Consider

$$
r=\frac{c}{p^{n}}+\frac{1}{p^{n}}=\frac{c p+1}{p^{n+1}} \in \mathbb{Z}[1 / p] .
$$

Then $a<r<b$.
Theorem 9.17. If $\langle A,<\rangle$ and $\langle B,<\rangle$ are countable DLOs then $\langle A,<\rangle \cong\langle B,<\rangle$.
Corollary 9.18. $\langle\mathbb{Q},<\rangle \cong\langle\mathbb{Q} \backslash\{0\},<\rangle$.
Corollary 9.19. $\langle\mathbb{Z}[1 / 2],<\rangle \cong\langle\mathbb{Z}[1 / 3],<\rangle$.
Corollary 9.20. If p is any prime, then $\langle\mathbb{Z}[1 / p],<\rangle \cong\langle\mathbb{Q},<\rangle$.
Proof of Theorem 9.17. Let $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $B=\left\{b_{n} \mid n \in \mathbb{N}\right\}$. First define $A_{0}=\left\{a_{0}\right\}$ and $B_{0}=\left\{b_{0}\right\}$ and let $f_{0}: A_{0} \rightarrow B_{0}$ be the map defined by $f_{0}\left(a_{0}\right)=b_{0}$.

Now suppose inductively that we have defined a function $f_{n}: A_{n} \rightarrow B_{n}$ such that the following conditions are satisfied.

1. $\left\{a_{0}, \ldots, a_{n}\right\} \subseteq A_{n} \subseteq A$.
2. $\left\{b_{0}, \ldots, b_{n}\right\} \subseteq B_{n} \subseteq B$.
3. $f_{n}: A_{n} \rightarrow B_{n}$ is an order preserving bijection.

We now extend f_{n} to a suitable function f_{n+1}.
Step 1 If $a_{n+1} \in A_{n}$, then let $A_{n}^{\prime}=A_{n}, B_{n}^{\prime}=B_{n}$, and $f_{n}^{\prime}=f_{n}$. Otherwise, suppose for example that

$$
c_{0}<c_{1}<\ldots<c_{i}<a_{n+1}<c_{i+1}<\ldots<c_{m}
$$

where $A_{n}=\left\{c_{0}, \ldots, c_{m}\right\}$. Choose some element $b \in B$ such that $f_{n}\left(c_{i}\right)<b<f_{n}\left(c_{i+1}\right)$ and define

$$
\begin{aligned}
& A_{n}^{\prime}=A_{n} \cup\left\{a_{n+1}\right\} \\
& B_{n}^{\prime}=B_{n} \cup\{b\} \\
& f_{n}^{\prime}=f_{n} \cup\left\{\left\langle a_{n+1}, b\right\rangle\right\}
\end{aligned}
$$

Step 2 If $b_{n+1} \in B_{n}^{\prime}$, then let $A_{n+1}=A_{n}^{\prime}, B_{n+1}=B_{n}^{\prime}$, and $f_{n+1}=f_{n}^{\prime}$. Otherwise, suppose for example that

$$
d_{0}<d_{1}<\ldots<d_{j}<b_{n+1}<d_{j+1}<\ldots<d_{t}
$$

where $B_{n}^{\prime}=\left\{d_{0}, \ldots, d_{t}\right\}$. Choose some element $a \in A$ such that $\left(f_{n}^{\prime}\right)^{-1}\left(d_{j}\right)<a<$ $\left(f_{n}^{\prime}\right)^{-1}\left(d_{j+1}\right)$ and define

$$
\begin{aligned}
& A_{n+1}=A_{n}^{\prime} \cup\{a\} \\
& B_{n+1}=B_{n}^{\prime} \cup\left\{b_{n+1}\right\} \\
& f_{n+1}=f_{n}^{\prime} \cup\left\{\left\langle a, b_{n+1}\right\rangle\right\} .
\end{aligned}
$$

Finally, let $f=\bigcup_{n \geq 0} f_{n}$. Then $f: A \rightarrow B$ is an isomorphism.

10 Extensions

Definition 10.1. Suppose that R, S are binary relations on A. Then S extends R iff $R \subseteq R$.

Example 10.2. Consider the binary relations R, S on \mathbb{N} defined by

$$
R=\{\langle n, m\rangle \mid n<m\}
$$

$$
S=\{\langle n, m\rangle \mid n \leq m\}
$$

Then S extends R.
Example 10.3. Consider the partial order \prec on $\{a, b, c, d, e\}$ which is

$$
\{\langle d, b\rangle,\langle d, a\rangle,\langle d, e\rangle,\langle d, c\rangle,\langle a, b\rangle,\langle e, b\rangle,\langle c, b\rangle\} .
$$

Then we can extend \prec to the linear order $<$ defined by the transitive closure of

$$
d<e<c<a<b .
$$

Exercise 10.4. If $\langle A, \prec\rangle$ is a finite partial order, then we can extend \prec to a linear ordering $<$ of A.

Question 10.5. Does the analogous result hold if $\langle A, \prec\rangle$ is a infinite partial order?
Definition 10.6. If A is a set and $n \geq 1$, then

$$
A^{n}=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle \mid a_{1}, \ldots, a_{n} \in A\right\}
$$

An n-ary relation on A is a subset $R \subseteq A^{n}$.
An n-ary operation on A is a function $f: A^{n} \rightarrow A$.

11 Propositional logic

"The study of how the truth value of compound statements depends on those of simple statements."

A reminder of truth-tables.

and \wedge

A	B	$A \wedge B$
T	T	T
T	F	F
F	T	F
F	F	F

or \vee

\vee		
A	B	$A \vee B$
T	T	T
T	F	T
F	T	T
F	F	F

not \neg

$$
\begin{array}{c||c}
A & \neg A \\
\hline T & F \\
E & T
\end{array}
$$

material implication \rightarrow

A	B	$A \rightarrow B$
T	T	T
T	F	F
F	T	T
F	F	T

Now our study actually begins... First we introduce our formal language.
Definition 11.1. The alphabet consists of the following symbols:

1. the sentence connectives

$$
\neg, \wedge, \vee, \rightarrow, \leftrightarrow
$$

2. the punctuation symbols

$$
(,)
$$

3. the sentence symbols

$$
A_{1}, A_{2}, \ldots, A_{n}, \ldots, n \geq 1
$$

Remark 11.2. Clearly the alphabet is countable.
Definition 11.3. An expression is a finite sequence of symbols from the alphabet.
Example 11.4. The following are expressions:

$$
\left(A_{1} \wedge A_{2}\right), \quad\left((\neg \rightarrow()) A_{3}\right.
$$

Remark 11.5. Clearly the set of expressions is countable.
Definition 11.6. The set of well-formed formulas (wffs) is defined recursively as follows:

1. Every sentence symbol A_{n} is a wff.
2. If α and β are wffs, then so are

$$
(\neg \alpha),(\alpha \wedge \beta),(\alpha \vee \beta),(\alpha \rightarrow \beta),(\alpha \leftrightarrow \beta)
$$

3. No expression is a wff unless it is compelled to be so by repeated applications of (1) and (2).

Remark 11.7.

1. From now on we omit clause (3) in any further recursive definitions.
2. Clearly the set of wffs is countably infinite.
3. Because the definition of a wff is recursive, most of the properties of wffs are proved by induction on the length of a wff.

Example 11.8.

1. $\left(A_{1} \rightarrow\left(\neg A_{2}\right)\right)$ is a wff.
2. ($\left(A_{1} \wedge A_{2}\right)$ is not a wff. How can we prove this?

Proposition 11.9. If α is a wff, then α has the same number of left and right parentheses.

Proof. We argue by induction on the length $n \geq 1$ of the wff α. First suppose that $n=1$. Then α must be a sentence symbol, say A_{n}. Clearly the result holds in this case.

Now suppose that $n>1$ and that the result holds for all wffs of length less than n. Then α must have one of the following forms:

$$
(\neg \beta),(\beta \wedge \gamma),(\beta \vee \gamma),(\beta \rightarrow \gamma),(\beta \leftrightarrow \gamma)
$$

for some wffs β, γ of length less than n. By induction hypothesis the result holds for both β and γ. Hence the result also holds for α.

Definition 11.10. \mathcal{L} is the set of sentence symbols. $\overline{\mathcal{L}}$ is the set of wffs. $\{T, F\}$ is the set of truth values.

Definition 11.11. A truth assignment is a function $v: \mathcal{L} \rightarrow\{T, F\}$.
Definition 11.12. Let v be a truth assignment. Then we define the extension $\bar{v}: \overline{\mathcal{L}} \rightarrow$ $\{T, F\}$ recursively as follows.

0 . If $A_{n} \in \mathcal{L}$ then $\bar{v}\left(A_{n}\right)=v\left(A_{n}\right)$.
For any $\alpha, \beta \in \overline{\mathcal{L}}$

1. $\bar{v}((\neg \alpha))=$
$=T$ if $\bar{v}(\alpha)=F$
$=F$ otherwise
2. $\bar{v}((\alpha \wedge \beta))=$
$=T$ if $\bar{v}(\alpha)=\bar{v}(\beta)=T$
$=F$ otherwise
3. $\bar{v}((\alpha \vee \beta))=$
$=F$ if $\bar{v}(\alpha)=\bar{v}(\beta)=F$
$=T$ otherwise
4. $\bar{v}((\alpha \rightarrow \beta))=$
$=F$ if $\bar{v}(\alpha)=T$ and $\bar{v}(\beta)=F$
$=T$ otherwise
5. $\bar{v}((\alpha \leftrightarrow \beta))=$
$=T$ if $\bar{v}(\alpha)=\bar{v}(\beta)$
$=F$ otherwise

Possible problem. Suppose there exists a wff α such that α has both the forms $(\beta \rightarrow \gamma)$ and $(\sigma \wedge \varphi)$ for some wffs $\beta, \gamma, \sigma, \varphi$. Then there will be two (possibly conflicting) clauses which define $\bar{v}(\alpha)$.

Fortunately no such α exists...
Theorem 11.13 (Unique readability). If α is a wff of length greater than 1, then there exists eactly one way of expressing α in the form:

$$
(\neg \beta),(\beta \wedge \gamma),(\beta \vee \gamma),(\beta \rightarrow \gamma), \quad \text { or } \quad(\beta \leftrightarrow \gamma)
$$

for some shorter wffs β, γ.
We shall make use of the following result.
Lemma 11.14. Any proper initial segment of a wff contains more left parentheses than right parentheses. Thus no proper initial segment of a wff is a wff.

Proof. We argue by induction on the length $n \geq 1$ of the wff α. First suppose that $n=1$. Then α is a sentence symbol, say A_{n}. Since A_{n} has no proper initial segments, the result holds vacuously.

Now suppose that $n>1$ and that the result holds of all wffs of length less than n. Then α must have the form

$$
(\neg \beta),(\beta \wedge \gamma),(\beta \vee \gamma),(\beta \rightarrow \gamma), \quad \text { or } \quad(\beta \leftrightarrow \gamma)
$$

for some shorter wffs β and γ. By induction hypothesis, the result holds for both β and γ. We just consider the case when α is $(\beta \wedge \gamma)$. (The other cases are similar.) The proper initial segments of α are:

1. (
2. $\left(\beta_{0}\right.$ where β_{0} is an initial segment of β
3. $(\beta \wedge$
4. $\left(\beta \wedge \gamma_{0}\right.$ where γ_{0} is an initial segment of γ.

Using the induction hypothesis and the previous proposition (Proposition 11.9), we see that the result also holds for α.

Proof of Theorem 11.13. Suppose, for example, that

$$
\alpha=(\beta \wedge \gamma)=(\sigma \wedge \varphi)
$$

Deleting the first (we obtain that

$$
\beta \wedge \gamma)=\sigma \wedge \varphi)
$$

Suppose that $\beta \neq \sigma$. Then wlog β is a proper initial segment of σ. But then β isn't a wff, which is a contradiction. Hence $\beta=\sigma$. Deleting β and σ, we obtain that

$$
\wedge \gamma)=\wedge \varphi)
$$

and so $\gamma=\varphi$.
Next suppose that

$$
\alpha=(\beta \wedge \gamma)=(\sigma \rightarrow \varphi)
$$

Arguing as above, we find that $\beta=\sigma$ and so

$$
\wedge \gamma)=\rightarrow \varphi)
$$

which is a contradiction.
The other cases are similar.

Definition 11.15. Let $v: \mathcal{L} \rightarrow\{T, F\}$ be a truth assignment.

1. If φ is a wff, then v satisfies φ iff $\bar{v}(\varphi)=T$.
2. If Σ is a set of wffs, then v satisfies Σ iff $\bar{v}(\sigma)=T$ for all $\sigma \in \Sigma$.
3. Σ is satisfiable iff there exists a truth assignment v which satisfies Σ.

Example 11.16. 1. Suppose that $v: \mathcal{L} \rightarrow\{T, F\}$ is a truth assignment and that $v\left(A_{1}\right)=F$ and $v\left(A_{2}\right)=T$. Then v satisfies $\left(A_{1} \rightarrow A_{2}\right)$.
2. $\Sigma=\left\{A_{1},\left(\neg A_{2}\right),\left(A_{1} \rightarrow A_{2}\right)\right\}$ is not satisfiable.

Exercise 11.17. Suppose that φ is a wff and v_{1}, v_{2} are truth assignments which agree on all sentence symbols appearing in φ. Then $\overline{v_{1}}(\varphi)=\overline{v_{2}}(\varphi)$. (Hint: argue by induction on the length of φ.)

Definition 11.18. Let Σ be a set of wffs and let φ be a wff. Then Σ tautologically implies φ, written $\Sigma \models \varphi$, iff every truth assignment which satisfies Σ also satisfies φ.

Important Observation. Thus $\Sigma \models \varphi$ iff $\Sigma \cup\{\neg \varphi\}$ is not satisfiable.
Example 11.19. $\left\{A_{1},\left(A_{1} \rightarrow A_{2}\right)\right\} \models A_{2}$.
Definition 11.20. The wffs φ, ψ are tautologically equivalent iff both $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

Example 11.21. $\left(A_{1} \rightarrow A_{2}\right)$ and $\left(\left(\neg A_{2}\right) \rightarrow\left(\neg A_{1}\right)\right.$ are tautologicaly equivalent.
Exercise 11.22. Let σ, τ be wffs. Then the following statements are equivalent.

1. σ and τ are tautologically equivalent.
2. $(\sigma \leftrightarrow \tau)$ is a tautology.
(Hint: do not argue by induction on the lengths of the wffs.)

12 The compactness theorem

Question 12.1. Suppose that Σ is an infinite set of wffs and that $\Sigma \models \tau$. Does there necessarily exists a finite subset $\Sigma_{0} \subseteq \Sigma$ such that $\Sigma_{0} \models \tau$?

A positive answer follows from the following result...
Theorem 12.2 (The Compactness Theorem). Let Σ be a set of wffs. If every finite subset $\Sigma_{0} \subseteq \Sigma$ is satisfiable, then Σ is satisfiable.

Definition 12.3. A set Σ of wffs is finitely satisfiable iff every finite subset $\Sigma_{0} \subset \Sigma$ is satisfiable.

Theorem 12.4 (The Compactness Theorem). If Σ is a finitely satisfiable set of wffs, then Σ is satisfiable.

Before proving the compactness theorem, we present a number of its applications.
Corollary 12.5. If $\Sigma \models \tau$, then there exists a finite subset $\Sigma_{0} \subseteq \Sigma$ such that $\Sigma_{0} \models \tau$.
Proof. Suppose not. Then for every finite subset $\Sigma_{0} \subseteq \Sigma$, we have that $\Sigma_{0} \not \models \tau$ and hence $\Sigma_{0} \cup\{(\neg \tau)\}$ is satisfiable. Thus $\Sigma \cup\{(\neg \tau)\}$ is finitely satisfiable. By the Compactness Theorem, $\Sigma \cup\{(\neg \tau)\}$ is satisfiable. But this means that $\Sigma \not \vDash \tau$, which is a contradiction.

13 A graph-theoretic application

Definition 13.1. Let E be a binary relation on the set V. Then $\Gamma=\langle V, E\rangle$ is a graph iff:

1. E is irreflexive; and
2. E is symmetric.

Example 13.2. Let $V=\{0,1,2,3,4\}$ and let $E=\{\langle i, j\rangle \mid j=i+1 \bmod 5\}$. This is called the cycle of length five.

Definition 13.3. Let $k \geq 1$. Then the graph $\Gamma=\langle V, E\rangle$ is k-colorable iff there exists a function $\chi: V \rightarrow\{1,2, \ldots k\}$. such that for all $a, b \in V$,

$$
\text { if } a E b, \quad \text { then } \quad \chi(a) \neq \chi(b) .
$$

Example 13.4. Any cycle of even length is two-colorable. Any cycle of odd length is three-colorable but not two-colorable.

Theorem 13.5 (Erdös). A countable graph $\Gamma=\langle V, E\rangle$ is k-colorable iff every finite subgraph $\gamma_{0} \subset \Gamma$ is k-colorable.

Proof. \Rightarrow Suppose that Γ is k-colorable and let $\chi: V \rightarrow\{1,2, \ldots, k\}$ is any k-coloring. Let $\Gamma_{0}=\left\langle V_{0}, E_{0}\right\rangle$ be any finite subgraph of Γ. Then $\chi_{0}=\chi \mid V_{0}$ is a k-coloring of Γ_{0}.
\Leftarrow In this direction we use the Compactness Theorem.
Step 1 We choose a suitable propositional language. The idea is to have a sentence symbol for every decision we must make. So our language has sentence symbols:

$$
C_{v, i} \quad \text { for each } \quad v \in V, \quad 1 \leq i \leq k .
$$

(The intended meaning of $C_{v, i}$ is: "color vertex v with color $i . "$)
Step 2 We write down a suitable set of wffs which imposes a suitable set of constraints on our truth assignments. Let Σ be the set of wffs of the following forms:
(a) $C_{v, 1} \vee C_{v, 2} \vee \ldots \vee C_{v, k}$ for each $v \in V$.
(b) $\neg\left(C_{v, i} \wedge C_{v, j}\right)$ for each $v \in V$ and $1 \leq i \neq j \leq k$.
(c) $\neg\left(C_{v, i} \wedge C_{w, i}\right)$ for each pair $v, w \in V$ of adjacent vertices and each $1 \leq i \leq k$.

Step 3 We check that we have chosen a suitable set of wffs.
Claim 13.6. Suppose that v is a truth assignment which satisfies Σ. Then we can define a k-coloring $\chi: \Gamma \rightarrow\{1, \ldots, k\}$ by

$$
\chi(v)=i \quad \text { iff } \quad v\left(C_{v, i}\right)=T .
$$

Proof. By (a) and by (b), for each $v \in V$, there exists a unique $1 \leq i \leq k$ such that $v\left(C_{v, i}\right)=T$. Thus $\chi: V \rightarrow\{1, \ldots\}$ is a function. By (c), if $v, w \in V$ are adjacent, then $\chi(v) \neq \chi(w)$. Hence χ is a k-coloring.

Step 4 We next prove that Σ is finitely satisfiable. So let $\Sigma_{0} \subseteq \Sigma$ be any finite subset. Let $V_{0} \subseteq V$ be the finite set of vertices that are mentioned in Σ_{0}. Then the finite subgraph $\Gamma_{0}=\left\langle V_{0}, E_{0}\right\rangle$ is k-colorable. Let

$$
\chi: V_{0} \rightarrow\{1, \ldots, k\}
$$

be a k-coloring of Γ_{0}. Let v_{0} be a truth assignment such that if $v \in V_{0}$ and $1 \leq i \leq k$, then

$$
v\left(C_{v, i}\right)=T \quad \text { iff } \quad \chi_{0}(v)=i
$$

Clearly v_{0} satisfies Σ_{0}.
By the Compactness Theorem, Σ is satisfiable. Hence Γ is k-colorable.

14 Extending partial orders

Theorem 14.1. Let $\langle A, \prec\rangle$ be a countable partial order. Then there exists a linear ordering $<$ of A which extends \prec.

Proof. We work with the propositional language which has sentence symbols

$$
L_{a, b} \quad \text { for } \quad a \neq b \in A
$$

Let Σ be the following set of wffs:
(a) $L_{a, b} \vee L_{b, a}$ for $a \neq b \in A$
(b) $\neg\left(L_{a, b} \wedge L_{b, a}\right)$ for $a \neq b \in A$
(c) $\left(\left(L_{a, b} \wedge L_{b, c}\right) \rightarrow L_{a, c}\right)$ for distinct $a, b, c \in A$
(d) $L_{a, b}$ for distinct $a, b \in A$ with $a \prec b$.

Claim 14.2. Suppose that v is a truth assignment which satisfies Σ. Define the binary relation $<$ on A by

$$
a<b \quad \text { iff } \quad v\left(L_{a, b}\right)=T
$$

Then $<$ is a linear ordering of A which extends \prec.
Proof. Clearly $<$ is irreflexive. By (a) and (b), < has the trichotomy property. By (c), $<$ is transitive. Finally, by (d), < extends \prec.

Next we prove that Σ is finitely satisfiable. So let $\Sigma_{0} \subseteq \Sigma$ be any finite subset. Let $A_{0} \subseteq A$ be the finite set of elements that are mentioned in Σ_{0} and consider the partial order $\left\langle A_{0}, \prec_{0}\right\rangle$. Then there exists a partial ordering $<_{0}$ of A_{0} extending \prec_{0}. Let v_{0} be the truth assignment such that if $a \neq b \in A_{0}$, then

$$
v_{0}\left(L_{a, b}\right)=T \quad \text { iff } \quad a \leq_{0} b .
$$

Clearly v_{0} satisfies Σ_{0}.
By the compactness theorem, Σ is satisfiable. Hence there exists a linear ordering $<$ of A which extends \prec.

15 Hall's Theorem

Definition 15.1. Suppose that S is a set and that $\left\langle S_{i} \mid i \in I\right\rangle$ is an indexed collection of (not necessarily distinct) subsets of S. A system of distinct representatives is a choice of elements $x_{i} \in S_{i}$ for $i \in I$ such that if $i \neq j \in I$, then $x_{i} \neq x_{j}$.

Example 15.2. Let $S=\mathbb{N}$ and let $\left\langle S_{n} \mid n \in \mathbb{N}\right\rangle$ be defined by

$$
S_{n}=\{n, n+1\}
$$

Thus $S_{0}=\{0,1\}, S_{1}=\{1,2\}, \ldots$ Then we can take $x_{i}=i \in S_{i}$.
Theorem 15.3 (Hall's Matching Theorem (1935)). Let S be any set and let $n \in$ \mathbb{N}^{+}. Let $\left\langle S_{1}, S_{2}, \ldots, S_{n}\right\rangle$ be an indexed collection of subsets of S. Then a necessary and sufficent condition for the existance of a system of distinct representatives is:
(H) For every $1 \leq k \leq n$ and choice of k distinct indices $1 \leq i_{1}, \ldots, i_{k} \leq n$, we have $\left|S_{i_{1}} \cup \ldots \cup S_{i_{k}}\right| \geq k$.

Challange: Prove this!

Problem 15.4. State and prove an infinite analogue of Hall's Matching Theorem.

First Attempt Let S be any set and let $\left\langle S_{n} \mid n \in \mathbb{N}^{+}\right\rangle$be an indexed collection of subsets of S. Then a necessary and sufficient condition for the existence of a system of distinct representatives is:
$\left(H^{*}\right)$ For every $k \in \mathbb{N}^{+}$and choice of k distinct indices $i_{1}, \ldots, i_{k} \in \mathbb{N}$, we have $\left|S_{i_{1}} \cup \ldots \cup S_{i_{k}}\right| \geq k$.

Counterexample Take $S_{1}=\mathbb{N}, S_{2}=\{0\}, S_{3}=\{1\}, \ldots, S_{n}=\{n-2\}, \ldots$ Clearly $\left(H^{*}\right)$ is satisfied and yet there is no system of distinct representatives.
Question 15.5. Where does the compactness argument break down?
Theorem 15.6 (Infinite Hall's Theorem). Let S be any set and let $\left\langle S_{n} \mid n \in \mathbb{N}^{+}\right\rangle$be an indexed collection of finite subsets of S. Then a necessary and sufficient condition for the existence of a system of distinct representatives is:
$\left(H^{*}\right)$ For every $k \in \mathbb{N}^{+}$and choice of k distinct indices $i_{1}, \ldots, i_{k} \in \mathbb{N}$, we have $\left|S_{i_{1}} \cup \ldots \cup S_{i_{k}}\right| \geq k$.
Proof. We work with the propositional language with sentence symbols

$$
C_{n, x} . \quad n \in \mathbb{N}^{+}, \quad x \in S_{n} .
$$

Let Σ be the following set of wffs:
(a) $\neg\left(C_{n, x} \wedge C_{m, x}\right)$ for $n \neq m \in \mathbb{N}^{+}, x \in S_{n} \cap S_{m}$.
(b) $\neg\left(C_{n, x} \wedge C_{n, y}\right)$ for $n \in \mathbb{N}^{+}, x \neq y \in S_{n} \cap S_{m}$.
(c) $\left(C_{n, x_{1}} \vee \ldots \vee C_{n, x_{k}}\right)$ for $n \in \mathbb{N}^{+}$, where $S_{n}=\left\{x_{1}, \ldots, x_{k}\right\}$.

Claim 15.7. Suppose that v is a truth assignment which satisfies Σ. Then we can define a system of distinct representatives by

$$
x \in S_{n} \quad \text { iff } v\left(C_{n, x}\right)=T
$$

Proof. By (b) and (c), each S_{n} gets assigned a unique representative. By (a), distinct sets $S_{m} \neq S_{m}$ get assigned distinct representatives.

Next we prove that Σ is finitely satisfiable. So let $\Sigma_{0} \subseteq \Sigma$ be any finite subset. Let $\left\{i_{1}, \ldots, i_{l}\right\}$ be the indices that are mentioned in Σ_{0}. Then $\left\{S_{i_{1}}, \ldots S_{i_{l}}\right\}$ satisfies condition (H). By Hall's Theorem, there exists a set of distinct representatives for $\left\{S_{i_{1}}, \ldots S_{i_{l}}\right\}$; say, $x_{r} \in S_{i_{r}}$. Let v_{0} be the truth assignment such that for $1 \leq r \leq l$ and $x \in S_{i_{r}}$,

$$
v\left(C_{i_{r}, x}\right)=T \quad \text { iff } \quad x=x_{r}
$$

Clearly v_{0} satisfies Σ_{0}.
By the Compactness Theorem, Σ is satisfiable. Hence there exists a system of distinct representatives.

16 Proof of compactness

Theorem 16.1 (The Compactness Theorem). If Σ is a finitely satisfiable set of wffs, then Σ is satisfiable.

Basic idea Imagine that for each sentence symbol A_{n}, either $A_{n} \in \Sigma$ or $\neg A_{n} \in \Sigma$. Then there is only one possibility for a truth assignment v which satisfies Σ : namely,

$$
v\left(A_{n}\right)=T \quad \text { iff } A_{n} \in \Sigma
$$

Presumably this v works...
In the general case, we extend Σ to a finitely satisfiable set Δ as above. For technical reasons, we construct Δ so that for every $\mathrm{wff} \alpha$, either $\alpha \in \Delta$ or $\neg \alpha \in \Delta$.

Lemma 16.2. Suppose that Σ is a finitely satisfiable set of wffs. If α is any wff, then either $\Sigma \cup\{\alpha\}$ is finitely satisfiable or $\Sigma \cup\{\neg \alpha\}$ is finitely satisfiable.

Proof. Suppose that $\Sigma \cup\{\alpha\}$ isn't finitely satisfiable. Then there exists a finite subset $\Sigma_{0} \subseteq \Sigma$ such that $\Sigma_{0} \cup\{\alpha\}$ isn't satisfiable. Thus $\Sigma \models \neg \alpha$. We claim that $\Sigma \cup \neg \alpha$ is fintely satisfiable. Let $\Delta \subseteq \Sigma \cup\{\neg \alpha\}$ be any finite subset. If $\Delta \subseteq \Sigma$ then Δ is satisfiable. Hence we can suppose that $\Delta=\Delta_{0} \cup\{\neg \alpha\}$ for some finite subset $\Delta_{0} \subseteq \Sigma$. Since Σ is finitely satisfiable, ther exists a truth assignment v which satisfies $\Sigma_{0} \cap \Delta_{0}$. Since $\Sigma_{0} \models \neg \alpha$, it follows that $\bar{v}(\neg \alpha)=T$. Hence v satisfies $\Delta_{0} \cup\{\neg \alpha\}$.

Proof of the Compactness Theorem. Let Σ be a finitely satisfiable set of wffs. Let

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots \quad n \geq 1
$$

be an enumeration of all the wffs $\alpha \in \overline{\mathcal{L}}$. We shall inductively define an increasing sequence of finitely satisfiable sets of wffs

$$
\Delta_{0} \subseteq \Delta_{1} \subseteq \ldots \subseteq \Delta_{n} \subseteq \ldots
$$

First let $\Delta_{0}=\Sigma$. Suppose inductively that Δ_{n} has been defined. Then

$$
\begin{aligned}
\Delta_{n+1} & =\Delta_{n} \cup\left\{\alpha_{n+1}\right\}, \text { if this is finitely satisfiable } \\
& =\Delta_{n} \cup\left\{\left(\neg \alpha_{n+1}\right)\right\}, \text { otherwise. }
\end{aligned}
$$

By the lemma, Δ_{n+1} is also finitely satisfiable. Finally define

$$
\Delta=\bigcup_{n} \Delta_{n}
$$

Claim 16.3. Δ is finitely satisfiable.
Proof. Suppose that $\Phi \subseteq \Delta$ is a finite subset. Then there exists an n such that $\Phi \subseteq \Delta_{n}$. Since Δ_{n} is finitely satisfiable, Φ is satisfiable.

Claim 16.4. If α is any wff, then either $\alpha \in \Delta$ or $(\neg \alpha) \in \Delta$.
Proof. There exists an $n \geq 1$ such that $\alpha=\alpha_{n}$. By construction, either $\alpha_{n} \in \Delta_{n+1}$ or $\left(\neg \alpha_{n}\right) \in \Delta_{n+1}$; and $\Delta_{n+1} \subseteq \Delta$.

Define a truth assignment $v: \mathcal{L} \rightarrow\{T, F\}$ by

$$
v\left(A_{l}\right)=T \quad \text { iff } \quad A_{l} \in \Delta
$$

Claim 16.5. For every wff $\alpha, \bar{v}(\alpha)=T$ iff $\alpha \in \Delta$.
Proof. We argue by induction on the length m of the wff α. First suppose that $m=1$. Then α is a sentence symbol; say, $\alpha=A_{l}$. By definition

$$
\bar{v}\left(A_{l}\right)=v\left(A_{l}\right)=T \quad \text { iff } A_{l} \in \Delta
$$

Now suppose that $m>1$. Then α has the form

$$
(\neg \beta),(\beta \wedge \gamma),(\beta \vee \gamma),(\beta \rightarrow \gamma),(\beta \leftrightarrow \gamma)
$$

for some shorter wffs β, γ.
Case 1 Suppose that $\alpha=(\neg \beta)$. Then

$$
\begin{array}{lll}
\bar{v}(\alpha)=T & \text { iff } & \bar{v}(\beta)=F \\
& \text { iff } & \beta \notin \Delta \text { by induction hypothesis } \\
& \text { iff } & (\neg \beta) \in \Delta \text { by Claim 16.4 } \\
& \text { iff } & \alpha \in \Delta
\end{array}
$$

Case 2 Suppose that α is $(\beta \vee \gamma)$. First suppose that $\bar{v}(\alpha)=T$. Then $\bar{v}(\beta)=T$ or $\bar{v}(\gamma)=T$. By induction hypothesis, $\beta \in \Delta$ or $\gamma \in \Delta$. Since Δ is finitely satisfiable, $\{\beta,(\neg(\beta \vee \gamma))\} \nsubseteq \Delta$ and $\{\gamma,(\neg(\beta \vee \gamma))\} \nsubseteq \Delta$. Hence $(\neg(\beta \vee \gamma)) \notin \Delta$ and so $(\beta \vee \gamma) \in \Delta$. Conversely suppose that $(\beta \vee \gamma) \in \Delta$. Since Δ is finitely satisfiable, $\{(\neg \beta),(\neg \gamma),(\beta \vee$ $\Gamma)\} \nsubseteq \Delta$. Hence $(\neg \beta) \notin \Delta$ or $(\neg \gamma) \notin \Delta$; and so $\beta \in \Delta$ or $\gamma \in \Delta$. By induction hypothesis, $\bar{v}(\beta)=T$ or $\bar{v}(\gamma)=T$. Hence $\bar{v}(\beta \vee \gamma)=T$.
Exercise 16.6. Write out the details for the other cases.

Thus v satisfies Δ. Since $\Sigma \subseteq \Delta$, it follows that v satisfies Σ.

17 Trees and Konig's Lemma

Definition 17.1. A partial order $\langle T, \prec\rangle$ is a tree iff the following conditions are satisfied.

1. There exists a unique minimal element $t_{0} \in T$ called the root.
2. For each $t \in T$, the set

$$
\operatorname{Pr}_{T}(t)=\{s \in T \mid s \prec t\}
$$

is a finite set which is linearly ordered by \prec.
Example 17.2. The complete binary tree is defined to be

$$
T_{2}=\{f \mid f: n \rightarrow\{0,1\}\}
$$

ordered by

$$
f \prec g \text { iff } f \subset g
$$

Definition 17.3. Let $\langle T, \prec\rangle$ be a tree.

1. If $t \in T$, then the height of t is defined to be

$$
\mathrm{ht}_{T}(t)=\left|\operatorname{Pr}_{T}(t)\right| .
$$

2. For each $n \geq 0$, the $n^{\text {th }}$ level of T is

$$
\operatorname{Lev}_{T}(n)=\left\{t \in T \mid \operatorname{ht}_{T}(t)=n\right\} .
$$

3. For each $t \in T$, the set of immediate successors of t is

$$
\operatorname{succ}_{T}(t)=\left\{s \in T \mid t \prec s \text { and ht }{ }_{T}(s)=\mathrm{ht}_{T}(t)+1\right\} .
$$

4. T is finitely branching iff each $t \in T$ has a finite (possibly empty) set of immediate successors.
5. A branch \mathcal{B} of T is a maximal linearly ordered subset of T.

Example 17.4. Consider the complete binary tree T_{2}. If $\varphi: \mathbb{N} \rightarrow\{0,1\}$, then we can define a corresponding branch of T_{2} by

$$
\mathcal{B}_{\varphi}=\{\varphi|n| n \in \mathbb{N}\} .
$$

Conversely, let \mathcal{B} be an arbitrary branch of T_{2}. Let $\varphi=\bigcup \mathcal{B}$. Then $\varphi: \mathbb{N} \rightarrow\{0,1\}$ and $\mathcal{B}=\mathcal{B}_{\varphi}$.

Exercise 17.5. Let $\langle T, \prec\rangle$ be a tree. Then the following are equivalent:

1. T is finitely branching.
2. $\operatorname{Lev}_{T}(n)$ is finite for all $n \geq 0$.

Lemma 17.6 (König). Suppose that T is an infinite finitely branching tree. Then there exists an infinite branch \mathcal{B} through T.

Remark 17.7. Note that such a branch \mathcal{B} necessarily satisfies:

$$
\left|\mathcal{B} \cap \operatorname{Lev}_{T}(n)\right|=1 \text { for all } n \geq 0
$$

First we shall give a proof of König's Lemma, using the Compactness Theorem.
Proof of König's Lemma. Let $\langle T, \prec\rangle$ be an infinite finitely branching tree. Then each level $\operatorname{Lev}_{T}(n)$ is finite and so T is countably infinite. We shall work with the propositional language with sentence symbols $\left\{B_{t} \mid t \in T\right\}$. Let Σ be the following set of wffs:
(a) $B_{t_{1}} \vee \ldots \vee B_{t_{l}}$ where $\operatorname{Lev}_{T}(n)=\left\{t_{1}, \ldots, t_{l}\right\}$ and $n \geq 0$.
(b) $\neg\left(B_{t_{i}} \wedge B_{t_{j}}\right)$ where $\operatorname{Lev}_{T}(n)=\left\{t_{1}, \ldots, t_{l}\right\}, n \geq 0$, and $1 \leq i<j \leq l$.
(c) $\left(B_{s} \rightarrow B_{t}\right)$ for $s, t \in T$ with $s \prec t$.

Claim 17.8. Suppose that v is a truth assignment which satisfies Σ. Then

$$
\mathcal{B}=\left\{t \in T \mid v\left(B_{t}\right)=T\right\}
$$

is an infinite branch through T.
Proof. By (a) and (b), \mathcal{B} intersects every level in a unique point. Suppose that $s \neq t \in \mathcal{B}$. Then wlog we have that $\mathrm{ht}_{T}(s)<\mathrm{ht}_{T}(t)$. Let $n=\mathrm{ht}_{T}(s)$. By (c), \mathcal{B} must contain the predecessor of t in $\operatorname{Lev}_{T}(n)$, which must be equal to s. Thus $s \prec t$. It follows that \mathcal{B} is linearly ordered.

We claim that Σ is finitely satisfiable. Let $\Sigma_{0} \subseteq \Sigma$ be a finite subset. Then there exists $n \geq 0$ such that if $t \in T$ is mentioned in Σ_{0}, then $\operatorname{ht}_{T}(t)<n$. Choose $t_{0} \in \operatorname{Lev}_{T}(n)$ and let v_{0} be the truth assignment such that for all $t \in T$ with $\operatorname{ht}_{T}(t)<n$,

$$
v_{0}\left(B_{t}\right)=T \text { iff } t<t_{0} .
$$

Clearly v_{0} satisfies Σ_{0}. By Compactness, Σ is satisfiable and hence T has an infinite branch.

Next we shall give a direct proof of König's Lemma.
Proof of König's Lemma. Let T be an infinite finitely branching tree. We shall define a sequence of elements $t_{n} \in T$ inductively so that the following conditions are satisfied:
(a) $t_{n} \in \operatorname{Lev}_{T}(n)$
(b) If $m<n$ then $t_{m} \prec t_{n}$.
(c) $\left\{s \in T \mid t_{n} \prec s\right\}$ is infinite.

First let $t_{0} \in \operatorname{Lev}_{T}(0)$ be the root. Clearly the above conditions are satisfied.. Assume inductively that t_{n} has been defined. Then t_{n} has a finite set of immediate successors; say $\left\{a_{1}, \ldots, a_{l}\right\}$. If $t_{n} \prec s$ and $\mathrm{ht}_{T}(s)>n+1$, then there exists $1 \leq i \leq l$ such that $a_{i} \prec s$. By the pigeon hole principle, there exists $1 \leq i \leq l$ such that a_{i} satisfies (c). Then we define $t_{n+1}=a_{i}$. Clearly $\mathcal{B}=\left\{t_{n} \mid n \geq 0\right\}$ is an infinite branch through T.

Next we present an application of König's Lemma.
Theorem 17.9 (Erdös). A countably infinite graph Γ is k-colorable iff every finite subgraph of Γ is k-colorable.

Proof. (\Rightarrow) Trival!
(\Leftarrow) Suppose that every finite subgraph of Γ is k-colorable. Let $\Gamma=\left\{v_{1}, v_{2}, \ldots, v_{n}, \ldots\right\}$; and for each $n \geq 1$, let $\Gamma_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$ and let C_{n} be the set of k-colorings of Γ_{n}. Let T be the tree with levels defined by

$$
\begin{aligned}
\operatorname{Lev}_{T}(0) & =\{\emptyset\} \\
\operatorname{Lev}_{T}(n) & =C_{n} \text { for } n \geq 0
\end{aligned}
$$

partially ordered as follows. Suppose that $\chi \in \operatorname{Lev}_{T}(n)$ and $\theta \in \operatorname{Lev}_{T}(m)$ where $1 \leq$ $n<m$. Then

$$
\chi \prec \theta \text { iff } \quad \chi=\theta \mid\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Clearly T is an infinite finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B}=\left\{\chi_{n} \mid n \in \mathbb{N}\right\}$ through T, where $\chi_{n} \in \operatorname{Lev}_{T}(n)$. We claim that $\chi=\bigcup_{n} \chi_{n}$ is a k-coloring of Γ. It is clear that $\chi: \Gamma \rightarrow\{1, \ldots, k\}$. Next suppose that $a \neq b \in \Gamma$ are adjacent vertices. Then there exists $n \geq 1$ such that $a, b \in \Gamma_{n}$. By definition, we have that $\chi(a)=\chi_{n}(a)$ and $\chi(b)=\chi_{n}(b)$. Since χ_{n} is a k-coloring of Γ_{n}, it follows that $\chi_{n}(a) \neq \chi_{n}(b)$. Thus $\chi(a) \neq \chi(b)$.

Finally we use König's Lemma to give a proof of the Compactness Theorem.
Proof of Compactness Theorem. Suppose that Σ is a finitely satisfiable set of wffs in the propositional language with sentence symbols $\left\{A_{1}, A_{2}, \ldots, A_{n}, \ldots\right\}$. We define a tree T as follows.

- $\operatorname{Lev}_{T}(0)=\{\emptyset\}$
- If $n \geq 1$, then $\operatorname{Lev}_{T}(n)$ is the set of all partial truth assignments $v:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow$ $\{T, F\}$ which satisfy every $\sigma \in \Sigma$ which only mention A_{1}, \ldots, A_{n}.

We partially order T as follows. Suppose that $v \in \operatorname{Lev}_{T}(n)$ and $v^{\prime} \in \operatorname{Lev}_{T}(m)$, where $1 \leq n<m$. Then

$$
v \prec v^{\prime} \text { iff } v=v^{\prime} \mid\left\{A_{1}, \ldots, A_{n}\right\} .
$$

Clearly $\left|\operatorname{Lev}_{T}(n)\right| \leq 2^{n}$ and so each level $\operatorname{Lev}_{T}(n)$ is finite.
Claim 17.10. For each $n \geq 0, \operatorname{Lev}_{T}(n) \neq \emptyset$.
Proof. Clearly we can suppose that $n \geq 1$. Let Σ_{n} be the set of wffs in Σ which only involve A_{1}, \ldots, A_{n}. If Σ_{n} is finite, the result holds by the finite satisfiability of Σ. Hence we can suppose that Σ_{n} is infinite; say $\Sigma_{n}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}, \ldots\right\}$. For each $t \geq 1$, let $\Delta_{t}=$ $\left\{\sigma_{1}, \ldots, \sigma_{t}\right\}$. Then there exists a partial truth assignment $\omega_{t}:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow\{T, F\}$ which satisfies Δ_{t}. By the pigeon hole principle, there exists a fixed $\omega:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow$ $\{T, F\}$ such that $\omega_{t}=\omega$ for infinitely many $t \geq 1$. Clearly $\omega \in \operatorname{Lev}_{T}(n)$.

Thus T is an infinite, finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B}=\left\{v_{n} \mid n \in \mathbb{N}\right\}$ through T, where $v_{n} \in \operatorname{Lev}_{T}(n)$. It follows that $v=\bigcup_{n} v_{n}$ is a truth assignment which satisfies Σ.

18 First Order Logic

Definition 18.1. The alphabet of a first order language \mathcal{L} consists of:
A. Symbols common to all languages (Logical Symbols)
(a) Parentheses (,)
(b) Connectives \rightarrow, \neg
(c) Variables $v_{1}, v_{2}, \ldots, v_{n}, \ldots n \geq 0$
(d) Quantifier \forall
(e) Equality symbol $=$
B. Symbols particular to the language (Non-logical Symbols)
(a) For each $n \geq 1$, a (possibly empty) countable set of n-place predicate symbols.
(b) A (possibly empty) countable set of constant symbols.
(c) For each $n \geq 1$, a (possibly empty) countable set of n-place function symbols.

Remark 18.2. It is easily checked that the alphabet is countable.
Definition 18.3. An expression is a finite sequence of symbols from the alphabet.

Remark 18.4. The set of expressions is countable.
Definition 18.5. The set of terms is defined inductively as follows:

1. Each variable and each constant symbol is a term.
2. If f is an n-place function symbol and t_{1}, \ldots, t_{n} are terms, then $f t_{1} \ldots t_{n}$ is a term.

Definition 18.6. An atomic formula is an expression of the form

$$
P t_{1} \ldots t_{n}
$$

where P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms.
Remark 18.7. The equality $\operatorname{symbol}=$ is a two-place predicate symbol. Hence every language has atomic formulas.

Definition 18.8. The set of well-formed formulas (wffs) is defined inductively as follows:

1. Every atomic formula is a wff.
2. If α and β are wffs and v is a variable, then

$$
(\neg \alpha),(\alpha \rightarrow \beta), \quad \text { and } \forall v \alpha
$$

are wffs.

Some abbreviations We usually write

$$
\begin{array}{rcl}
(\alpha \vee \beta) & \text { instead of } & ((\neg \alpha) \rightarrow \beta) \\
(\alpha \wedge \beta) & " & (\neg(\alpha \rightarrow(\neg \beta))) \\
\exists v \alpha & " & (\neg \forall v(\neg \alpha)) \\
u=t & " & =u t \\
u \neq t & " & (\neg=u t)
\end{array}
$$

We also use common sense in our use of parentheses.
Definition 18.9. Let x be a variable.

1. If α is atomic, then x occurs free in α iff x occurs in α.
2. x occurs free in $(\neg \alpha)$ iff x occurs free in α.
3. x occurs free in $(\alpha \rightarrow \beta)$ iff x occurs free in α or x occurs free in β.
4. x occurs free in $\forall v \alpha$ iff x occurs free in α and $x \neq v$.

Definition 18.10. The wff σ is a sentence iff σ has no free variables.

19 Truth and Structures

Definition 19.1. A structure \mathcal{A} for the first order language \mathcal{L} consists of:

1. a non-empty set A, the universe of \mathcal{A}.
2. for each n-place predicate symbol P, an n-ary relation $P^{\mathcal{A}} \subseteq A^{n}$.
3. for each constant symbol c, an element $c^{\mathcal{A}} \in A$.
4. for each function symbol f, an n-ary operation $f^{\mathcal{A}}: A^{n} \rightarrow A$.

Example 19.2. Suppose that \mathcal{L} has the following non-logical symbols:

1. a 1-place predicate symbol S
2. a 2-place predicate symbol R
3. a constant symbol c
4. a 1-place function symbol f.

Then we can define a structure

$$
\mathcal{A}=\left\langle A ; S^{\mathcal{A}}, R^{\mathcal{A}}, c^{\mathcal{A}}, f^{\mathcal{A}}\right\rangle
$$

for \mathcal{L} as follows:

1. $A=\{1,2,3,4\}$
2. $S^{\mathcal{A}}=\{\langle 2\rangle,\langle 3\rangle\}$
3. $R^{\mathcal{A}}=\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle,\langle 4,1\rangle\}$
4. $c^{\mathcal{A}}=1$
5. $f^{\mathcal{A}}: A \rightarrow A$ where $1 \mapsto 2,2 \mapsto 3,3 \mapsto 4$, and $4 \mapsto 1$.

Target Let \mathcal{L} be any first order language. For each sentence σ and each structure \mathcal{A} for \mathcal{L}, we want to define

$$
\mathcal{A} \models \sigma
$$

" \mathcal{A} satisfies σ " or " σ is true in \mathcal{A} ".
Example 19.3 (Example Cont.). Let σ be the sentence

$$
\forall x \forall y(f x=y \rightarrow R x y)
$$

Clearly

$$
\mathcal{A} \models \sigma .
$$

First we need to define a more involved notion. Let

- φ be a wff
- \mathcal{A} be a structure for \mathcal{L}
- $s: V \rightarrow A$ be a function, where v is the set of variables.

Then we will define

$$
\mathcal{A} \models \varphi[s]
$$

" φ is true in \mathcal{A} if each free occurence of x in φ is interpreted as $s(x)$ in A."

Step 1

Let T be the set of terms. We first define an extension $\bar{s}: T \rightarrow A$ as follows:

1. For each variable $v \in V, \bar{s}(v)=s(v)$.
2. For each constant symbol $c, \bar{s}(c)=c^{\mathcal{A}}$.
3. If f is an n-place function symbol and t_{1}, \ldots, t_{n} are terms, then

$$
\bar{s}\left(f t_{1} \ldots t_{n}\right)=f^{\mathcal{A}}\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right)
$$

Step 2 Atomic formulas.
(a). $\mathcal{A} \models=t_{1} t_{2}[s] \quad$ iff $\quad \bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right)$.
(b). If P is an n-place predicate symbol different from $=$ and t_{1}, \ldots, t_{n} are terms, then

$$
\mathcal{A} \models P t_{1} \ldots t_{n}[s] \quad \text { iff }\left\langle\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right\rangle \in P^{\mathcal{A}}
$$

Step 3 Other wffs.
(c). $\mathcal{A} \models(\neg \alpha)[s]$ iff $\mathcal{A} \not \vDash \alpha[s]$.
(d). $\mathcal{A} \models(\alpha \rightarrow \beta)[s]$ iff $\mathcal{A} \not \models \alpha[s]$ or $\mathcal{A} \models \beta[s]$.
(e). $\mathcal{A} \models \forall x \alpha[s]$ iff for all $a \in A, \mathcal{A} \models \alpha[s(x \mid a)]$ where $s(x \mid a)$ is defined by

$$
\begin{aligned}
s(x \mid a)(y) & =s(y), \quad y \neq x \\
& =a, \quad y=x
\end{aligned}
$$

Theorem 19.4. Assume that $s_{1}, s_{2}: V \rightarrow A$ agree on all free variables (if any) of the wff φ. Then

$$
\mathcal{A} \models \varphi\left[s_{1}\right] \quad \text { iff } \quad \mathcal{A} \models \varphi\left[s_{2}\right] .
$$

Proof slightly delayed.

Corollary 19.5. If σ is a sentence, then either

1. $\mathcal{A} \models \sigma[s]$ for all $s: V \rightarrow A$ or
2. $\mathcal{A} \not \vDash \sigma[s]$ for all $s: V \rightarrow A$.

Definition 19.6. Let σ be a sentence. Then $\mathcal{A} \models \sigma$ iff $\mathcal{A} \models \sigma[s]$ for all $s: V \rightarrow A$.
Exercise 19.7. Let \mathcal{A} be a structure and let t be a term. If $s_{1}, s_{2}: V \rightarrow A$ agree on all variables (if any) in t, then $\overline{s_{1}}(t)=\overline{s_{2}}(t)$.

Proof of Theorem 19.4. We argue by induction on the complexity of φ.
Case 1 Suppose that φ is an atomic formula. First suppose that φ is $=t_{1} t_{2}$. By the Exercise, $\overline{s_{1}}\left(t_{1}\right)=\overline{s_{2}}\left(t_{1}\right)$ and $\overline{s_{1}}\left(t_{2}\right)=\overline{s_{2}}\left(t_{2}\right)$. Hence

$$
\begin{array}{lll}
\mathcal{A} \models=t_{1} t_{2}\left[s_{1}\right] & \text { iff } & \overline{s_{1}}\left(t_{1}\right)=\overline{s_{1}}\left(t_{2}\right) \\
& \text { iff } & \overline{s_{2}}\left(t_{1}\right)=\overline{s_{2}}\left(t_{2}\right) \\
& \text { iff } \quad \mathcal{A} \models=t_{1} t_{2}\left[s_{2}\right] .
\end{array}
$$

Next suppose that φ is $P t_{1} \ldots t_{n}$. Again by the Exercise, $\overline{s_{1}}\left(t_{i}\right)=\overline{s_{2}}\left(t_{i}\right)$ for $1 \leq i \leq n$. Hence

$$
\begin{array}{lll}
\mathcal{A} \models P t_{1} \ldots t_{n}\left[s_{1}\right] & \text { iff } \quad\left\langle\overline{s_{1}}\left(t_{1}\right), \ldots, \overline{s_{1}}\left(t_{n}\right)\right\rangle \in P^{\mathcal{A}} \\
& \text { iff } \quad\left\langle\overline{s_{2}}\left(t_{1}\right), \ldots, \overline{s_{2}}\left(t_{n}\right)\right\rangle \in P^{\mathcal{A}} \\
& \text { iff } \quad \mathcal{A} \models P t_{1} \ldots t_{n}\left[s_{2}\right] .
\end{array}
$$

Case 2 Suppose that φ is $(\neg \psi)$. Then s_{1}, s_{2} agree on the free variables of ψ. Hence

$$
\begin{array}{lll}
\mathcal{A} \models(\neg \psi)\left[s_{1}\right] & \text { iff } & \mathcal{A} \not \models \psi\left[s_{1}\right] \\
& \text { iff } & \mathcal{A} \not \models \psi\left[s_{2}\right] \text { by ind. hyp. } \\
& \text { iff } \quad \mathcal{A} \models(\neg \psi)\left[s_{2}\right] .
\end{array}
$$

Case 3 A similar argument deals with the case when φ is $(\psi \rightarrow \theta)$.
Case 4 Suppose that φ is $\forall x \psi$. Then s_{1}, s_{2} agree on all free variables of ψ except possibly x. Hence for all $a \in A, s_{1}(x \mid a)$ and $s_{2}(x \mid a)$ agree on all free variables of ψ. Thus

$$
\begin{array}{lll}
\mathcal{A} \models \forall x \psi\left[s_{1}\right] & \text { iff } \quad \text { for all } a \in A, \mathcal{A} \models \psi\left[s_{1}(x \mid a)\right] \\
& \text { iff } \quad \text { for all } a \in A, \mathcal{A} \models \psi\left[s_{2}(x \mid a)\right] \\
& \text { iff } \quad \mathcal{A} \models \forall x \psi\left[s_{2}\right] .
\end{array}
$$

20 Compactness in first order logic

Definition 20.1. Let Σ be a set of wffs.
(a) \mathcal{A} satisfies Σ with s iff $\mathcal{A} \models \sigma[s]$ for all $\sigma \in \Sigma$.
(b) Σ is satisfiable iff there exists a structure \mathcal{A} and a function $s: V \rightarrow A$ such that \mathcal{A} satisfies Σ with s.
(c) Σ is finitely satisfiable iff every finite subset of Σ is satisfiable.

One of the deepest results of the course:
Theorem 20.2 (Compactness). Let Σ be a set of wffs in the first order language \mathcal{L}. If Σ is finitely satisfiable, then Σ is satisfiable.

Application of the Compactness Theorem Let \mathcal{L} be the language of arithmetic; ie \mathcal{L} has non-logical symbols $\{+, \times,<, 0,1\}$. Let

$$
\operatorname{Th} \mathbb{N}=\{\sigma \mid \sigma \text { is a sentence satisfied by }\langle\mathbb{N} ;+, \times,<, 0,1\rangle\} .
$$

Consider the following set Σ of wffs:

$$
\operatorname{Th} \mathbb{N} \cup\{x>\underbrace{1+\ldots+1}_{n \text { times }} \mid n \geq 1\} .
$$

We claim that Σ is finitely satisfiable. To see this, suppose that $\Sigma_{0} \subseteq \Sigma$ is any finite subset; say, $\Sigma_{0}=T \cup\{x>\underbrace{1+\ldots+1}_{n_{1}}, \ldots, x>\underbrace{1+\ldots+1}_{n_{t}}\}$, where $T \subseteq T h \mathbb{N}$. Let $m=\max \left\{n_{1}, \ldots, n_{t}\right\}$ and let $s: V \rightarrow \mathbb{N}$ with $s(x)=m+1$. Then \mathbb{N} satisfies Σ_{0}
with s. By the Compactness Theorem, there exists a structure \mathcal{A} for \mathcal{L} and a function $s: V \rightarrow A$ such that \mathcal{A} satisfies Σ with s. Thus \mathcal{A} is a "model of artihmetic" containing the "infinite natural number" $s(x) \in A$.

Discussion of the order relation in $\mathcal{A} \ldots$
Now we return to the systematic development of first order logic.
Definition 20.3. Let \mathcal{A}, \mathcal{B} be structures for the language \mathcal{L}. A function $f: A \rightarrow B$ is an isomorphism iff the following conditions are satisfied.

1. f is a bijection.
2. For each n-ary predicate symbol P and any n-tuple $a_{1}, \ldots, a_{n} \in A$,

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle \in P^{\mathcal{A}} \text { iff }\left\langle f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\rangle \in P^{\mathcal{B}}
$$

3. For each constant symbol $c, f\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$.
4. For each n-ary function symbol h and n-tuple $a_{1}, \ldots, a_{n} \in A$,

$$
f\left(h^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=h^{\mathcal{B}}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) .
$$

We write $\mathcal{A} \cong \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic.
Theorem 20.4. Suppose that $\varphi: A \rightarrow B$ is an isomorphism. If σ is any sentence, then $\mathcal{A} \models \sigma$ iff $\mathcal{B} \models \sigma$.

In order to prove the above theorem, we must prove the following more general statement.

Theorem 20.5. Suppose that $\varphi: A \rightarrow B$ is an isomorphism and $s: V \rightarrow A$. Then for any wff α

$$
\mathcal{A} \models \alpha[s] \quad \text { iff } \mathcal{B} \models \alpha[\varphi \circ s] .
$$

We shall make use of the following result.
Lemma 20.6. With the above hypotheses, for each term t,

$$
\varphi(\bar{s}(t))=(\overline{\varphi \circ s})(t)
$$

Proof. Exercise.
Proof of Theorem 20.5. We argue by induction of the complexity of α. First suppose that α is atomic, say $P t_{1} \ldots t_{n}$. Then

$$
\begin{array}{lll}
\mathcal{A} \models P t_{1} \ldots t_{n}[s] & \text { iff } & \left\langle\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right\rangle \in P^{\mathcal{A}} \\
& \text { iff } & \left\langle\varphi\left(\bar{s}\left(t_{1}\right)\right), \ldots, \varphi\left(\bar{s}\left(t_{n}\right)\right)\right\rangle \in P^{\mathcal{B}} \\
& \text { iff } & \left.\left\langle(\overline{\varphi \circ s})\left(t_{1}\right)\right), \ldots,(\overline{\varphi \circ s})\left(t_{n}\right)\right\rangle \in P^{\mathcal{B}} \\
& \text { iff } & \mathcal{B} \models P t_{1} \ldots t_{n}[\varphi \circ s]
\end{array}
$$

Next suppose that α is $\neg \beta$. Then

$$
\begin{array}{lll}
\mathcal{A} \models \neg \beta[s] & \text { iff } & \mathcal{A} \not \models \beta[s] \\
& \text { iff } & \mathcal{B} \not \models \beta[\varphi \circ s] \\
& \text { iff } & \mathcal{B} \models \neg \beta[\varphi \circ s]
\end{array}
$$

A similar argument deals with the case when α is $(\beta \Longrightarrow \gamma)$.
Finally suppose that α is $\forall v \beta$. Then

$$
\begin{array}{lll}
\mathcal{A} \models \forall v \beta[s] & \text { iff } & \mathcal{A} \models \beta[s(v \mid a)], \text { for all } a \in A \\
& \text { iff } & \mathcal{B} \models \beta[\varphi \circ s(v \mid a)], \text { for all } a \in A \\
& \text { iff } & \mathcal{B} \models \beta[(\varphi \circ s)(v \mid \varphi(a))] \text {, for all } a \in A \\
& \text { iff } & \mathcal{B} \models \beta[(\varphi \circ s)(v \mid b)], \text { for all } b \in B \\
& \text { iff } & \mathcal{B} \models \forall v \beta[\varphi \circ s]
\end{array}
$$

Example 20.7. $\langle\mathbb{N},<\rangle \neq\langle\mathbb{Z},<\rangle$.
Proof. Consider the sentence σ given by

$$
(\exists x)(\forall y)(y=x \vee x<y)
$$

Then $\langle\mathbb{N},<\rangle \vDash \sigma$ and $\langle\mathbb{Z},<\rangle \not \models \sigma$. Thus $\langle\mathbb{N},<\rangle \neq\langle\mathbb{Z},<\rangle$.
Example 20.8. $\langle\mathbb{Z},<\rangle \neq\langle\mathbb{Q},<\rangle$.
Proof. Consider the sentence σ given by

$$
(\forall x)(\forall y)(x<y \rightarrow(\exists z)(x<z \wedge z<y)) .
$$

Definition 20.9. Let T be a set of sentences.

1. \mathcal{A} is a model for T iff $\mathcal{A} \models \sigma$ for every $\sigma \in T$.
2. $\operatorname{Mod}(T)$ is the class of all models of T.

Abbreviation If E is a binary predicate symbol, then we usually write $x E y$ instead of Exy.

Example 20.10. Let T be the following set of sentences:

$$
\begin{gathered}
\neg(\exists x)(x E x) \\
(\forall x)(\forall y)(x E y \rightarrow y E x) .
\end{gathered}
$$

Then $\operatorname{Mod}(T)$ is the class of graphs.
Example 20.11. Let T be the following set of sentences:

$$
\begin{gathered}
\neg(\exists x)(x E x) \\
(\forall x)(\forall y)(\forall z)((x E y \wedge y E z) \rightarrow x E z) \\
(\forall x)(\forall y)(x=y \vee x E y \vee y E x)
\end{gathered}
$$

Then $\operatorname{Mod}(T)$ is the class of linear orders.
Definition 20.12. A class \mathcal{C} of structures is axiomatizable iff there is a set T of sentences such that $\mathcal{C}=\operatorname{Mod}(T)$. If there exists a finite set T of sentences such that $\mathcal{C}=\operatorname{Mod}(T)$, then \mathcal{C} is finitely axiomatizable.

Example 20.13. The class of graphs is finitely axiomatizable.
Example 20.14. The class of infinite graphs is axiomatizable.
Proof. For each $n \geq 1$ let \mathcal{O}_{n} be the sentence
"There exist at least n elements."
For example \mathcal{O}_{3} is the sentence

$$
(\exists x)(\exists y)(\exists z)(x \neq y \wedge y \neq z \wedge z \neq x)
$$

Then $\mathcal{C}=\operatorname{Mod}(T)$, where T is the following set of sentences:

$$
\begin{gathered}
\neg(\exists x)(x E x) \\
(\forall x)(\forall y)(x E y \rightarrow y E x) \\
\mathcal{O}_{n}, \quad n \geq 1 .
\end{gathered}
$$

Question 20.15. Is the class of infinite graphs finitely axiomatizable?
Question 20.16. Is the class of finite graphs axiomatizable?
Another application of the Compactness Theorem...

Theorem 20.17. Let T be a set of sentences in a first order language \mathcal{L}. If T has arbitrarily large finite models, then T has an infinite model.

Proof. For each $n \geq 1$, let \mathcal{O}_{n} be the sentence which says:
"There exist at least n elements."
Let Σ be the set of sentences $T \cup\left\{\mathcal{O}_{n} \mid n \geq 1\right\}$. We claim that Σ is finitely satisfiable. Suppose $\Sigma_{0} \subseteq \Sigma$ is any finite subset. Then wlog

$$
\Sigma_{0}=T \cup\left\{\mathcal{O}_{n_{1}}, \ldots, \mathcal{O}_{n_{t}}\right\}
$$

Let $m=\max \left\{n_{1}, \ldots, n_{t}\right\}$. Then there exists a finite model \mathcal{A}_{0} of T such that \mathcal{A}_{0} has at least m elements. Clearly \mathcal{A}_{0} satisfies Σ_{0}. By the Compactness Theorem, there exists a model \mathcal{A} of Σ. Clearly \mathcal{A} is an infinite model of T.

Corollary 20.18. The class \mathcal{F} of finite graphs is not axiomatizable.
Proof. Suppose T is a set of sentences such that $\mathcal{F}=\operatorname{Mod}(T)$. Clearly there are arbitrarly large finite graphs and hence T has arbitrarly large finite models. But this means that T has an infinite model, which is a contradiction.

Corollary 20.19. The class \mathcal{C} of infinite graphs is not finitely axiomatizable.
Proof. Suppose that there exists a finite set $T=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ of sentences such that $\mathcal{C}=\operatorname{Mod}(T)$. Consider the following set T^{\prime} of sentences.

$$
\begin{gathered}
\neg(\exists x)(x E x) \\
(\forall x)(\forall y)(x E y \rightarrow y E x) \\
\neg\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n}\right) .
\end{gathered}
$$

Then clearly $\operatorname{Mod}\left(T^{\prime}\right)$ is the class of finite graphs, which is a contradiction.

21 Valid sentences

Definition 21.1. Let Σ be a set of wffs and let φ be a wff. Then Σ logically implies/semantically implies φ iff for every structure \mathcal{A} and for every function $s: V \rightarrow A$, if \mathcal{A} satisfies Σ with s, then \mathcal{A} satisfies φ with s. In this case we write $\Sigma \models \varphi$.

Definition 21.2. The wff φ is valid iff $\emptyset \models \varphi$; ie, for all structures \mathcal{A} and functions $s: V \rightarrow A, \mathcal{A} \models \varphi[s]$.

Example 21.3. $\{\forall x P x\} \models P c$.
Question 21.4. Suppose that Σ is an infinite set of wffs and that $\Sigma \models \varphi$. Does there exist a finite set $\Sigma_{0} \subseteq \Sigma$ such that $\Sigma_{0} \models \varphi$?

Answer Yes. We shall show that $\Sigma \models \varphi$ iff there exists a proof of φ from Σ. Such a proof will only use a finite subset $\Sigma_{0} \subseteq \Sigma$.

We now return to the syntactic aspect of first order languages. We will next define rigorously the notion of a deduction or proof.

Notation Λ will denote the set of logical axioms. These will be defined explicitly a little later.

$$
\operatorname{eg} \quad(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta))
$$

Each logical axiom will be valid.
Definition 21.5. Let Γ be a set of wffs and φ a wff. A deduction of φ from Γ is a finite sequence of wffs

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle
$$

such that $\alpha_{n}=\varphi$ and for each $1 \leq i \leq n$, either:
(a) $\alpha_{i} \in \Lambda \cup \Gamma$; or
(b) there exist $j, k<i$ such that α_{k} is $\left(\alpha_{j} \rightarrow \alpha_{i}\right)$.

Remark 21.6. In case (b), we have

$$
\left\langle\alpha_{1}, \ldots, \alpha_{j}, \ldots,\left(\alpha_{j} \rightarrow \alpha_{i}\right), \ldots, \alpha_{i}, \ldots, \alpha_{n}\right\rangle
$$

We say that α_{i} follows from α_{j} and $\left(\alpha_{j} \rightarrow \alpha_{i}\right)$ by modus ponens (MP).
Definition 21.7. φ is a theorem of Γ, written $\Gamma \vdash \varphi$, iff there exists a deduction of φ from Γ.

The two main results of this course...
Theorem 21.8 (Soundness). If $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.
Theorem 21.9 (Completeness (Godel)). If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

22 The Logical Axioms Λ

φ is a generalization of ψ iff for some $n \geq 0$ and variables x_{1}, \ldots, x_{n}, we have that φ is

$$
\forall x_{1} \ldots \forall x_{n} \psi
$$

The logical axioms are all generalizations of all wffs of the following forms:

1. Tautologies.
2. $\left(\forall x \alpha \rightarrow \alpha_{t}^{x}\right)$, where t is a term which is substitutable for x in α.
3. $(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta))$.
4. $(\alpha \rightarrow \forall x \alpha)$, where x doesn't appear free in α.
5. $x=x$.
6. $\left(x=y \rightarrow\left(\alpha \rightarrow \alpha^{\prime}\right)\right)$, where α is atomic and α^{\prime} is obtained from α be replacing some (possibly none) of the occurrences of x by y.

Explanation 1. A tautology is a wff that can be obtained from a propostional tautology by substituting wffs for sentence symbols.

$$
e g \quad(P \rightarrow \neg Q) \rightarrow(Q \rightarrow \neg P)
$$

is a propositional tautology.

$$
(\forall x \alpha \rightarrow \neg \beta) \rightarrow(\beta \rightarrow \neg \forall x \alpha)
$$

is a first order tautology.

Explanation 2. α_{t}^{x} is the result of replacing each free occurrence of x by t. We say that t is substitutable for x in α iff no variable of t gets bound by a quantifier in α_{t}^{x}.
$e g$ Let α be $\neg \forall y(x=y)$. Then y is not substitutable for x in α. Note that in this case

$$
\forall x \alpha \rightarrow \alpha_{t}^{x}
$$

becomes

$$
\forall x \neg \forall y(x=y) \rightarrow \neg \forall y(y=y)
$$

which is not valid. So we need the above restriction.
Explanation 4. A typical example is

$$
P y z \rightarrow \forall x P y z .
$$

Here " $\forall x$ " is a "dummy quantifier" which does nothing. Note that

$$
x=0 \rightarrow \forall x(x=0)
$$

is not valid. So we need the above restriction.

23 Some examples of deductions

Example 23.1. $\vdash(P x \rightarrow \exists y P y)$
Proof. Note that $(P x \rightarrow \exists y P y)$ is an abbreviation of $(P x \rightarrow \neg \forall y \neg P y)$. The following is a deduction from \emptyset.

1. $(\forall y \neg P y \rightarrow \neg P x) \rightarrow(P x \rightarrow \neg \forall y \neg P y)$ [Axiom 1]
2. $(\forall y \neg P y \rightarrow \neg P x)[$ Axiom 2]
3. $(P x \rightarrow \neg \forall y \neg P y)[\mathrm{MP}, 1,2]$

Example 23.2. $\vdash \forall x(P x \rightarrow \neg \forall y \neg P y)$
Proof. The following is a deduction from \emptyset.

1. $\forall x((\forall y \neg P y \rightarrow \neg P x) \rightarrow(P x \rightarrow \neg \forall y \neg P y))$ [Axiom 1]
2. $\forall x(\forall y \neg P y \rightarrow \neg P x)$ [Axiom 2]
3. $\forall x((\forall y \neg P y \rightarrow \neg P x) \rightarrow(P x \rightarrow \neg \forall y \neg P y)) \rightarrow(\forall x(\forall y \neg P y \rightarrow \neg P x) \rightarrow \forall x(P x \rightarrow$ $\neg \forall y \neg P y)$) [Axiom 3]
4. $\forall x(\forall y \neg P y \rightarrow \neg P x) \rightarrow \forall x(P x \rightarrow \neg \forall y \neg P y)[M P, 1,3]$
5. $\forall x(P x \rightarrow \neg \forall y \neg P y))[M P, 2,4]$

24 Soundness Theorem

Theorem 24.1 (Soundness). If $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.
We shall make use of the following result.
Lemma 24.2. Every logical axiom $\varphi \in \Lambda$ is valid
Proof. We just consider the case where φ has the form

$$
(\alpha \rightarrow \forall x \alpha)
$$

where x isn't free in α. Let \mathcal{A} be any structure and $s: V \rightarrow A$. If $\mathcal{A} \not \vDash \alpha[s]$, then $\mathcal{A} \models$ $(\alpha \rightarrow \forall x \alpha)[s]$. So suppose that $\mathcal{A} \models \alpha[s]$. Let $a \in A$ be any element. Then s and $s(x \mid a)$ agree on the free variables of α. Hence $\mathcal{A} \models \alpha[s(x \mid a)]$ and so $\mathcal{A} \models(\alpha \rightarrow \forall x \alpha)[s]$.

Remark 24.3. The other cases are equally easy, except for the case of

$$
\left(\forall x \alpha \rightarrow \alpha_{t}^{x}\right)
$$

which is harder. We will give a detailed proof of this case later.
Exercise 24.4. Show that

$$
(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \beta))
$$

is valid.
Proof of the Soundness Theorem. We argue by induction on the minimal length $n \geq 1$ of a deduction that if $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.

First suppose that $n=1$. Then $\varphi \in \Gamma \cup \Lambda$. If $\varphi \in \Gamma$ then clearly $\Gamma \models \varphi$. If $\varphi \in \Lambda$, then the lemma (24.2) says that φ is valid. Thus $\emptyset \models \varphi$ and so $\Gamma \models \varphi$.

Now suppose that $n>1$. Let

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}=\varphi\right\rangle
$$

be a deduction of φ from Γ. Then φ must follow from MP from two earlier wffs θ and $(\theta \rightarrow \varphi)$. Note that proper initial segments of deductions from Γ are also deductions from Γ. Thus $\Gamma \vdash \theta$ and $\Gamma \vdash(\theta \rightarrow \varphi)$ via deductions of length less than n. By induction hypothesis, $\Gamma \models \theta$ and $\Gamma \models(\theta \rightarrow \varphi)$. Let \mathcal{A} be any structure and $s: V \rightarrow A$. Suppose that \mathcal{A} satisfies Γ with s. Then $\mathcal{A} \models \theta[s]$ and $\mathcal{A} \models(\theta \rightarrow \varphi)[s]$. Hence $\mathcal{A} \models \varphi[s]$. Thus $\Gamma \models \varphi$.

Definition 24.5. A set Γ of wffs is inconsistent iff there exists a wff β such that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Otherwise, Γ is consistent.

Corollary 24.6. If Γ is satisfiable, then Γ is consistent.
Proof. Suppose that Γ is satisfiable. Let \mathcal{A} satisfy Γ with $s: V \rightarrow A$. Now suppose that Γ is inconsistent; say $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. By Soundness $\Gamma \models \beta$ and $\Gamma \models \neg \beta$. But this means that $\mathcal{A} \models \beta[s]$ and $\mathcal{A} \models \neg \beta[s]$, which is a contradiction.

25 Meta-theorems

Now we turn to the proof of the Completeness Theorem. First we need to prove a number of "Meta-Theorems".

Theorem 25.1 (Generalization). If $\Gamma \vdash \varphi$ and x doesn't occur free in any wff of Γ, then $\Gamma \vdash \forall x \varphi$.

Remark 25.2. Note that if c is a constant symbol, then

$$
\{x=c\} \vdash x=c .
$$

However,

$$
\{x=c\} \nvdash \forall x(x=c) .
$$

How do we know this? By the Soundness Theorem, it is enough to show that

$$
\{x=c\} \not \neq \forall x(x=c) .
$$

Proof of Generalization Theorem. We argue by induction on the minimal length n of a deduction of φ from Γ that $\Gamma \vdash \forall x \varphi$.

First suppose that $n=1$. Then $\varphi \in \Gamma \cup \Lambda$.
Case 1 Suppose that $\varphi \in \Lambda$. Then $\forall x \varphi \in \Lambda$ and so $\Gamma \vdash \forall x \varphi$.
Case 2 Suppose that $\varphi \in \Gamma$. Then x doesn't occur free in φ and so $(\varphi \rightarrow \forall x \varphi) \in \Lambda$. Hence the following is a deduction of $\forall x \varphi$ from Γ.

1. $\varphi[$ in $\Gamma]$
2. $\varphi \rightarrow \forall x \varphi[\operatorname{Ax} 4]$
3. $\forall x \varphi[\mathrm{MP}, 1,2]$

Now suppose that $n>1$. Then in a deduction of minimal length, φ follows from earlier wffs θ and $(\theta \rightarrow \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash \forall x \theta$ and $\Gamma \vdash \forall x(\theta \rightarrow \varphi)$. Hence the following is a deduction of $\forall x \varphi$ from Γ.

1. ... deduction of $\forall x \theta$ from Γ.
n. $\forall x \theta$
$\mathrm{n}+1$. ... deduction of $\forall x(\theta \rightarrow \varphi)$ from Γ.
$\mathrm{n}+\mathrm{m} . \forall x(\theta \rightarrow \varphi)$
$\mathrm{n}+\mathrm{m}+1 . \forall x(\theta \rightarrow \varphi) \rightarrow(\forall x \theta \rightarrow \forall x \varphi)[\operatorname{Ax} 3]$
$\mathrm{n}+\mathrm{m}+2 . \forall x \theta \rightarrow \forall x \varphi[\mathrm{MP}, n+m, n+m+1]$
$\mathrm{n}+\mathrm{m}+3 . \forall x \varphi[\mathrm{MP}, n, n+m+2]$

Definition 25.3. $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ tautologically implies β iff

$$
\left(\alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \ldots\left(\alpha_{n} \rightarrow \beta\right) \ldots\right)\right)
$$

is a tautology.
Theorem 25.4 (Rule T). If $\Gamma \vdash \alpha_{1}, \ldots, \Gamma \vdash \alpha_{n}$ and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ tautologically implies β, the $\Gamma \vdash \beta$.

Proof. Obvious, via repeated applications of MP.
Theorem 25.5 (Deduction). If $\Gamma \cup\{\gamma\} \vdash \varphi$, then $\Gamma \vdash(\gamma \rightarrow \varphi)$.
Proof. We argue by induction on the minimal length n of a deduction of φ from $\Gamma \cup\{\gamma\}$. First suppose that $n=1$.

Case 1 Suppose that $\varphi \in \Gamma \cup \Lambda$. Then the following is a deduction from Γ.

1. $\varphi[$ in $\Gamma \cup \Lambda]$
2. $(\varphi \rightarrow(\gamma \rightarrow \varphi))[\operatorname{Ax} 1]$
3. $(\gamma \rightarrow \varphi)[\mathrm{MP}, 1,2]$

Case 2 Suppose that $\varphi=\gamma$. In this case $(\gamma \rightarrow \varphi)$ is a tautology and so $\Gamma \vdash(\gamma \rightarrow \varphi)$.
Now suppose that $n>1$. Then in a deduction of minimal length φ follows from earlier wffs θ and $(\theta \rightarrow \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash(\gamma \rightarrow \theta)$ and $\Gamma \vdash(\gamma \rightarrow$ $(\theta \rightarrow \varphi)$). Clearly $\{(\gamma \rightarrow \theta),(\gamma \rightarrow(\theta \rightarrow \varphi))$ \} tautologically implies $(\gamma \rightarrow \varphi)$. By Rule T, $\Gamma \vdash(\gamma \rightarrow \varphi)$.
Theorem 25.6 (Contraposition). $\Gamma \cup\{\varphi\} \vdash \neg \psi$ iff $\Gamma \cup\{\psi\} \vdash \neg \varphi$.
Proof. Suppose that $\Gamma \cup\{\varphi\} \vdash \neg \psi$. By the deduction theorem $\Gamma \vdash(\varphi \rightarrow \neg \psi)$. By Rule $\mathrm{T}, \Gamma \vdash(\psi \rightarrow \neg \varphi)$. Hence $\Gamma \cup\{\psi\} \vdash \psi$ amd $\Gamma \cup\{\psi\} \vdash(\psi \rightarrow \neg \varphi)$. By Rule T, $\Gamma \cup\{\psi\} \vdash \neg \varphi$. The other direction is similar.

Theorem 25.7 (Reductio Ad Absurdum). If $\Gamma \cup\{\varphi\}$ is inconsistent, then $\Gamma \vdash \neg \varphi$.
Proof. Suppose that $\Gamma \cup\{\varphi\} \vdash \beta$ and $\Gamma \cup\{\varphi\} \vdash \neg \beta$. By the Deduction Theorem, $\Gamma \vdash(\varphi \rightarrow \beta)$ and $\Gamma \vdash(\varphi \rightarrow \neg \beta)$. Since $\{(\varphi \rightarrow \beta),(\varphi \rightarrow \neg \beta)\}$ tautologically implies $\neg \varphi$, Rule T gives $\Gamma \vdash \neg \varphi$.

Remark 25.8. If Γ is inconsistent, then $\Gamma \vdash \alpha$ for ever wff α.
Proof. Suppose that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Clearly

$$
(\beta \rightarrow(\neg \beta \rightarrow \alpha))
$$

is a tautology. By Rule $\mathrm{T}, \Gamma \vdash \alpha$.

26 Applications: some theorems about equality

Eq 1.

$\vdash \forall x(x=x)$
Proof. This is a logical axiom.

Eq 2.

$\vdash \forall x \forall y(x=y \rightarrow y=x)$
Proof. 1. $\vdash x=y \rightarrow(x=x \rightarrow y=x)[\operatorname{Ax} 6]$
2. $\vdash x=x[\operatorname{Ax} 5]$
3. $\vdash x=y \rightarrow y=x$ [Rule T, 1, 2]
4. $\vdash \forall y(x=y \rightarrow y=x)$ [Gen, 3$]$
5. $\vdash \forall x \forall y(x=y \rightarrow y=x)$ [Gen, 4]

Eq 3.

$\vdash \forall x \forall y \forall z(x=y \rightarrow(y=z \rightarrow x=z))$
Proof. 1. $\vdash y=x \rightarrow(y=z \rightarrow x=z)[\operatorname{Ax} 6]$
2. $\vdash x=y \rightarrow y=x$ [Shown in proof of Eq 2]
3. $\vdash x=y \rightarrow(y=z \rightarrow x=z)$ [Rule T, 1, 2]
4. $\vdash \forall x \forall y \forall z(x=y \rightarrow(y=z \rightarrow x=z))$ [Gen cubed, 3]

27 Generalization on constants

Theorem 27.1 (Generalization on constants). Assume that $\Gamma \vdash \varphi$ and that c is a constant symbol which doesn't occur in Γ. Then there exists a variable y (which doesn't occur in φ) such that $\Gamma \vdash \forall y \varphi_{y}^{c}$.

Furthermore, there exists a deduction of $\forall y \varphi_{y}^{c}$ from Γ in which c doesn't occur.
Remark 27.2. Intuitively, suppose that Γ says nothing about c and that $\Gamma \vdash \varphi(c)$. Then $\Gamma \vdash \forall y \varphi(y)$. In other words, to prove $\forall y \varphi(y)$, let c be arbitrary and prove $\varphi(c)$.

Remark 27.3. Suppose that Γ is a consistent set of wffs in the language \mathcal{L}. Let \mathcal{L}^{+}be the language obtained by adding a new constant symbol c. Then Γ is still consistent in \mathcal{L}^{+}.

Why? Suppose not. Then there exists a wff β in \mathcal{L}^{+}such that $\Gamma \vdash \beta \wedge \neg \beta$ in \mathcal{L}^{+}. By the above theorem, for some variable y which doesn't occur in β,

$$
\Gamma \vdash \forall y\left(\beta_{y}^{c} \wedge \neg \beta_{y}^{c}\right)
$$

via a deduction that doesn't involve c. Since

$$
\forall y\left(\beta_{y}^{c} \wedge \neg \beta_{y}^{c}\right) \rightarrow\left(\beta_{y}^{c} \wedge \neg \beta_{y}^{c}\right)
$$

is a logical axiom,

$$
\Gamma \vdash \beta_{y}^{c} \wedge \neg \beta_{y}^{c}
$$

in \mathcal{L}. This implies that Γ is inconsistent in \mathcal{L}, which is a contradiction.
Proof of Generalization on Constants. Suppose that

$$
(*)\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle
$$

is a deduction of φ from Γ. Let y be a variable which doesn't occur in any of the α_{i}. We claim that

$$
(* *)\left\langle\left(\alpha_{1}\right)_{y}^{c}, \ldots,\left(\alpha_{n}\right)_{y}^{c}\right\rangle
$$

is a deduction of φ_{y}^{c} from Γ. We shall prove that, for all $i \leq n$, either $\left(\alpha_{i}\right)_{y}^{c} \in \Gamma \cup \Lambda$ or $\left(\alpha_{i}\right)_{y}^{c}$ follows from earlier wffs in ($* *$) via MP.

Case 1 Suppose that $\alpha_{i} \in \Gamma$. Since c doesn't occur in Γ, it follows that $\left(\alpha_{i}\right)_{y}^{c}=\alpha_{i} \in \Gamma$.
Case 2 Suppose that $\alpha_{i} \in \Lambda$. Then it is easily checked that $\left(\alpha_{i}\right)_{y}^{c} \in \Lambda$.
Case 3 Suppose there exist $j, k<i$ such that α_{k} is $\left(\alpha_{j} \rightarrow \alpha_{i}\right)$. Then $\left(\alpha_{k}\right)_{y}^{c}$ is $\left(\left(\alpha_{j}\right)_{y}^{c} \rightarrow\right.$ $\left.\left(\alpha_{i}\right)_{y}^{c}\right)$. Hence $\left(\alpha_{i}\right)_{y}^{c}$ follows from $\left(\alpha_{k}\right)_{y}^{c}$ and $\left(\alpha_{j}\right)_{y}^{c}$ by MP.

Let Φ be the finite subset of Γ which occurs in $(* *)$. Then $\Phi \vdash \varphi_{y}^{c}$ via a deduction in which c doesn't occur. By the Generalization Theorem, since y doesn't occur free in Φ, it follows that $\Phi \vdash \forall y \varphi_{y}^{c}$ via a deduction in which c doesn't occur. It follows that $\Gamma \vdash \forall y \varphi_{y}^{c}$ via a deduction in which c doesn't occur.

Exercise 27.4. 1. Show by induction on φ that if y doesn't occur in φ, then x is substitutable for y in φ_{y}^{x} and $\left(\varphi_{y}^{x}\right)_{x}^{y}=\varphi$.
2. Find a wff φ such that $\left(\varphi_{y}^{x}\right)_{x}^{y} \neq \varphi$.

Corollary 27.5. Suppose that $\Gamma \vdash \varphi_{c}^{x}$, where c is a constant symbol that doesn't occur in Γ or φ. Then $\Gamma \vdash \forall x \varphi$, via a deduction in which c doesn't occur.

Proof. By the above theorem, $\Gamma \vdash \forall y\left(\varphi_{c}^{x}\right)_{y}^{c}$ for some variable y which doesn't occur in φ_{c}^{x}. Since c doesn't occur in $\varphi,\left(\varphi_{c}^{x}\right)_{y}^{c}=\varphi_{y}^{x}$. Thus $\Gamma \vdash \forall y \varphi_{y}^{x}$. By the exercise, the following is a logical axiom: $\forall y \varphi_{y}^{x} \rightarrow \varphi$. Thus $\forall y \varphi_{y}^{x} \vdash \varphi$. Since x doesn't occur free in $\forall y \varphi_{y}^{x}$, Generalization gives that $\forall y \varphi_{y}^{x} \vdash \forall x \varphi$. Hence Deduction yields that $\vdash \forall y \varphi_{y}^{x} \rightarrow \forall x \varphi$. Since $\Gamma \vdash \forall y \varphi_{y}^{x}$, Rule T gives $\Gamma \vdash \forall x \phi$.

Theorem 27.6 (Existence of Alphabetic Variants). Let φ be a wff, t a term and x a variable. Then there exists a wff φ^{\prime} (which differs from φ only in the choice of quantified variables) such that:
(a) $\varphi \vdash \varphi^{\prime}$ and $\varphi^{\prime} \vdash \varphi$.
(b) t is substitutable for x in φ^{\prime}.

Proof Omitted

28 Completeness

Now we are ready to begin the proof of:
Theorem 28.1 (Completeness). If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.
We shall base our strategy on the following observation.
Proposition 28.2. The following statements are equivalent:
(a) The Completeness Theorem: ie if $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.
(b) If Γ is a consistent set of wffs, then Γ is satisfiable.

Proof. (a) \Rightarrow (b)
Suppose that Γ is consistent. Then there exists a wff φ such that $\Gamma \nvdash \varphi$. By Completeness, $\Gamma \not \vDash \varphi$. Hence there exists a structure \mathcal{A} and a function $s: V \rightarrow A$ such that \mathcal{A} satisfies Γ with s and $\mathcal{A} \mid \neq \varphi[s]$. In particular, Γ is satisfiable.
(b) \Rightarrow (a)

Suppose that $\Gamma \nvdash \varphi$. Applying Reductio ad Absurdum, $\Gamma \cup\{\neg \varphi\}$ is consistent. It follows that $\Gamma \cup\{\neg \varphi\}$ is satisfiable and hence $\Gamma \not \vDash \varphi$.

Now we prove:
Theorem 28.3 (Completeness'). If Γ is a consistent set of wffs in a countable language \mathcal{L}, then there exists a countable structure \mathcal{A} and $s: V \rightarrow A$ such that \mathcal{A} satisfies Γ with s.

Proof. Step 1 Expand \mathcal{L} to a larger language \mathcal{L}^{+}by adding a countably infinte set of new constant symbols. Then Γ remains consistent as a set of wffs in \mathcal{L}^{+}.

Proof of Step 1. Suppose not. Then there exists a wff β of \mathcal{L}^{+}such that $\Gamma \vdash \beta \wedge \neg \beta$ in \mathcal{L}^{+}. Suppose that c_{1}, \ldots, c_{n} includes the new constants (if any) which appear in β. By Generalization on Constants, there are variables y_{1}, \ldots, y_{n} such that:
(a) $\Gamma \vdash \forall y_{1} \ldots \forall y_{n}\left(\beta^{\prime} \wedge \neg \beta^{\prime}\right)$, where β^{\prime} is the result of replacing each c_{i} by y_{i}; and
(b) the deduction doesn't involve any new constants.

Since y_{i} is substitutable for y_{i} in β^{\prime}, we obtain that $\Gamma \vdash \beta^{\prime} \wedge \neg \beta^{\prime}$. But this means that Γ is inconsistent in the original language \mathcal{L}, which is a contradiction.

Step 2 (We add witnesses to existential wffs.) Let

$$
\left\langle\varphi_{1}, x_{1}\right\rangle,\left\langle\varphi_{2}, x_{2}\right\rangle, \ldots,\left\langle\varphi_{n}, x_{n}\right\rangle, \ldots
$$

enumerate all pairs $\langle\varphi, x\rangle$, where φ is a wff of \mathcal{L}^{+}and x is a variable. Let θ_{1} be the wff

$$
\neg \forall x_{1} \varphi_{1} \rightarrow\left(\neg \varphi_{1}\right)_{c_{1}}^{x_{1}}
$$

where c_{1} is the first new constant which doesn't occur in φ_{1}. If $n>1$, then θ_{n} is the wff

$$
\neg \forall x_{n} \varphi_{n} \rightarrow\left(\neg \varphi_{n}\right)_{c_{n}}^{x_{n}},
$$

where c_{n} is the first new constant which doesn't occur in $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \cup\left\{\theta_{1}, \ldots, \theta_{n-1}\right\}$. Let

$$
\Theta=\Gamma \cup\left\{\theta_{n} \mid n \geq 1\right\}
$$

Claim 28.4. Θ is consistent.
Proof. Suppose not. Let $n \geq 0$ be the least integer such that $\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n+1}\right\}$ is inconsistent. By Reductio ad Absurdum,

$$
\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\} \vdash \neg \theta_{n+1} .
$$

Recall that θ_{n+1} has the form

$$
\neg \forall x \varphi \rightarrow \neg \varphi_{c}^{x} .
$$

By Rule T,

$$
\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\} \vdash \neg \forall x \varphi .
$$

and

$$
\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\} \vdash \varphi_{c}^{x}
$$

Since c doesn't occur in $\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\} \cup\{\varphi\}$, we have that

$$
\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\} \vdash \forall x \varphi .
$$

But this contradicts the minimality of n, or the consistency of Γ if $n=0$.

Step 3 We extend Θ to a consistent set of wffs Δ such that for every wff φ of \mathcal{L}^{+}, either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Proof. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$ enumerate all the wffs of \mathcal{L}^{+}. We define inductively an increasing sequence of consistent sets of wffs

$$
\Delta_{0} \subseteq \Delta_{1} \subseteq \ldots \subseteq \Delta_{n} \subseteq \ldots
$$

as follows

- $\Delta_{0}=\Theta$
- Suppose that Δ_{n} has been defined. If $\Delta_{n} \cup\left\{\alpha_{n+1}\right\}$ is consistent, then we set $\Delta_{n+1}=\Delta \cup\left\{\alpha_{n+1}\right\}$.
Otherwise, if $\Delta_{n} \cup\left\{\alpha_{n+1}\right\}$ is inconsistent, then $\Delta \vdash \neg \alpha_{n+1}$ so we can set $\Delta_{n+1}=$ $\Delta \cup\left\{\neg \alpha_{n+1}\right\}$.

Finally let $\Delta=\cup_{n \geq 0} \Delta_{n}$. Clearly Δ satisfies our requirements.
Notice that Δ is deductively closed; ie if $\Delta \vdash \varphi$, then $\varphi \in \Delta$. Otherwise, $\neg \varphi \in \Delta$ and so $\Delta \vdash \varphi$ and $\Delta \vdash \neg \varphi$, which contradicts the consistency of Δ.

Step 4 For each of the following wffs $\varphi, \Delta \vdash \varphi$ and so $\varphi \in \Delta$.
Eq $1 \forall x(x=x)$.
Eq $2 \forall x \forall y(x=y \rightarrow y=x)$.
Eq $3 \forall x \forall y \forall z((x=y \wedge y=z) \rightarrow x=z)$.
Eq 4 For each n-ary predicate symbol P

$$
\forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(P x_{1} \ldots x_{n} \leftrightarrow P y_{1} \ldots y_{n}\right)
$$

Eq 5 For each n-ary function symbol f

$$
\forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(f x_{1} \ldots x_{n}=f y_{1} \ldots y_{n}\right)
$$

Similarly, since Δ is deductively closed and $\forall x \forall y(x=y \rightarrow y=x) \in \Delta$, if t_{1}, t_{2} are any terms, then $\left(t_{1}=t_{2} \rightarrow t_{2}=t_{1}\right) \in \Delta$ etc.

Step 5 We construct a structure \mathcal{A} for \mathcal{L}^{+}as follows.
Let T be the set of terms in \mathcal{L}^{+}. Define a relation E on T by

$$
t_{1} E t_{2} \quad \text { iff } \quad\left(t_{1}=t_{2}\right) \in \Delta .
$$

Claim 28.5. E is an equivalence relation.
Proof. Suppose that $t \in T$. Then $(t=t) \in \Delta$ and so $t E t$. Thus E is reflexive.
Next suppose that $t_{1} E t_{2}$. Then $\left(t_{1}=t_{2}\right) \in \Delta$. Since $\left(t_{1}=t_{2} \rightarrow t_{2}=t_{1}\right) \in \Delta$, it follows that $\left(t_{2}=t_{1}\right) \in \Delta$. Thus $t_{2} E t_{1}$ and so E is symmetric.

Similarly E is transitive.
Definition 28.6. For each $t \in T$, let

$$
[t]=\{s \in T \mid t E s\}
$$

Then we define

$$
A=\{[t] \mid t \in T\}
$$

Definition 28.7. For each n-ary predicate symbol P, we define an n-ary relation $P^{\mathcal{A}}$ on A by

$$
\left\langle\left[t_{1}\right], \ldots,\left[t_{n}\right]\right\rangle \in P^{\mathcal{A}} \text { iff } P t_{1} \ldots t_{n} \in \Delta
$$

Claim 28.8. $P^{\mathcal{A}}$ is well-defined.
Proof. Suppose that $\left[s_{1}\right]=\left[t_{1}\right], \ldots,\left[s_{n}\right]=\left[t_{n}\right]$. We must show that

$$
P s_{1} \ldots s_{n} \in \Delta \text { iff } P t_{1} \ldots t_{n} \in \Delta
$$

By assumption, $\left(s_{1}=t_{1}\right) \in \Delta, \ldots,\left(s_{n}=t_{n}\right) \in \Delta$. Since

$$
\left[\left(s_{1}=t_{1} \wedge \ldots \wedge s_{n}=t_{n}\right) \rightarrow\left(P s_{1} \ldots s_{n} \leftrightarrow P t_{1} \ldots t_{n}\right)\right] \in \Delta
$$

the result follows.
Definition 28.9. For each constant symbol $c, c^{\mathcal{A}}=[c]$.
Definition 28.10. For each n-ary function symbol f, we define an n-ary operation $f^{\mathcal{A}}: A^{n} \rightarrow A$ by

$$
f^{\mathcal{A}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f t_{1} \ldots t_{n}\right]
$$

Claim 28.11. $f^{\mathcal{A}}$ is well-defined.
Proof. Similar.
Finally we define $s: V \rightarrow A$ by $s(x)=[x]$.
Claim 28.12 (Target). For every wff φ of \mathcal{L}^{+},

$$
\mathcal{A} \models \varphi[s] \quad \text { iff } \quad \varphi \in \Delta .
$$

We shall make use of the following result.
Claim 28.13. For each term $t \in T, \bar{s}(t)=[t]$.
Proof. By definition, the result holds when t is a variable or a constant symbol. Suppose that t is $f t_{1} \ldots t_{n}$. Then by induction hypothesis, $\bar{s}\left(t_{1}\right)=\left[t_{1}\right], \ldots, \bar{s}\left(t_{n}\right)=\left[t_{n}\right]$. Hence

$$
\begin{aligned}
\bar{s}\left(f t_{1} \ldots t_{n}\right) & =f^{\mathcal{A}}\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{1}\right)\right) \\
& =f^{\mathcal{A}}\left(\left[t_{1}\right], \ldots,\left[t_{1}\right]\right) \\
& =\left[f t_{1}, \ldots, t_{1}\right]
\end{aligned}
$$

Proof of Target Claim. We argue by induction on the complexity of φ. First suppose that φ is atomic.

Case 1 Suppose that φ is $t_{1}=t_{2}$. Then

$$
\begin{array}{lll}
\mathcal{A} \models\left(t_{1}=t_{2}\right)[s] & \text { iff } & \bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right) \\
& \text { iff } & {\left[t_{1}\right]=\left[t_{2}\right]} \\
& \text { iff } & \left(t_{1}=t_{2}\right) \in \Delta
\end{array}
$$

Case 2 Suppose that φ is $P t_{1} \ldots t_{n}$. Then

$$
\begin{array}{lll}
\mathcal{A} \models P t_{1} \ldots t_{n}[s] & \text { iff } & \left\langle\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right\rangle \in P^{\mathcal{A}} \\
& \text { iff } \quad\left\langle\left[t_{1}\right], \ldots,\left[t_{n}\right]\right\rangle \in P^{\mathcal{A}} \\
& \text { iff } \quad P t_{1} \ldots t_{n} \in \Delta
\end{array}
$$

Next we consider the case when φ isn't atomic.
Case 3 Suppose that φ is $\neg \psi$. Then

$$
\begin{array}{lll}
\mathcal{A} \models \neg \psi[s] & \text { iff } & \mathcal{A} \not \models \psi[s] \\
& \text { iff } & \psi \notin \Delta \\
& \text { iff } & \neg \psi \in \Delta
\end{array}
$$

Case 4 The case where φ is $(\theta \rightarrow \psi)$ is similar.
Case 5 Finally suppose that φ is $\forall x \psi$. We shall make use of the following result.
Lemma 28.14 (Substitution). If the term t is substitutable for x in ψ, then

$$
\mathcal{A} \models \psi_{t}^{x}[s] \quad \text { iff } \quad \mathcal{A} \models \psi[s(x \mid \bar{s}(t))] .
$$

Proof. Omitted.
Recall that φ is $\forall x \psi$. By construction, for some constant c,

$$
\begin{equation*}
\left(\neg \forall \psi \rightarrow \neg \psi_{c}^{x}\right) \in \Delta \tag{*}
\end{equation*}
$$

First suppose that $\mathcal{A} \models \forall x \psi[s]$. Then, in particular, $\mathcal{A} \models \psi[s(x \mid[c])]$ and so $\mathcal{A} \models$ $\psi[s(x \mid \bar{s}(c))]$. By the Substitution Lemma, $\mathcal{A} \models \psi_{c}^{x}[s]$. Hence by induction hypothesis, $\psi_{c}^{x} \in \Delta$ and so $\neg \psi_{c}^{x} \notin \Delta$. By $\left(^{*}\right), \neg \forall x \psi \notin \Delta$ and so $\forall x \psi \in \Delta$.

Conversely, suppose that $\mathcal{A} \not \nexists \forall x \psi[s]$. Then there exists a term $t \in T$ such that $\mathcal{A} \not \not \neq \psi[s(x \mid[t])]$. Thus $\mathcal{A} \not \neq \psi[s(x \mid \bar{s}(t))]$. Let ψ^{\prime} be an alphabetic variant of ψ such that t is substitutable for x in ψ^{\prime}. Then $\mathcal{A} \not \neq \psi^{\prime}[s(x \mid \bar{s}(t))]$. By the Substitution Lemma, $\mathcal{A} \not \neq\left(\psi^{\prime}\right)_{t}^{x}[s]$. By induction hypothesis, $\left(\psi^{\prime}\right)_{t}^{x} \notin \Delta$. Since t is substitutable for x in ψ^{\prime} is follows that $\left(\forall x \psi^{\prime} \rightarrow\left(\psi^{\prime}\right)_{t}^{x}\right) \in \Delta$. Hence $\forall x \psi^{\prime} \notin \Delta$ and so $\forall x \psi \notin \Delta$.

Finally let \mathcal{A}_{0} be the structure for \mathcal{L} obtained from \mathcal{A} by forgetting the interpretations of the new constant symbols. Then \mathcal{A}_{0} satisfies Γ with s.

This completes the proof of the Completeness Theorem.
Corollary 28.15. $\Gamma \models \varphi$ iff $\Gamma \vdash \varphi$.
Theorem 28.16. Let Γ be a set of wffs in a countable first order language. If Γ is finitely satisfiable, then Γ is satisfiable in some countable structure.

Proof. Suppose that every finite subset $\Gamma_{0} \subseteq \Gamma$ is satisfiable. By Soundness, every finite subset $\Gamma_{0} \subseteq \Gamma$ is consistent. Hence Γ is consistent. By Completeness', Γ is satisfiable in some countable structure.

Theorem 28.17. Let T be a set of sentences in a first order language \mathcal{L}. If the class $\mathcal{C}=\operatorname{Mod}(T)$ is finitely axiomatizable, then there exists a finite subset $T_{0} \subseteq T$ such that $\mathcal{C}=\operatorname{Mod}\left(T_{0}\right)$.

Proof. Suppose that $\mathcal{C}=\operatorname{Mod}(T)$ is finitely axiomatizable. Then there exists a sentence σ such that $\mathcal{C}=\operatorname{Mod}(\sigma)$. Since $\operatorname{Mod}(T)=\operatorname{Mod}(\sigma)$, it follows that $T \models \sigma$. By the Completeness Theorem, $T \vdash \sigma$ and hence there exists a finite subset $T_{0} \subseteq T$ such that $T_{0} \vdash \sigma$. By Soundness, $T_{0} \models \sigma$. Hence

$$
\mathcal{C}=\operatorname{Mod}(T) \subseteq \operatorname{Mod}\left(T_{0}\right) \subseteq \operatorname{Mod}(\sigma)=\mathcal{C}
$$

and so $\mathcal{C}=\operatorname{Mod}\left(T_{0}\right)$.

Definition 28.18. Let \mathcal{A}, \mathcal{B} be structures for the first-order language \mathcal{L}. Then \mathcal{A} and \mathcal{B} are elementarily equivalent, written $\mathcal{A} \equiv \mathcal{B}$, iff for every sentence σ of \mathcal{L},

$$
\mathcal{A} \models \sigma \quad \text { iff } \quad \mathcal{B} \models \sigma .
$$

Remark 28.19. If $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$. Howevery, the converse does not hold, eg consider a nonstandard model of arithmetic.

Definition 28.20. A consistent set of sentences T is said to be complete iff for every sentence σ, either $T \vdash \sigma$ or $T \vdash \neg \sigma$.

Example 28.21. Let \mathcal{A} be any structure and let

$$
\operatorname{Th}(\mathcal{A})=\{\sigma \mid \sigma \text { is a sentence such that } \mathcal{A} \models \sigma\} .
$$

Then $\operatorname{Th}(\mathcal{A})$ is a complete theory.
Theorem 28.22. If T is a complete theory in the first-order language \mathcal{L} and \mathcal{A}, \mathcal{B} are models of T, then $\mathcal{A} \equiv \mathcal{B}$.
Proof. Let σ be any sentence. Then either $T \vdash \sigma$ or $T \vdash \neg \sigma$. Suppose that $T \vdash \sigma$. By Soundness, $T \models \sigma$. Hence $\mathcal{A} \models \sigma$ and $\mathcal{B} \models \sigma$. Similarly if $T \vdash \neg \sigma$, then $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \neg \sigma$.

Theorem 28.23 (Los-Vaught). Let T be a consistent theory in a countable language \mathcal{L}. Suppose that
(a) T has no finite models.
(b) If \mathcal{A}, \mathcal{B} are countably infinite models of T, then $\mathcal{A} \cong \mathcal{B}$.

Then T is complete.
Proof. Suppose not. Then there exists a sentence σ such that $T \nvdash \sigma$ and $T \nvdash \neg \sigma$. Hence $T \cup\{\neg \sigma\}$ and $T \cup\{\sigma\}$ are both consistent. By Completeness, there exists countable structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models T \cup\{\neg \sigma\}$ and $\mathcal{B} \models T \cup\{\sigma\}$. By (a), \mathcal{A} and \mathcal{B} must be countably infinite. Hence, by (b), $\mathcal{A} \cong \mathcal{B}$. But this contradicts the fact that $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \sigma$.

Corollary 28.24. Let $T_{D L O}$ be the theory of dense linear orders without endpoints. Then $T_{D L O}$ is complete.

Proof. Clearly $T_{D L O}$ has no finite models. Also, if \mathcal{A}, \mathcal{B} are countable dense linear orders without endpoints, then $\mathcal{A} \cong \mathcal{B}$. Hence $T_{D L O}$ is complete.

Corollary 28.25. $\langle\mathbb{Q},<\rangle \equiv\langle\mathbb{R},<\rangle$.
Proof. $\langle\mathbb{Q},<\rangle$ and $\langle\mathbb{R},<\rangle$ are both models of the complete theory $T_{D L O}$.
The rationals $\langle\mathbb{Q},<\rangle$ are a countable linear order in which "every possible finite configuration is realized."

