Class notes written by Simon Thomas These notes are transcribed from class notes written by Professor Simon Thomas. The notes follow the notation of Enderton's *A* mathematical introduction to logic but may be read independently.

1 A few introductory remarks

In mathematical reasoning, logical arguments are used to deduce the consequences (called *theorems*) of basic assumptions (called *axioms*).

Question 1.1. What does it mean for one sentence to "follow logically" from another sentence?

Question 1.2. Suppose that a sentence σ does *not* follow logically from the set T of axioms. How can we prove that this is so?

We will begin the course by studying some basic set theory.

Motivation:

- 1. We will need this material in our study of mathematical logic.
- 2. Set theory is a foundation for all of mathematics.
- 3. Set theory is beautiful.

Remark 1.3. In a couple of weeks we will come across a natural set-theoretic statement, the Continuum Hypothesis, which can neither be proved nor disproved using the classical axioms of set theory.

2 Basic Set Theory

Notation: $\{2,3,5\} = \{2,5,5,2,3\}$. $\{0,2,4,6,\ldots\} = \{x \mid x \text{ is an even natural number}\}$. $x \in A$ means "x is an element of A". \emptyset is the empty set. $\mathbb{N} = \{0,1,2,3,\ldots\}$ is the set of natural numbers. $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$ is the set of integers. $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$ is the set of rational numbers. \mathbb{R} is the set of real numbers.

Axiom of Extensionality: Suppose that A, B are sets. If for all x,

 $x \in A$ iff $x \in B$

then A = B.

2006/01/18

Definition 2.1. Suppose that A, B are sets. Then A is a *subset* of B, written $A \subseteq B$, iff for all x,

iff
$$x \in A$$
 then $x \in B$.

Example 2.2.

1. $\mathbb{N} \subseteq \mathbb{Z}$

2. If A is any set then $\emptyset \subseteq A$.

Proposition 2.3. If $A \subseteq B$ and $B \subseteq A$, then A = B.

Proof. Let x be arbitrary. Since $A \subseteq B$, if $x \in A$ then $x \in B$. Since $B \subseteq A$, if $x \in B$ then $x \in A$. Hence $x \in A$ iff $x \in B$. By the Axion of Extensionality, A = B.

Definition 2.4. Let A, B be sets. The union of A and B, written $A \cup B$, is the set defined by

 $x \in A \cup B$ iff $x \in A$ or $x \in B$.

Proposition 2.5. $A \cup (B \cup C) = (A \cup B) \cup C$

Proof. Let x be arbitrary. Then $x \in A \cup (B \cup C)$ iff $x \in A$ or $x \in B \cup C$ iff $x \in A$ or $(x \in B \text{ or } x \in C)$ iff $x \in A$ or $x \in B$ or $x \in C$ iff $(x \in A \text{ or } x \in B)$ or $x \in C$ iff $x \in A \cup B$ or $x \in C$ iff $x \in (A \cup B) \cup C$.

Definition 2.6. Let A, B be sets. The *intersection* of A and B, written $A \cap B$ is the set defined by

 $x \in A \cup B$ iff $x \in A$ and $x \in B$.

Exercise 2.7. Prove that $A \cap (B \cap C) = (A \cap B) \cap C$.

Proposition 2.8. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof. Let x be arbitrary. Then $x \in A \cap (B \cup C)$ iff $x \in A$ and $x \in B \cup C$ iff $x \in A$ and $(x \in B \text{ or } x \in C)$ iff $(x \in A \text{ and } x \in B)$ or $(x \in A \text{ and } x \in C)$ iff $(x \in A \cap B)$ or $(x \in A \cap C)$ iff $x \in (A \cap B) \cup (A \cap C)$.

Exercise 2.9. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Definition 2.10. Let A, B be sets. The set theoretic difference of A and B, written $A \setminus B$, is the set defined by

 $x \in A \setminus B$ iff $x \in A$ and $x \notin B$.

 $\{1, 2, 3\} \setminus \{3, 4, 5\} = \{1, 2\}. \\ \mathbb{N} \setminus \mathbb{Z} = \emptyset. \\ \mathbb{Z} \setminus \mathbb{N} = \{-1, -2, -3, \ldots\}.$

Proposition 2.11. $A \smallsetminus (B \cup C) = (A \smallsetminus B) \cap (A \smallsetminus C)$

Proof. Let x be arbitrary. Then
$$x \in A \setminus (B \cup C)$$

iff $x \in A$ and $x \notin B \cup C$
iff $x \in A$ and not $(x \in B \text{ or } x \in C)$
iff $x \in A$ and $(x \notin B \text{ and } x \notin C)$
iff $x \in A$ and $x \notin B$ and $x \notin C$
iff $x \in A$ and $x \notin B$ and $x \in A$ and $x \notin C$
iff $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$
iff $x \in A \setminus B$ and $x \in A \setminus C$
iff $x \in (A \setminus B) \cap (A \setminus C)$.

Exercise 2.12. Prove that $A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup (A \smallsetminus C)$.

3 Functions

Provisional Definition:

Let A, B be sets. Then f is a function from A to B, written $f: A \to B$, iff f assigns a unique element $f(a) \in B$ to each $a \in A$.

What is the meaning of "assigns"? To illustrate our earlier comments on set theory as a foundation for mathematics, we shall reduce the notion of a function to the language of basic set theory.

Basic idea

For example, consider $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Then the graph of f is a subset of \mathbb{R}^2 . We shall identify f with its graph.

To generalize this idea to arbitrary functions, we first need to introduce the idea of an *ordered pair*; is a mathematical object $\langle a, b \rangle$ such that

$$\langle a, b \rangle = \langle c, d \rangle$$
 iff $a = c$ and $b = d$. (*)

Definition 3.1. Let A and B be sets. Then the *Cartesian product* of A and B is the set

$$A \times B = \{ \langle a, b \rangle \mid a \in A, \ b \in B \}.$$

Definition 3.2. f is a function from A to B iff the following conditions hold:

1. $f \subseteq A \times B$

2. For each $a \in A$, there is a unique $b \in B$ such that $\langle a, b \rangle \in f$.

In this case, the unique such b is said to be the value of f at a and we write f(a) = b.

In order to reduce the notion of a function to basic set theory, we now only need to find a purely set theoretic object to play the role of $\langle x, y \rangle$.

Definition 3.3.
$$\langle x, y \rangle = \{\{x\}, \{x, y\}\}.$$

Finally, we must prove that with this definition, the set $\langle x, y \rangle$ satisfies (*).

Theorem 3.4. $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d.

Proof. (\Leftarrow): Clearly if a = c and b = d then $\langle a, b \rangle = \langle c, d \rangle$. (\Rightarrow): Conversely, suppose that $\langle a, b \rangle = \langle c, d \rangle$; ie

$$\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}.$$

We split our analysis into three cases.

Case 1

Suppose that
$$a = b$$
. Then $\{\{a\}, \{a, b\}\}$ equals
= $\{\{a\}, \{a, a\}\}$
= $\{\{a\}, \{a\}\}$
= $\{\{a\}\}$

Since

$$\{\{c\}, \{c, d\}\} = \{\{a\}\}\$$

it follows that

 $\{c\} = \{c, d\} = \{a\}.$

This implies that c = d = a. Hence a = c and b = d.

Case 2

Similarly, if c = d, we obtain that a = c and b = d.

Case 3

Finally suppose that $a \neq b$ and $c \neq d$. Since

$$\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\$$

we must have that $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$. Since $c \neq d$ the second option is impossible. Hence $\{a\} = \{c\}$ and so a = c.

Also $\{a, b\} = \{c\}$ or $\{a, b\} = \{c, d\}$. Clearly the first option is impossible and so $\{a, b\} = \{c, d\}$. Since a = c, we must have b = d.

Important remark When working with functions, it is almost never necessary to remember that a function is literally a set of ordered pair as above.

Definition 3.5. The function $f: A \to B$ is an *injection* (one-to-one) iff

 $a \neq a'$ implies $f(a) \neq f(a')$.

Definition 3.6. The function $f: A \to B$ is a surjection (onto) iff for all $b \in B$, there exists an $a \in A$ such that f(a) = b.

Definition 3.7. If $f: A \to B$ and $g: B \to C$ are functions, then their *composition* is the function $g \circ f: A \to C$ defined by $(g \circ f)(a) = g(f(a))$.

Proposition 3.8. If $f: A \to B$ and $g: B \to C$ are surjections then $g \circ f: A \to C$ is also a surjection.

Proof. Let $c \in C$ be arbitrary. Since g is surjective, there exists a $b \in B$ such that g(b) = c. Since f is surjective, there exists $a \in A$ such that f(a) = b. Hence $(g \circ f)(a) = g(f(a))$ = g(b)= c

Thus $g \circ f$ is surjective.

Exercise 3.9. If $f: A \to B$ and $g: B \to C$ are injections then $g \circ f: A \to C$ is also an injection.

Definition 3.10. The function $f: A \to B$ is a *bijection* iff f is both an injection and a surjection.

Definition 3.11. If $f: A \to B$ is a bijection, then the *inverse* $f^{-1}: B \to A$ is the function defined by

 $f^{-1}(b)$ equals the unique $a \in A$ such that f(a) = b.

Remark 3.12. 1. It is easily checked that $f^{-1}: B \to A$ is also a bijection.

2. In terms of ordered pairs:

$$f^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in f \}.$$

4 Equinumerosity

Definition 4.1. Two sets A and B are equinumerous, written $A \sim B$, iff there exists a bijection $f: A \to B$.

Example 4.2. Let $\mathbb{E} = \{0, 2, 4, ...\}$ be the set of even natural numbers. Then $\mathbb{N} \sim \mathbb{E}$.

2006/01/23

Proof. We can define a bijection $f: \mathbb{N} \to \mathbb{E}$ by f(n) = 2n.

Important remark It is often extremely hard to explicitly define a bijection $f: \mathbb{N} \to A$. But suppose such a bijection exists. Then letting $a_n = f(n)$, we obtain a *list* of the elements of A

$$a_0, a_1, a_2, \ldots, a_n, \ldots$$

in which each element of A appears exactly once. Conversely, if such a list exists, then we can define a bijection $f: \mathbb{N} \to A$ by $f(n) = a_n$.

Example 4.3. $\mathbb{N} \sim \mathbb{Z}$

Proof. We can list the elements of \mathbb{Z} by

$$0, 1, -1, 2, -1, \dots, n, -n, \dots$$

Theorem 4.4. $\mathbb{N} \sim \mathbb{Q}$

Proof. Step 1 First we prove that $\mathbb{N} \sim \mathbb{Q}^+$, the set of positive rational numbers. Form an infinite matrix where the $(i, j)^{\text{th}}$ entry is j/i.

Proceed through the matrix by traversing, alternating between upward and downward, along lines of slope one. At the (i, j)th entry add the number j/i to the list if it has not already appeared.

Step 2 We have shown that there exists a bijection $f \colon \mathbb{N} \to \mathbb{Q}^+$. Hence we can list the elements of \mathbb{Q} by

$$0, f(0), -f(0), f(1), -f(1), \dots$$

Definition 4.5. If A is any set, then its *powerset* is defined to be

$$\mathcal{P}(A) = \{ B \mid B \subseteq A \}.$$

Example 4.6.

1. $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

2. $\mathcal{P}(\{1, 2, \dots, n, \})$ has size 2^n .

Theorem 4.7. (Cantor) $\mathbb{N} \nsim \mathcal{P}(\mathbb{N})$

Proof. (The diagonal argument) We must show that there does *not* exist a bijection $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. So let $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be any function. We shall show that f isn't a surjection. To accomplish this we shall define a subset $S \subseteq \mathbb{N}$ such that $f(n) \neq S$ for all $n \in \mathbb{N}$. We do this via a "time and motion study". For each $n \in \mathbb{N}$, we must perform:

1. the n^{th} decision: is $n \in S$?

2. the n^{th} task: we must ensure that $f(n) \neq S$.

We decide to accomplish the n^{th} task with the n^{th} decision. So we decide that

 $n \in S$ iff $n \notin f(n)$

Clearly S and f(n) differ on whether they contain n and so $f(n) \neq S$. Hence f is not a surjection.

Discussion Why is this called the "diagonal argument"?

Definition 4.8. A set A is *countable* iff A is finite or $\mathbb{N} \sim A$. Otherwise A is *uncountable*.

eg \mathbb{Q} is countable $\mathcal{P}(\mathbb{N})$ is uncounable.

Theorem 4.9. (Cantor) If A is any set, then $A \nsim \mathcal{P}(A)$.

Proof. Suppose that $f: A \to \mathcal{P}(A)$ is any function. We shall show that f isn't a surjection. Define $S \subseteq A$ by

$$a \in S$$
 iff $a \notin f(a)$.

Then S and f(a) differ on whether they contain a. Thus $f(a) \neq S$ for all $a \in A$.

Definition 4.10. Let A, B be sets.

1. $A \leq B$ iff there exists an injection $f: A \rightarrow B$.

2. $A \prec B$ iff $A \preceq B$ and $A \nsim B$.

Corollary 4.11. If A is any set, then $A \prec \mathcal{P}(A)$.

Proof. Define $f: A \to \mathcal{P}(A)$ by $f(a) = \{a\}$. Clearly f is an injection and so $A \preceq \mathcal{P}(A)$. Since $A \nsim \mathcal{P}(A)$, we have $A \prec \mathcal{P}(A)$.

Corollary 4.12. $\mathbb{N} \prec \mathcal{P}(\mathbb{N}) \prec \mathcal{P}(\mathcal{P}(\mathbb{N})) \prec \dots$

Having seen that we have a nontrivial subject, we now try to develop some general theory.

5 Cantor-Bernstein Theorem

Theorem 5.1. Let A, B, C be sets.

- 1. $A \sim A$
- 2. If $A \sim B$, then $B \sim A$.

3. If $A \sim B$ and $B \sim C$, then $A \sim C$.

Exercise 5.2. If $A \leq B$ and $B \leq C$, then $A \leq C$.

Theorem 5.3. (Cantor-Bernstein) If $A \leq B$ and $B \leq A$, then $A \sim B$.

Proof delayed

Theorem 5.4. If A, B are any sets, then either $A \leq B$ or $B \leq A$.

Proof omitted

This theorem is equivalent to:

Axiom of Choice If \mathcal{F} is a family of nonempty sets then there exists a function f such that $f(A) \in A$ for all $A \in \mathcal{F}$. (Such a function is called a *choice function*.)

6 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 6.1. $\mathbb{N} \sim \mathbb{Q}$.

Proof. First define a function $f \colon \mathbb{N} \to \mathbb{Q}$ by f(n) = n. Clearly f is an injection and so $\mathbb{N} \preceq \mathbb{Q}$.

Now define a function $g: \mathbb{Q} \to \mathbb{N}$ as follows. First suppose that $0 \neq q \in \mathbb{Q}$. Then we can *uniquely* express

 $q = \epsilon \frac{a}{b}$ where $\epsilon = \pm 1$ and $a, b \in \mathbb{N}$ are positive and relatively prime. Then we define $q(q) = 2^{\epsilon+1} 3^a 5^b$.

Finally define g(0) = 7. Clearly g is an injection and so $\mathbb{Q} \leq \mathbb{N}$. By Cantor-Bernstein, $\mathbb{N} \sim \mathbb{Q}$.

Theorem 6.2. $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.

We shall make use of the following result.

Lemma 6.3. $(0,1) \sim \mathbb{R}$.

Proof of Lemma 6.3. By Calc I, we can define a bijection $f: (0,1) \to \mathbb{R}$ by $f(x) = \tan(\pi x - \pi/2)$.

8

Proof of Theorem 6.2. By the lemma, it is enough to show that $(0,1) \sim \mathcal{P}(\mathbb{N})$. We shall make use of the fact that eact $r \in (0,1)$ has a *unique* decimal expansion

 $r = 0.r_1 r_2 r_3 \dots r_n \dots$

so that

1. $0 \le r_n \le 9$

2. the expansion does not terminate with infinitely many 9s. (This is to avoid two expansions such as $0.5000 \dots = 0.4999 \dots$)

First we define $f: (0,1) \to \mathcal{P}(\mathbb{N})$ as follows. If

 $r = 0.r_0 r_1 r_2 \dots r_n \dots$

then

 $f(r) = \{2^{r_0+1}, 3^{r_1+1}, \dots, p_n^{r_n+1}, \dots\}$

where p_n is the n^{th} prime. Clearly f is an injection and so $(0,1) \leq \mathcal{P}(\mathbb{N})$.

Next we define a function $g: \mathcal{P}(\mathbb{N}) \to (0,1)$ as follows: If $\emptyset \neq S \subseteq \mathbb{N}$ then

 $g(S) = 0.s_0 s_1 s_2 \dots s_n \dots$

where

 $s_n = 0$ if $n \in S$ $s_n = 1$ if $n \notin S$. Finally, $g(\emptyset) = 0.5$. Clearly g is an injection and so $\mathcal{P}(\mathbb{N}) \preceq (0, 1)$. By Cantor-Bernstein, $(0, 1) \sim \mathcal{P}(\mathbb{N})$.

The following result says that " \mathbb{N} has the smallest infinite size."

Theorem 6.4. If $S \subseteq \mathbb{N}$, then either S is finite or $\mathbb{N} \sim S$.

Proof. Suppose that S is infinite. Let

 $s_0, s_1, s_2, \ldots, s_n, \ldots$

be the increasing enumeration of the elements of S. This list witnesses that $\mathbb{N} \sim S$. \Box

The Continuum Hypothesis (CH) If $S \subseteq \mathbb{R}$, then either S is countable or $\mathbb{R} \sim S$.

Theorem 6.5. (Godel 1930s, Cohen 1960s) If the axioms of set theory are consistent, then CH can neither be proved nor disproved from these axioms.

Definition 6.6. Fin(\mathbb{N}) is the set of all finite subsets of \mathbb{N} .

Theorem 6.7. $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.

Proof. First define $f: \mathbb{N} \to \operatorname{Fin}(\mathbb{N})$ by $f(n) = \{n\}$. Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{Fin}(\mathbb{N})$. Now define $g: \operatorname{Fin}(\mathbb{N}) \to \mathbb{N}$ as follows. If $s = \{s_0, s_1, s_2, \ldots, s_n\}$ where $s_0 < s_1 < \ldots < s_n$, then

 $g(S) = 2^{s_0+1}3^{s_1+1} \dots p_n^{s_n+1}$ where p_i is the *i*th prime. Also we define $g(\emptyset) = 1$. Clearly g is an injection and so $\operatorname{Fin}(\mathbb{N}) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{Fin}(\mathbb{N})$.

2006/01/30

9

Exercise 6.8. If a < b are reals, then $(a, b) \sim (0, 1)$.

Exercise 6.9. If a < b are reals, then $[a, b] \sim (0, 1)$.

Exercise 6.10. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.

Exercise 6.11. If $A \sim B$ and $C \sim D$, then $A \times C \sim B \times D$.

Definition 6.12. If A and B are sets, then $B^{A} = \{f \mid f \colon A \to B\}.$

Theorem 6.13. $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.

Proof. For each $S \subseteq \mathbb{N}$ we define the corresponding characteristic function $\chi_S \colon \mathbb{N} \to \{0,1\}$ by

$$\chi_S(n) = 1 \text{ if } n \in S$$

$$\chi_S(n) = 0 \text{ if } n \notin S$$

 $\chi_S(n) = 0$ if $n \notin S$ Let $f: \mathcal{P}(\mathbb{N}) \to \mathbb{N}^{\mathbb{N}}$ be the function defined by $f(S) = \chi_S$. Clearly f is an injection and so $\mathcal{P}(\mathbb{N}) \preceq \mathbb{N}^{\mathbb{N}}$.

Now we define a function $g \colon \mathbb{N}^{\mathbb{N}} \to \mathcal{P}(\mathbb{N})$ by $g(\pi) = \{2^{\pi(0)+1}, 3^{\pi(1)+1}, \dots, p_n^{\pi(n)+1}, \dots\}$

where p_n is the n^{th} prime. Clearly g is an injection. Hence $\mathbb{N}^{\mathbb{N}} \preceq \mathcal{P}(\mathbb{N})$. By Cantor-Bernstein, $\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^{\mathbb{N}}$.

Heuristic Principle Let S be an infinite set.

- 1. If each $s \in S$ is determined by a *finite* amount of data, then S is countable.
- 2. If each $s \in S$ is determined by *infinitely many independent* pieces of data, then S is uncountable.

Definition 6.14. A function $f \colon \mathbb{N} \to \mathbb{N}$ is *eventually constant* iff there exists $a, b \in \mathbb{N}$ such that

f(n) = b for all $n \ge a$.

 $EC(\mathbb{N}) = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ is eventually constant } \}.$

Theorem 6.15. $\mathbb{N} \sim \mathrm{EC}(\mathbb{N})$.

Proof. For each $n \in \mathbb{N}$, let $c_n \colon \mathbb{N} \to \mathbb{N}$ be the function defined by $c_n(t) = n$ for all $t \in \mathbb{N}$.

Then we can define an injection $f: \mathbb{N} \to \mathrm{EC}(\mathbb{N})$ by $f(n) = c_n$. Hence $\mathbb{N} \preceq \mathrm{EC}(\mathbb{N})$.

Next we define a function $g \colon \mathrm{EC}(\mathbb{N}) \to \mathbb{N}$ as follows. Let $\pi \in \mathrm{EC}(\mathbb{N})$. Let $a, b \in \mathbb{N}$ be chosen so that:

1. $\pi(n) = b$ for all $n \ge a$

2006/01/30

2. a is the least such integer.

Then

 $q(\pi) = 2^{\pi(0)+1} 3^{\pi(1)+1} \dots p_a^{\pi(a)+1}$

where p_i is the *i*th prime. Clearly *g* is an injection. Thus $EC(\mathbb{N}) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \mathrm{EC}(\mathbb{N})$.

7 The proof of Cantor-Berstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the following result.

Definition 7.1. If $f: A \to B$ and $C \subseteq A$, then $f[C] = \{f(c) \mid c \in C\}.$

Lemma 7.2. If $f: A \to B$ is an injection and $C \subseteq A$, then $f[A \smallsetminus C] = f[A] \smallsetminus f[C]$.

Proof. Suppose that $x \in f[A \setminus C]$. Then there exists $a \in A \setminus C$ such that f(a) = x. In particular $x \in f[A]$. Suppose that $x \in f[C]$. Then there exists $c \in C$ such that f(c) = x. But $a \neq c$ and so this contradicts the fact that f is an injection. Hence $x \notin f[C]$ and so $x \in f[A] \setminus f[C]$.

Conversely suppose that $x \in f[A] \setminus f[C]$. Since $x \in f[A]$, there exists $a \in A$ such that f(a) = x. Since $x \notin f[C]$, it follows that $a \notin C$. Thus $a \in A \setminus C$ and $x = f(a) \in f[A \setminus C]$.

Theorem 7.3. (Cantor-Bernstein) If $A \leq B$ and $B \leq A$, then $A \sim B$.

Proof. Since $A \leq B$ and $B \leq A$, there exists injections $f: A \to B$ and $g: B \to A$. Let $C = g[B] = \{g(b) \mid b \in B\}.$

Claim 7.4. $B \sim C$.

Proof of Claim 7.4. The map $b \mapsto g(b)$ is a bijection from B to C.

Thus it is enough to prove that $A \sim C$. For then, $A \sim C$ and $C \sim B$, which implies that $A \sim B$.

Let $h = g \circ f \colon A \to C$. Then h is an injection. Define by induction on $n \ge 0$. $A_0 = A$ $A_{n+1} = h[A_n]$ Define $k \colon A \to C$ by k(x) = = h(x) if $x \in A_n \smallsetminus C_n$ for some n= x otherwise

Claim 7.5. k is an injection.

Proof of Claim 7.5. Suppose that $x \neq x'$ are distinct elements of A. We consider three cases.

Case 1:

Suppose that $x \in A_n \setminus C_n$ and $x' \in A_m \setminus C_m$ for some n, m. Since h is an injection, $k(x) = h(x) = x \neq x' = h(x) = k(x).$

Case 2:

Suppose that $x \notin A_n \smallsetminus C_n$ for all n and that $x' \notin A_n \smallsetminus C_n$ for all n. Then $k(x) = x \neq x' = k(x)$.

Case 3:

Suppose that $x \in A_n \smallsetminus C_n$ and $x' \notin A_m \smallsetminus C_m$ for all m. Then $k(x) = h(x) \in h[A_n \smallsetminus C_n]$

and

$$\begin{split} h[A_n\smallsetminus C_n] &= h[A_n]\smallsetminus h[C_n] = A_{n+1}\smallsetminus C_{n+1}\\ \text{Hence } k(x) &= h(x) \neq x' = k(x'). \end{split}$$

Claim 7.6. k is a surjection.

Proof of Claim 7.6. Let $x \in C$. There are two cases to consider.

Case 1:

Suppose that $x \notin A_n \setminus C_n$ for all n. Then k(x) = x.

Case 2:

Suppose that $x \in A_n \setminus C_n$. Since $x \in C$, we must have that n = m + 1 for some m. Since

 $h[A_m \smallsetminus C_m] = A_n \smallsetminus C_n,$ there exists $y \in A_m \smallsetminus C_m$ such that k(y) = h(y) = x.

This completes the proof of the Cantor-Bernstein Theorem.

Theorem 7.7. $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$

Proof. Since $(0,1) \sim \mathbb{R}$, it follows that $(0,1) \times (0,1) \sim \mathbb{R} \times \mathbb{R}$. Hence it is enough to prove that $(0,1) \sim (0,1) \times (0,1)$.

First define $f: (0,1) \to (0,1) \times (0,1)$ by $f(r) = \langle r, r \rangle$. Clearly f is an injection and so $(0,1) \preceq (0,1) \times (0,1)$.

Next define $g: (0,1) \times (0,1) \to (0,1)$ as follows. Suppose that $r,s \in (0,1)$ have decimal expansions

 $r = 0.r_0 r_1 \dots r_n \dots$

 $s = 0.s_0 s_1 \dots s_n \dots$

Then

 $g(\langle r, s \rangle) = 0.r_0 s_0 r_1 s_1 \dots r_n s_n \dots$ Clearly g is an injection and so $(0, 1) \times (0, 1) \preceq (0, 1)$. By Cantor-Bernstein, $(0, 1) \sim (0, 1) \times (0, 1)$.

Exercise 7.8. $\mathbb{R} \setminus \mathbb{N} \sim \mathbb{R}$

Exercise 7.9. $\mathbb{R} \setminus \mathbb{Q} \sim \mathbb{R}$

Exercise 7.10. Let $\text{Sym}(\mathbb{N}) = \{f \mid f \colon \mathbb{N} \to \mathbb{N} \text{ is a bijection }\}$. Prove that $\mathcal{P}(\mathbb{N}) \sim \text{Sym}(\mathbb{N})$.

Definition 7.11. Let A be any set. Then a *finite sequence* of elements of A is an object $\langle a_0, a_1, \ldots, a_n \rangle, n \ge 0$ so that each $a_i \in A$, chosen so that

 $\langle a_0, a_1, \dots, a_n \rangle = \langle b_0, b_1, \dots, b_n \rangle$ iff n = m and $a_i = b_i$ for $0 \le i \le n$.

 $\operatorname{FinSeq}(A)$ is the set of all finite sequences of elements of A.

Theorem 7.12. If A is a nonempty countable set, then $\mathbb{N} \sim \operatorname{FinSeq}(A)$.

Proof. First we prove that $\mathbb{N} \preceq \operatorname{FinSeq}(A)$. Fix some $a \in A$. Then we define $f : \mathbb{N} \to \operatorname{FinSeq}(A)$ by

$$f(n) = \langle \underbrace{a, a, a, a, a, \dots, a}_{n+1 \text{ times}} \rangle.$$

Clearly f is an injection and so $\mathbb{N} \preceq \operatorname{FinSeq}(A)$.

Next we prove that $\operatorname{FinSeq}(A) \preceq \mathbb{N}$. Since A is countable, there exists an injection $e: A \to \mathbb{N}$. Define $g: \operatorname{FinSeq}(A) \to \mathbb{N}$ by

 $g(\langle a_0, a_1, \dots, a_n \rangle) = 2^{e(a_0)+1} \dots p_n^{e(a_n)+1}$

where p_i is the n^{th} prime. Clearly g is an injection. Hence $\operatorname{FinSeq}(A) \preceq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \operatorname{FinSeq}(A)$.

8 Binary relations

Definition 8.1. A *binary relation* on a set A is a subset $R \subseteq A \times A$. We usually write aRb instead of writing $\langle a, b \rangle \in R$.

Example 8.2. 1. The order relation on \mathbb{N} is given by

$$\{ \langle n, m \rangle \mid n, m \in \mathbb{N}, \ n < m \}.$$

2006/02/06

2. The division relation D on $\mathbb{N} \setminus \{0\}$ is given by

$$D = \{ \langle n, m \rangle \mid n, m \in \mathbb{N}, n \text{ divides } m \}.$$

Observation Thus $\mathcal{P}(\mathbb{N}\times\mathbb{N})$ is the collection of all binary relations on \mathbb{N} . Clearly $\mathcal{P}(\mathbb{N}\times\mathbb{N}) \sim \mathcal{P}(\mathbb{N})$ and so $\mathcal{P}(\mathbb{N}\times\mathbb{N})$ is uncountable.

Definition 8.3. Let R be a binary relation on A.

- 1. R is reflexive iff xRx for all $x \in A$.
- 2. R is symmetric iff xRy implies yRx for all $x, y \in A$.
- 3. *R* is *transitive* iff xRy and yRz implies xRz for all $x, y, z \in A$.

R is an *equivalence relation* iff R is reflexive, symmetric, and transitive.

Example 8.4. Define the relation R on \mathbb{Z} by

aRb iff 3|a-b.

Proposition 8.5. *R* is an equivalence relation.

Exercise 8.6. Let $A = \{ \langle a, b \rangle \mid a, b \in \mathbb{Z}, b \neq 0 \}$. Define the relation S on A by

$$\langle a, b \rangle S \langle c, d \rangle$$
 iff $ad - bc = 0$.

Prove that S is an equivalence relation.

Definition 8.7. Let R be an equivalence relation on A. For each $x \in A$, the *equivalence* class of x is

$$[x] = \{ y \in A \mid xRy \}.$$

Example 8.4 Cont. The distinct equivalence classes are

 $[0] = \{\dots, -6, -3, 0, 3, 6, \dots\}$ $[1] = \{\dots, -5, -2, 1, 4, 7, \dots\}$ $[2] = \{\dots, -4, -1, 2, 5, 8, \dots\}$

Definition 8.8. Let A be a nonempty set. Then $\{B_i \mid i \in I\}$ is a *partition* of A iff the following conditions hold:

- 1. $\emptyset \neq B_i$ for all $i \in I$.
- 2. If $i \neq j \in I$, then $B_i \cap B_j = \emptyset$.
- 3. $A = \bigcup_{i \in I} B_i$.

Theorem 8.9. Let R be an equivalence relation on A.

- 1. If $a \in A$ then $a \in [a]$.
- 2. If $a, b \in A$ and $[a] \cap [b] \neq \emptyset$, then [a] = [b].

Hence the set of distinct equivalence classes forms a partition of A.

Proof. 1. Let $a \in A$. Since R is reflexive, aRa and so $a \in [a]$.

2. Suppose that $c \in [a] \cap [b]$. Then aRc and bRc. Since R is symmetric, cRb. Since R is transitive, aRb. We claim that $[b] \subseteq [a]$. To see this, suppose that $d \in [b]$. Then bRd. Since aRb and bRd, it follows that aRd. Thus $d \in [a]$. Similarly, $[a] \subseteq [b]$ and so [a] = [b].

Theorem 8.10. Let $\{B_i \mid i \in I\}$ be a partition of A. Define a binary relation R on A by

a R b iff there exists $i \in I$ such that $a, b \in B_i$.

Then R is an equivalence relation whose equivalence classes are precisely $\{B_i | i \in I\}$. \Box

Example 8.11. How many equivalence relations can be defined on $A = \{1, 2, 3\}$?

Sol'n This is the same as asking how many partitions of A exist.

 $\{\{1, 2, 3\}\}, \\ \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{2, 3\}, \{1\}\}, \\ \{\{1\}, \{2\}, \{3\}\}$

Hence there are 5 equivalence relations on $\{1, 2, 3\}$.

Exercise 8.12. How many equivalence relations can be defined on $A = \{1, 2, 3, 4\}$?

Challenge Let $EQ(\mathbb{N})$ be the collection of equivalence relations on \mathbb{N} . Prove that $EQ(\mathbb{N}) \sim \mathcal{P}(\mathbb{N})$.

9 Linear orders

Definition 9.1. Let R be a binary relation on A.

- 1. R is *irreflexive* iff $\langle a, a \rangle \notin R$ for all $a \in A$.
- 2. R satisfies the *trichotomy property* iff for all $a, b \in A$, exactly one of the following holds:

$$a R b, a = b, b R a.$$

 $\langle A,R\rangle$ is a *linear order* iff R is irreflexive, transitive, and satisfies the trichotomy property.

Example 9.2. Each of the following are linear orders.

- 1. $\langle \mathbb{N}, < \rangle$
- 2. $\langle \mathbb{N}, \rangle$
- 3. $\langle \mathbb{Z}, < \rangle$
- 4. $\langle \mathbb{Q}, < \rangle$
- 5. $\langle \mathbb{R}, < \rangle$

Definition 9.3. Let R be a binary relation on A. Then $\langle A, R \rangle$ is a *partial order* iff R is irreflexive and transitive.

Example 9.4. Each of the follow are partial orders, but not linear orders.

- 1. Let A be any nonempty set containing at least two elements. Then $\langle \mathcal{P}(A), \subset \rangle$ is a partial order.
- 2. Let D be the strict divisability relation on $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$. Then $\langle \mathbb{N}^+, D \rangle$ is a partial order.

Definition 9.5. Let $\langle A, \langle \rangle$ and $\langle B, \langle \rangle$ be partial orders. A map $f: A \to B$ is an *isomorphism* iff the following conditions are satisfied.

- 1. f is a bijection
- 2. For all $x, y \in A$, x < y iff f(x) < f(y).

In this case, we say that $\langle A, \langle \rangle$ and $\langle B, \langle \rangle$ are isomorphic and write $\langle A, \langle \rangle \cong \langle B, \langle \rangle$.

Example 9.6. $\langle \mathbb{Z}, \langle \rangle \cong \langle \mathbb{Z}, \rangle \rangle$

Proof. Let $f: \mathbb{Z} \to \mathbb{Z}$ be the map defined by f(x) = -x. Clearly f is a bijection. Also, if $x, y \in \mathbb{Z}$, then x < yiff -x > -yiff f(x) > f(y).

Thus f is an isomorphism.

Example 9.7. $\langle \mathbb{N}, \langle \mathbb{N}, \langle \rangle \not\cong \langle \mathbb{Z}, \langle \rangle$.

Proof. Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is an isomorphism. Let f(0) = z. Since f is a bijection, there exists $n \in \mathbb{N}$ such that f(n) = z - 1. But then n > 0 and f(n) < f(0), which is a contradiction.

2006/02/06

16

Exercise 9.8. Prove that $\langle \mathbb{Z}, \langle \rangle \not\cong \langle \mathbb{Q}, \langle \rangle$.

Example 9.9. $\langle \mathbb{Q}, \langle \rangle \not\cong \langle \mathbb{R}, \langle \rangle$.

Proof. Since \mathbb{Q} is countable and \mathbb{R} is uncountable, there does not exist a bijection $f: \mathbb{Q} \to \mathbb{R}$. Hence there does not exist an isomorphism $f: \mathbb{Q} \to \mathbb{R}$.

Example 9.10. $\langle \mathbb{R}, \langle \rangle \not\cong \langle \mathbb{R} \setminus \{0\}, \langle \rangle$.

Proof. Suppose that $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is an isomorphism. For each $n \ge 1$, let $r_n = f(1/n)$. Then

$$r_1 > r_2 > \ldots > r_n > \ldots > f(-1).$$

Let s be the greatest lower bound of $\{r_n \mid n \ge 1\}$. Then there exists $t \in \mathbb{R} \setminus \{0\}$ such that f(t) = s. Clearly t < 0. Hence f(t/2) > s. But then there exists $n \ge 1$ such that $r_n < f(t/2)$. But this means that t/2 < 1/n and f(t/2) > f(1/n), which is a contradiction.

Question 9.11. Is $\langle \mathbb{Q}, \langle \rangle \cong \langle \mathbb{Q} \setminus \{0\}, \langle \rangle$?

Definition 9.12. For each prime p,

$$\mathbb{Z}[1/p] = \{ a/p^n \mid a \in \mathbb{Z}, \ n \in \mathbb{N} \}.$$

Question 9.13. Is $\langle \mathbb{Z}[1/2], \langle \rangle \cong \langle \mathbb{Z}[1/3], \langle \rangle$?

Definition 9.14. A linear order $\langle D, < \rangle$ is a *dense linear order without endpoints* or DLO iff the following conditions hold.

- 1. For all $a, b \in D$, if a < b, then there exists $c \in D$ such that a < c < b.
- 2. For all $a \in D$, there exists $b \in D$ such that a < b.
- 3. For all $a \in D$, there exists $b \in D$ such that b < a.

Example 9.15. The following are DLOs.

- 1. $\langle \mathbb{Q}, < \rangle$
- 2. $\langle \mathbb{R}, < \rangle$
- 3. $\langle \mathbb{Q} \smallsetminus \{0\}, < \rangle$
- 4. $\langle \mathbb{R} \setminus \{0\}, < \rangle$

Theorem 9.16. For each prime p, $\langle \mathbb{Z}[1/p], \langle \rangle$ is a DLO.

Proof. Clearly $\langle \mathbb{Z}[1/p], < \rangle$ linear order without endpoints. Hence it is enough to show that $\mathbb{Z}[1/p]$ is dense. Suppose that $a, b \in \mathbb{Z}[1/p]$. Then there exists $c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a = c/p^n$ and $b = d/p^n$. Clearly $a < a + (1/p^n) \le b$. Consider

$$r = \frac{c}{p^n} + \frac{1}{p^n} = \frac{cp+1}{p^{n+1}} \in \mathbb{Z}[1/p].$$

Then a < r < b.

Theorem 9.17. If $\langle A, \langle \rangle$ and $\langle B, \langle \rangle$ are countable DLOs then $\langle A, \langle \rangle \cong \langle B, \langle \rangle$.

Corollary 9.18.
$$\langle \mathbb{Q}, \langle \rangle \cong \langle \mathbb{Q} \setminus \{0\}, \langle \rangle$$
.

Corollary 9.19. $\langle \mathbb{Z}[1/2], \langle \rangle \cong \langle \mathbb{Z}[1/3], \langle \rangle$.

Corollary 9.20. If p is any prime, then $\langle \mathbb{Z}[1/p], \langle \rangle \cong \langle \mathbb{Q}, \langle \rangle$.

Proof of Theorem 9.17. Let $A = \{a_n \mid n \in \mathbb{N}\}$ and $B = \{b_n \mid n \in \mathbb{N}\}$. First define $A_0 = \{a_0\}$ and $B_0 = \{b_0\}$ and let $f_0: A_0 \to B_0$ be the map defined by $f_0(a_0) = b_0$.

Now suppose inductively that we have defined a function $f_n: A_n \to B_n$ such that the following conditions are satisfied.

- 1. $\{a_0, \ldots, a_n\} \subseteq A_n \subseteq A$.
- 2. $\{b_0, \ldots, b_n\} \subseteq B_n \subseteq B$.
- 3. $f_n: A_n \to B_n$ is an order preserving bijection.

We now extend f_n to a suitable function f_{n+1} .

Step 1 If $a_{n+1} \in A_n$, then let $A'_n = A_n$, $B'_n = B_n$, and $f'_n = f_n$. Otherwise, suppose for example that

$$c_0 < c_1 < \ldots < c_i < a_{n+1} < c_{i+1} < \ldots < c_m$$

where $A_n = \{c_0, \ldots, c_m\}$. Choose some element $b \in B$ such that $f_n(c_i) < b < f_n(c_{i+1})$ and define

$$A'_n = A_n \cup \{a_{n+1}\}$$
$$B'_n = B_n \cup \{b\}$$
$$f'_n = f_n \cup \{\langle a_{n+1}, b \rangle\}$$

Step 2 If $b_{n+1} \in B'_n$, then let $A_{n+1} = A'_n$, $B_{n+1} = B'_n$, and $f_{n+1} = f'_n$. Otherwise, suppose for example that

$$d_0 < d_1 < \ldots < d_j < b_{n+1} < d_{j+1} < \ldots < d_t$$

2006/02/06

where $B'_n = \{d_0, \ldots, d_t\}$. Choose some element $a \in A$ such that $(f'_n)^{-1}(d_j) < a < (f'_n)^{-1}(d_{j+1})$ and define

 $\begin{aligned} A_{n+1} &= A'_n \cup \{a\} \\ B_{n+1} &= B'_n \cup \{b_{n+1}\} \\ f_{n+1} &= f'_n \cup \{\langle a, b_{n+1} \rangle\}. \end{aligned}$ Finally, let $f = \bigcup_{n>0} f_n$. Then $f \colon A \to B$ is an isomorphism.

10 Extensions

Definition 10.1. Suppose that R, S are binary relations on A. Then S extends R iff $R \subseteq R$.

Example 10.2. Consider the binary relations R, S on \mathbb{N} defined by $R = \{ \langle n, m \rangle \mid n < m \}$ $S = \{ \langle n, m \rangle \mid n \leq m \}$

Then S extends R.

Example 10.3. Consider the partial order \prec on $\{a, b, c, d, e\}$ which is

 $\{\langle d, b \rangle, \langle d, a \rangle, \langle d, e \rangle, \langle d, c \rangle, \langle a, b \rangle, \langle e, b \rangle, \langle c, b \rangle\}.$

Then we can extend \prec to the linear order < defined by the transitive closure of

d < e < c < a < b.

Exercise 10.4. If $\langle A, \prec \rangle$ is a finite partial order, then we can extend \prec to a linear ordering $\langle \text{ of } A$.

Question 10.5. Does the analogous result hold if $\langle A, \prec \rangle$ is a infinite partial order?

Definition 10.6. If A is a set and $n \ge 1$, then

 $A^n = \{ \langle a_1, \dots, a_n \rangle \mid a_1, \dots, a_n \in A \}.$

An *n*-ary relation on A is a subset $R \subseteq A^n$. An *n*-ary operation on A is a function $f: A^n \to A$.

11 Propositional logic

"The study of how the truth value of compound statements depends on those of simple statements."

A reminder of truth-tables.

2006/02/13

		$\frac{A \wedge B}{T}$ F F F F
$\begin{array}{c} \mathbf{or} \ \lor \\ \underline{A} \\ \overline{T} \\ T \\ F \\ F \end{array}$	$\begin{array}{c c} B \\ T \\ F \\ T \\ F \end{array}$	$ \frac{A \lor B}{T} \\ T \\ T \\ F $
not ¬	$ \begin{array}{c} \neg A \\ F \\ T \end{array} $	
$ \begin{array}{c} A\\ T\\ T\\ F\\ F\\ F \end{array} $	$\begin{array}{c c} B \\ T \\ F \\ T \\ F \end{array}$	plication $\rightarrow A \rightarrow B$ T F T T T
$\begin{array}{c} \mathbf{iff} \leftrightarrow \\ \underline{A} \\ \hline T \\ T \\ F \\ F \\ F \end{array}$	$\begin{array}{c c} B \\ T \\ F \\ T \\ F \\ \end{array}$	$\begin{array}{c} A \leftrightarrow B \\ \hline T \\ F \\ F \\ T \\ \end{array}$

Now our study actually begins... First we introduce our *formal language*.

Definition 11.1. The *alphabet* consists of the following symbols:

1. the sentence connectives

$$\neg, \land, \lor, \rightarrow, \leftrightarrow$$

2. the punctuation symbols

(,)

3. the sentence symbols

$$A_1, A_2, \dots, A_n, \dots, n \ge 1$$

2006/02/13

Remark 11.2. Clearly the alphabet is countable.

Definition 11.3. An *expression* is a finite sequence of symbols from the alphabet.

Example 11.4. The following are expressions:

$$(A_1 \wedge A_2), \quad ((\neg \to ())A_3)$$

Remark 11.5. Clearly the set of expressions is countable.

Definition 11.6. The set of *well-formed formulas* (wffs) is defined recursively as follows:

- 1. Every sentence symbol A_n is a wff.
- 2. If α and β are wffs, then so are

 $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$

3. No expression is a wff unless it is compelled to be so by repeated applications of (1) and (2).

Remark 11.7.

- 1. From now on we omit clause (3) in any further recursive definitions.
- 2. Clearly the set of wffs is countably infinite.
- 3. Because the definition of a wff is recursive, most of the properties of wffs are proved by induction on the length of a wff.

Example 11.8.

- 1. $(A_1 \rightarrow (\neg A_2))$ is a wff.
- 2. $((A_1 \wedge A_2)$ is not a wff. How can we prove this?

Proposition 11.9. If α is a wff, then α has the same number of left and right parentheses.

Proof. We argue by induction on the length $n \ge 1$ of the wff α . First suppose that n = 1. Then α must be a sentence symbol, say A_n . Clearly the result holds in this case.

Now suppose that n > 1 and that the result holds for all wffs of length less than n. Then α must have one of the following forms:

$$(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \to \gamma), (\beta \leftrightarrow \gamma)$$

for some wffs β , γ of length less than n. By induction hypothesis the result holds for both β and γ . Hence the result also holds for α .

Definition 11.10. \mathcal{L} is the set of sentence symbols. $\overline{\mathcal{L}}$ is the set of wffs. $\{T, F\}$ is the set of truth values.

Definition 11.11. A truth assignment is a function $v: \mathcal{L} \to \{T, F\}$.

Definition 11.12. Let v be a truth assignment. Then we define the extension $\bar{v} \colon \mathcal{L} \to \{T, F\}$ recursively as follows.

0. If
$$A_n \in \mathcal{L}$$
 then $\bar{v}(A_n) = v(A_n)$.
For any $\alpha, \beta \in \bar{\mathcal{L}}$
1. $\bar{v}((\neg \alpha)) =$
 $= T$ if $\bar{v}(\alpha) = F$
 $= F$ otherwise
2. $\bar{v}((\alpha \land \beta)) =$
 $= T$ if $\bar{v}(\alpha) = \bar{v}(\beta) = T$
 $= F$ otherwise
3. $\bar{v}((\alpha \lor \beta)) =$
 $= F$ if $\bar{v}(\alpha) = \bar{v}(\beta) = F$
 $= T$ otherwise
4. $\bar{v}((\alpha \to \beta)) =$
 $= F$ if $\bar{v}(\alpha) = T$ and $\bar{v}(\beta) = F$
 $= T$ otherwise
5. $\bar{v}((\alpha \leftrightarrow \beta)) =$
 $= T$ if $\bar{v}(\alpha) = \bar{v}(\beta)$
 $= F$ otherwise

Possible problem. Suppose there exists a wff α such that α has both the forms $(\beta \to \gamma)$ and $(\sigma \land \varphi)$ for some wffs $\beta, \gamma, \sigma, \varphi$. Then there will be two (possibly conflicting) clauses which define $\bar{v}(\alpha)$.

Fortunately no such α exists...

Theorem 11.13 (Unique readability). If α is a wff of length greater than 1, then there exists eactly one way of expressing α in the form:

$$(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \to \gamma), \quad or \quad (\beta \leftrightarrow \gamma)$$

for some shorter wffs β , γ .

We shall make use of the following result.

Lemma 11.14. Any proper initial segment of a wff contains more left parentheses than right parentheses. Thus no proper initial segment of a wff is a wff.

Proof. We argue by induction on the length $n \ge 1$ of the wff α . First suppose that n = 1. Then α is a sentence symbol, say A_n . Since A_n has no proper initial segments, the result holds vacuously.

Now suppose that n > 1 and that the result holds of all wffs of length less than n. Then α must have the form

$$(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \to \gamma), \text{ or } (\beta \leftrightarrow \gamma)$$

for some shorter wffs β and γ . By induction hypothesis, the result holds for both β and γ . We just consider the case when α is $(\beta \wedge \gamma)$. (The other cases are similar.) The proper initial segments of α are:

1. (

- 2. (β_0 where β_0 is an initial segment of β
- 3. $(\beta \wedge$
- 4. $(\beta \wedge \gamma_0 \text{ where } \gamma_0 \text{ is an initial segment of } \gamma$.

Using the induction hypothesis and the previous proposition (Proposition 11.9), we see that the result also holds for α .

Proof of Theorem 11.13. Suppose, for example, that

$$\alpha = (\beta \land \gamma) = (\sigma \land \varphi).$$

Deleting the first (we obtain that

$$\beta \wedge \gamma) = \sigma \wedge \varphi).$$

Suppose that $\beta \neq \sigma$. Then wlog β is a proper initial segment of σ . But then β isn't a wff, which is a contradiction. Hence $\beta = \sigma$. Deleting β and σ , we obtain that

$$\wedge \gamma) = \wedge \varphi).$$

and so $\gamma = \varphi$.

Next suppose that

$$\alpha = (\beta \land \gamma) = (\sigma \to \varphi).$$

Arguing as above, we find that $\beta = \sigma$ and so

$$\wedge \gamma) = \rightarrow \varphi)$$

which is a contradiction.

The other cases are similar.

2006/02/13

Math 461

Definition 11.15. Let $v: \mathcal{L} \to \{T, F\}$ be a truth assignment.

- 1. If φ is a wff, then v satisfies φ iff $\bar{v}(\varphi) = T$.
- 2. If Σ is a set of wffs, then v satisfies Σ iff $\bar{v}(\sigma) = T$ for all $\sigma \in \Sigma$.
- 3. Σ is *satisfiable* iff there exists a truth assignment v which satisfies Σ .
- **Example 11.16.** 1. Suppose that $v: \mathcal{L} \to \{T, F\}$ is a truth assignment and that $v(A_1) = F$ and $v(A_2) = T$. Then v satisfies $(A_1 \to A_2)$.
 - 2. $\Sigma = \{A_1, (\neg A_2), (A_1 \rightarrow A_2)\}$ is not satisfiable.

Exercise 11.17. Suppose that φ is a wff and v_1 , v_2 are truth assignments which agree on all sentence symbols appearing in φ . Then $\bar{v}_1(\varphi) = \bar{v}_2(\varphi)$. (*Hint:* argue by induction on the length of φ .)

Definition 11.18. Let Σ be a set of wffs and let φ be a wff. Then Σ tautologically implies φ , written $\Sigma \models \varphi$, iff every truth assignment which satisfies Σ also satisfies φ .

Important Observation. Thus $\Sigma \models \varphi$ iff $\Sigma \cup \{\neg \varphi\}$ is not satisfiable.

Example 11.19. $\{A_1, (A_1 \to A_2)\} \models A_2$.

Definition 11.20. The wffs φ, ψ are *tautologically equivalent* iff both $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

Example 11.21. $(A_1 \to A_2)$ and $((\neg A_2) \to (\neg A_1)$ are tautologically equivalent.

Exercise 11.22. Let σ, τ be wffs. Then the following statements are equivalent.

- 1. σ and τ are tautologically equivalent.
- 2. $(\sigma \leftrightarrow \tau)$ is a tautology.

(Hint: do *not* argue by induction on the lengths of the wffs.)

12 The compactness theorem

Question 12.1. Suppose that Σ is an infinite set of wffs and that $\Sigma \models \tau$. Does there necessarily exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \tau$?

A positive answer follows from the following result...

Theorem 12.2 (The Compactness Theorem). Let Σ be a set of wffs. If every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable, then Σ is satisfiable.

Definition 12.3. A set Σ of wffs is *finitely satisfiable* iff every finite subset $\Sigma_0 \subset \Sigma$ is satisfiable.

Theorem 12.4 (The Compactness Theorem). If Σ is a finitely satisfiable set of wffs, then Σ is satisfiable.

Before proving the compactness theorem, we present a number of its applications.

Corollary 12.5. If $\Sigma \models \tau$, then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \tau$.

Proof. Suppose not. Then for every finite subset $\Sigma_0 \subseteq \Sigma$, we have that $\Sigma_0 \not\models \tau$ and hence $\Sigma_0 \cup \{(\neg \tau)\}$ is satisfiable. Thus $\Sigma \cup \{(\neg \tau)\}$ is finitely satisfiable. By the Compactness Theorem, $\Sigma \cup \{(\neg \tau)\}$ is satisfiable. But this means that $\Sigma \not\models \tau$, which is a contradiction.

13 A graph-theoretic application

Definition 13.1. Let *E* be a binary relation on the set *V*. Then $\Gamma = \langle V, E \rangle$ is a graph iff:

- 1. E is irreflexive; and
- 2. E is symmetric.

Example 13.2. Let $V = \{0, 1, 2, 3, 4\}$ and let $E = \{\langle i, j \rangle \mid j = i + 1 \mod 5\}$. This is called the *cycle* of length five.

Definition 13.3. Let $k \ge 1$. Then the graph $\Gamma = \langle V, E \rangle$ is *k*-colorable iff there exists a function $\chi: V \to \{1, 2, \ldots k\}$. such that for all $a, b \in V$,

if
$$aEb$$
, then $\chi(a) \neq \chi(b)$.

Example 13.4. Any cycle of even length is two-colorable. Any cycle of odd length is three-colorable but not two-colorable.

Theorem 13.5 (Erdös). A countable graph $\Gamma = \langle V, E \rangle$ is k-colorable iff every finite subgraph $\gamma_0 \subset \Gamma$ is k-colorable.

Proof. \Rightarrow Suppose that Γ is k-colorable and let $\chi: V \to \{1, 2, \dots, k\}$ is any k-coloring. Let $\Gamma_0 = \langle V_0, E_0 \rangle$ be any finite subgraph of Γ . Then $\chi_0 = \chi | V_0$ is a k-coloring of Γ_0 . \Leftarrow In this direction we use the Compactness Theorem.

Step 1 We choose a suitable propositional language. The idea is to have a sentence symbol for every decision we must make. So our language has sentence symbols:

$$C_{v,i}$$
 for each $v \in V$, $1 \le i \le k$.

2006/02/27

(The intended meaning of $C_{v,i}$ is: "color vertex v with color i.")

Step 2 We write down a suitable set of wffs which imposes a suitable set of constraints on our truth assignments. Let Σ be the set of wffs of the following forms:

- (a) $C_{v,1} \vee C_{v,2} \vee \ldots \vee C_{v,k}$ for each $v \in V$.
- (b) $\neg (C_{v,i} \land C_{v,j})$ for each $v \in V$ and $1 \le i \ne j \le k$.
- (c) $\neg (C_{v,i} \land C_{w,i})$ for each pair $v, w \in V$ of adjacent vertices and each $1 \leq i \leq k$.

Step 3 We check that we have chosen a suitable set of wffs.

Claim 13.6. Suppose that v is a truth assignment which satisfies Σ . Then we can define a k-coloring $\chi: \Gamma \to \{1, \ldots, k\}$ by

$$\chi(v) = i$$
 iff $\upsilon(C_{v,i}) = T$.

Proof. By (a) and by (b), for each $v \in V$, there exists a unique $1 \leq i \leq k$ such that $v(C_{v,i}) = T$. Thus $\chi \colon V \to \{1, \ldots\}$ is a function. By (c), if $v, w \in V$ are adjacent, then $\chi(v) \neq \chi(w)$. Hence χ is a k-coloring.

Step 4 We next prove that Σ is finitely satisfiable. So let $\Sigma_0 \subseteq \Sigma$ be any finite subset. Let $V_0 \subseteq V$ be the finite set of vertices that are mentioned in Σ_0 . Then the finite subgraph $\Gamma_0 = \langle V_0, E_0 \rangle$ is k-colorable. Let

$$\chi\colon V_0\to\{1,\ldots,k\}$$

be a k-coloring of Γ_0 . Let v_0 be a truth assignment such that if $v \in V_0$ and $1 \le i \le k$, then

$$\upsilon(C_{v,i}) = T \quad \text{iff} \quad \chi_0(v) = i.$$

Clearly v_0 satisfies Σ_0 .

By the Compactness Theorem, Σ is satisfiable. Hence Γ is k-colorable.

14 Extending partial orders

Theorem 14.1. Let $\langle A, \prec \rangle$ be a countable partial order. Then there exists a linear ordering $\langle of A which extends \prec$.

Proof. We work with the propositional language which has sentence symbols

$$L_{a,b}$$
 for $a \neq b \in A$

Let Σ be the following set of wffs:

2006/02/27

- (a) $L_{a,b} \vee L_{b,a}$ for $a \neq b \in A$
- (b) $\neg (L_{a,b} \land L_{b,a})$ for $a \neq b \in A$
- (c) $((L_{a,b} \wedge L_{b,c}) \to L_{a,c})$ for distinct $a, b, c \in A$
- (d) $L_{a,b}$ for distinct $a, b \in A$ with $a \prec b$.

Claim 14.2. Suppose that v is a truth assignment which satisfies Σ . Define the binary relation < on A by

$$a < b$$
 iff $v(L_{a,b}) = T$.

Then < is a linear ordering of A which extends \prec .

Proof. Clearly < is irreflexive. By (a) and (b), < has the trichotomy property. By (c), < is transitive. Finally, by (d), < extends \prec .

Next we prove that Σ is finitely satisfiable. So let $\Sigma_0 \subseteq \Sigma$ be any finite subset. Let $A_0 \subseteq A$ be the finite set of elements that are mentioned in Σ_0 and consider the partial order $\langle A_0, \prec_0 \rangle$. Then there exists a partial ordering $<_0$ of A_0 extending \prec_0 . Let v_0 be the truth assignment such that if $a \neq b \in A_0$, then

$$v_0(L_{a,b}) = T \quad \text{iff} \quad a \leq_0 b.$$

Clearly v_0 satisfies Σ_0 .

By the compactness theorem, Σ is satisfiable. Hence there exists a linear ordering < of A which extends \prec .

15 Hall's Theorem

Definition 15.1. Suppose that S is a set and that $\langle S_i | i \in I \rangle$ is an indexed collection of (not necessarily distinct) subsets of S. A system of *distinct representatives* is a choice of elements $x_i \in S_i$ for $i \in I$ such that if $i \neq j \in I$, then $x_i \neq x_j$.

Example 15.2. Let $S = \mathbb{N}$ and let $\langle S_n \mid n \in \mathbb{N} \rangle$ be defined by

$$S_n = \{n, n+1\}$$

Thus $S_0 = \{0, 1\}, S_1 = \{1, 2\}, \dots$ Then we can take $x_i = i \in S_i$.

Theorem 15.3 (Hall's Matching Theorem (1935)). Let S be any set and let $n \in \mathbb{N}^+$. Let $\langle S_1, S_2, \ldots, S_n \rangle$ be an indexed collection of subsets of S. Then a necessary and sufficient condition for the existance of a system of distinct representatives is:

(H) For every $1 \le k \le n$ and choice of k distinct indices $1 \le i_1, \ldots, i_k \le n$, we have $|S_{i_1} \cup \ldots \cup S_{i_k}| \ge k$.

2006/02/27

Challange: Prove this!

Problem 15.4. State and prove an infinite analogue of Hall's Matching Theorem.

First Attempt Let S be any set and let $\langle S_n | n \in \mathbb{N}^+ \rangle$ be an indexed collection of subsets of S. Then a necessary and sufficient condition for the existence of a system of distinct representatives is:

 (H^*) For every $k \in \mathbb{N}^+$ and choice of k distinct indices $i_1, \ldots, i_k \in \mathbb{N}$, we have $|S_{i_1} \cup \ldots \cup S_{i_k}| \ge k$.

Counterexample Take $S_1 = \mathbb{N}$, $S_2 = \{0\}$, $S_3 = \{1\}$, ..., $S_n = \{n - 2\}$, ... Clearly (H^*) is satisfied and yet there is *no* system of distinct representatives.

Question 15.5. Where does the compactness argument break down?

Theorem 15.6 (Infinite Hall's Theorem). Let S be any set and let $\langle S_n | n \in \mathbb{N}^+ \rangle$ be an indexed collection of finite subsets of S. Then a necessary and sufficient condition for the existence of a system of distinct representatives is:

 (H^*) For every $k \in \mathbb{N}^+$ and choice of k distinct indices $i_1, \ldots, i_k \in \mathbb{N}$, we have $|S_{i_1} \cup \ldots \cup S_{i_k}| \ge k$.

Proof. We work with the propositional language with sentence symbols

$$C_{n,x}$$
. $n \in \mathbb{N}^+$, $x \in S_n$

Let Σ be the following set of wffs:

- (a) $\neg (C_{n,x} \land C_{m,x})$ for $n \neq m \in \mathbb{N}^+$, $x \in S_n \cap S_m$.
- (b) $\neg (C_{n,x} \land C_{n,y})$ for $n \in \mathbb{N}^+$, $x \neq y \in S_n \cap S_m$.
- (c) $(C_{n,x_1} \vee \ldots \vee C_{n,x_k})$ for $n \in \mathbb{N}^+$, where $S_n = \{x_1, \ldots, x_k\}$.

Claim 15.7. Suppose that v is a truth assignment which satisfies Σ . Then we can define a system of distinct representatives by

$$x \in S_n$$
 iff $v(C_{n,x}) = T$.

Proof. By (b) and (c), each S_n gets assigned a unique representative. By (a), distinct sets $S_m \neq S_m$ get assigned distinct representatives.

Next we prove that Σ is finitely satisfiable. So let $\Sigma_0 \subseteq \Sigma$ be any finite subset. Let $\{i_1, \ldots, i_l\}$ be the indices that are mentioned in Σ_0 . Then $\{S_{i_1}, \ldots, S_{i_l}\}$ satisfies condition (H). By Hall's Theorem, there exists a set of distinct representatives for $\{S_{i_1}, \ldots, S_{i_l}\}$; say, $x_r \in S_{i_r}$. Let v_0 be the truth assignment such that for $1 \leq r \leq l$ and $x \in S_{i_r}$,

$$\upsilon(C_{i_r,x}) = T \quad \text{iff} \quad x = x_r.$$

Clearly v_0 satisfies Σ_0 .

By the Compactness Theorem, Σ is satisfiable. Hence there exists a system of distinct representatives.

2006/02/27

16 Proof of compactness

Theorem 16.1 (The Compactness Theorem). If Σ is a finitely satisfiable set of wffs, then Σ is satisfiable.

Basic idea Imagine that for each sentence symbol A_n , either $A_n \in \Sigma$ or $\neg A_n \in \Sigma$. Then there is only one possibility for a truth assignment v which satisfies Σ : namely,

$$v(A_n) = T \text{ iff } A_n \in \Sigma.$$

Presumably this v works...

In the general case, we extend Σ to a finitely satisfiable set Δ as above. For technical reasons, we construct Δ so that for *every* wff α , either $\alpha \in \Delta$ or $\neg \alpha \in \Delta$.

Lemma 16.2. Suppose that Σ is a finitely satisfiable set of wffs. If α is any wff, then either $\Sigma \cup \{\alpha\}$ is finitely satisfiable or $\Sigma \cup \{\neg\alpha\}$ is finitely satisfiable.

Proof. Suppose that $\Sigma \cup \{\alpha\}$ isn't finitely satisfiable. Then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \cup \{\alpha\}$ isn't satisfiable. Thus $\Sigma \models \neg \alpha$. We claim that $\Sigma \cup \neg \alpha$ is finitely satisfiable. Let $\Delta \subseteq \Sigma \cup \{\neg \alpha\}$ be any finite subset. If $\Delta \subseteq \Sigma$ then Δ is satisfiable. Hence we can suppose that $\Delta = \Delta_0 \cup \{\neg \alpha\}$ for some finite subset $\Delta_0 \subseteq \Sigma$. Since Σ is finitely satisfiable, ther exists a truth assignment v which satisfies $\Sigma_0 \cap \Delta_0$. Since $\Sigma_0 \models \neg \alpha$, it follows that $\bar{v}(\neg \alpha) = T$. Hence v satisfies $\Delta_0 \cup \{\neg \alpha\}$.

Proof of the Compactness Theorem. Let Σ be a finitely satisfiable set of wffs. Let

$$\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots \quad n \ge 1$$

be an enumeration of all the wffs $\alpha \in \overline{\mathcal{L}}$. We shall inductively define an increasing sequence of finitely satisfiable sets of wffs

$$\Delta_0 \subseteq \Delta_1 \subseteq \ldots \subseteq \Delta_n \subseteq \ldots$$

First let $\Delta_0 = \Sigma$. Suppose inductively that Δ_n has been defined. Then

$$\Delta_{n+1} = \Delta_n \cup \{\alpha_{n+1}\}, \text{ if this is finitely satisfiable} \\ = \Delta_n \cup \{(\neg \alpha_{n+1})\}, \text{ otherwise.}$$

By the lemma, Δ_{n+1} is also finitely satisfiable. Finally define

$$\Delta = \bigcup_n \Delta_n.$$

Claim 16.3. Δ is finitely satisfiable.

Proof. Suppose that $\Phi \subseteq \Delta$ is a finite subset. Then there exists an n such that $\Phi \subseteq \Delta_n$. Since Δ_n is finitely satisfiable, Φ is satisfiable.

Claim 16.4. If α is any wff, then either $\alpha \in \Delta$ or $(\neg \alpha) \in \Delta$.

Proof. There exists an $n \ge 1$ such that $\alpha = \alpha_n$. By construction, either $\alpha_n \in \Delta_{n+1}$ or $(\neg \alpha_n) \in \Delta_{n+1}$; and $\Delta_{n+1} \subseteq \Delta$.

Define a truth assignment $v: \mathcal{L} \to \{T, F\}$ by

$$v(A_l) = T \text{ iff } A_l \in \Delta.$$

Claim 16.5. For every wff α , $\bar{v}(\alpha) = T$ iff $\alpha \in \Delta$.

Proof. We argue by induction on the length m of the wff α . First suppose that m = 1. Then α is a sentence symbol; say, $\alpha = A_l$. By definition

$$\bar{v}(A_l) = v(A_l) = T \text{ iff } A_l \in \Delta.$$

Now suppose that m > 1. Then α has the form

$$(\neg\beta), (\beta \land \gamma), (\beta \lor \gamma), (\beta \to \gamma), (\beta \leftrightarrow \gamma)$$

for some shorter wffs β , γ .

Case 1 Suppose that $\alpha = (\neg \beta)$. Then

$$\begin{split} \bar{\upsilon}(\alpha) &= T & \text{iff} \quad \bar{\upsilon}(\beta) = F \\ & \text{iff} \quad \beta \notin \Delta \text{ by induction hypothesis} \\ & \text{iff} \quad (\neg \beta) \in \Delta \text{ by Claim 16.4} \\ & \text{iff} \quad \alpha \in \Delta \end{split}$$

Case 2 Suppose that α is $(\beta \lor \gamma)$. First suppose that $\overline{v}(\alpha) = T$. Then $\overline{v}(\beta) = T$ or $\overline{v}(\gamma) = T$. By induction hypothesis, $\beta \in \Delta$ or $\gamma \in \Delta$. Since Δ is finitely satisfiable, $\{\beta, (\neg(\beta \lor \gamma))\} \not\subseteq \Delta$ and $\{\gamma, (\neg(\beta \lor \gamma))\} \not\subseteq \Delta$. Hence $(\neg(\beta \lor \gamma)) \notin \Delta$ and so $(\beta \lor \gamma) \in \Delta$. Conversely suppose that $(\beta \lor \gamma) \in \Delta$. Since Δ is finitely satisfiable, $\{(\neg\beta), (\neg\gamma), (\beta \lor \gamma)\}$.

 Γ)} $\not\subseteq \Delta$. Hence $(\neg \beta) \notin \Delta$ or $(\neg \gamma) \notin \Delta$; and so $\beta \in \Delta$ or $\gamma \in \Delta$. By induction hypothesis, $\overline{v}(\beta) = T$ or $\overline{v}(\gamma) = T$. Hence $\overline{v}(\beta \lor \gamma) = T$.

Exercise 16.6. Write out the details for the other cases.

Thus v satisfies Δ . Since $\Sigma \subseteq \Delta$, it follows that v satisfies Σ .

2006/03/06

17 Trees and Konig's Lemma

Definition 17.1. A partial order $\langle T, \prec \rangle$ is a *tree* iff the following conditions are satisfied.

- 1. There exists a unique minimal element $t_0 \in T$ called the *root*.
- 2. For each $t \in T$, the set

 $\Pr_T(t) = \{ s \in T \mid s \prec t \}$

is a finite set which is linearly ordered by \prec .

Example 17.2. The complete binary tree is defined to be

$$T_2 = \{ f \mid f \colon n \to \{0, 1\} \}$$

ordered by

$$f \prec g$$
 iff $f \subset g$.

Definition 17.3. Let $\langle T, \prec \rangle$ be a tree.

1. If $t \in T$, then the *height* of t is defined to be

$$ht_T(t) = |\Pr_T(t)|.$$

2. For each $n \ge 0$, the n^{th} level of T is

$$\operatorname{Lev}_T(n) = \{ t \in T \mid \operatorname{ht}_T(t) = n \}.$$

3. For each $t \in T$, the set of *immediate successors* of t is

 $\operatorname{succ}_T(t) = \{ s \in T \mid t \prec s \text{ and } \operatorname{ht}_T(s) = \operatorname{ht}_T(t) + 1 \}.$

- 4. T is finitely branching iff each $t \in T$ has a finite (possibly empty) set of immediate successors.
- 5. A branch \mathcal{B} of T is a maximal linearly ordered subset of T.

Example 17.4. Consider the complete binary tree T_2 . If $\varphi \colon \mathbb{N} \to \{0, 1\}$, then we can define a corresponding branch of T_2 by

$$\mathcal{B}_{\varphi} = \{ \varphi | n \mid n \in \mathbb{N} \}.$$

Conversely, let \mathcal{B} be an arbitrary branch of T_2 . Let $\varphi = \bigcup \mathcal{B}$. Then $\varphi \colon \mathbb{N} \to \{0, 1\}$ and $\mathcal{B} = \mathcal{B}_{\varphi}$.

Exercise 17.5. Let $\langle T, \prec \rangle$ be a tree. Then the following are equivalent:

2006/03/06

- 1. T is finitely branching.
- 2. Lev_T(n) is finite for all $n \ge 0$.

Lemma 17.6 (König). Suppose that T is an infinite finitely branching tree. Then there exists an infinite branch \mathcal{B} through T.

Remark 17.7. Note that such a branch \mathcal{B} necessarily satisfies:

 $|\mathcal{B} \cap \text{Lev}_T(n)| = 1 \text{ for all } n \ge 0.$

First we shall give a proof of König's Lemma, using the Compactness Theorem.

Proof of König's Lemma. Let $\langle T, \prec \rangle$ be an infinite finitely branching tree. Then each level $\text{Lev}_T(n)$ is finite and so T is countably infinite. We shall work with the propositional language with sentence symbols $\{B_t \mid t \in T\}$. Let Σ be the following set of wffs:

(a) $B_{t_1} \vee \ldots \vee B_{t_l}$ where $\text{Lev}_T(n) = \{t_1, \ldots, t_l\}$ and $n \ge 0$.

- (b) $\neg (B_{t_i} \land B_{t_i})$ where $\text{Lev}_T(n) = \{t_1, \dots, t_l\}, n \ge 0$, and $1 \le i < j \le l$.
- (c) $(B_s \to B_t)$ for $s, t \in T$ with $s \prec t$.

Claim 17.8. Suppose that v is a truth assignment which satisfies Σ . Then

$$\mathcal{B} = \{t \in T \mid v(B_t) = T\}$$

is an infinite branch through T.

Proof. By (a) and (b), \mathcal{B} intersects every level in a unique point. Suppose that $s \neq t \in \mathcal{B}$. Then wlog we have that $\operatorname{ht}_T(s) < \operatorname{ht}_T(t)$. Let $n = \operatorname{ht}_T(s)$. By (c), \mathcal{B} must contain the predecessor of t in $\operatorname{Lev}_T(n)$, which must be equal to s. Thus $s \prec t$. It follows that \mathcal{B} is linearly ordered.

We claim that Σ is finitely satisfiable. Let $\Sigma_0 \subseteq \Sigma$ be a finite subset. Then there exists $n \geq 0$ such that if $t \in T$ is mentioned in Σ_0 , then $\operatorname{ht}_T(t) < n$. Choose $t_0 \in \operatorname{Lev}_T(n)$ and let v_0 be the truth assignment such that for all $t \in T$ with $\operatorname{ht}_T(t) < n$,

$$\upsilon_0(B_t) = T \quad \text{iff} \quad t < t_0.$$

Clearly v_0 satisfies Σ_0 . By Compactness, Σ is satisfiable and hence T has an infinite branch.

Next we shall give a direct proof of König's Lemma.

Proof of König's Lemma. Let T be an infinite finitely branching tree. We shall define a sequence of elements $t_n \in T$ inductively so that the following conditions are satisfied:

- (a) $t_n \in \text{Lev}_T(n)$
- (b) If m < n then $t_m \prec t_n$.
- (c) $\{s \in T \mid t_n \prec s\}$ is infinite.

First let $t_0 \in \text{Lev}_T(0)$ be the root. Clearly the above conditions are satisfied. Assume inductively that t_n has been defined. Then t_n has a finite set of immediate successors; say $\{a_1, \ldots, a_l\}$. If $t_n \prec s$ and $\text{ht}_T(s) > n + 1$, then there exists $1 \leq i \leq l$ such that $a_i \prec s$. By the pigeon hole principle, there exists $1 \leq i \leq l$ such that a_i satisfies (c). Then we define $t_{n+1} = a_i$. Clearly $\mathcal{B} = \{t_n \mid n \geq 0\}$ is an infinite branch through T. \Box

Next we present an application of König's Lemma.

Theorem 17.9 (Erdös). A countably infinite graph Γ is k-colorable iff every finite subgraph of Γ is k-colorable.

Proof. (\Rightarrow) Trival!

 (\Leftarrow) Suppose that every finite subgraph of Γ is k-colorable. Let $\Gamma = \{v_1, v_2, \ldots, v_n, \ldots\}$; and for each $n \ge 1$, let $\Gamma_n = \{v_1, \ldots, v_n\}$ and let C_n be the set of k-colorings of Γ_n . Let T be the tree with levels defined by

$$Lev_T(0) = \{\emptyset\}$$

Lev_T(n) = C_n for $n \ge 0$

partially ordered as follows. Suppose that $\chi \in \text{Lev}_T(n)$ and $\theta \in \text{Lev}_T(m)$ where $1 \leq n < m$. Then

$$\chi \prec \theta$$
 iff $\chi = \theta | \{v_1, \ldots, v_n\}.$

Clearly T is an infinite finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B} = \{\chi_n \mid n \in \mathbb{N}\}$ through T, where $\chi_n \in \text{Lev}_T(n)$. We claim that $\chi = \bigcup_n \chi_n$ is a k-coloring of Γ . It is clear that $\chi \colon \Gamma \to \{1, \ldots, k\}$. Next suppose that $a \neq b \in \Gamma$ are adjacent vertices. Then there exists $n \geq 1$ such that $a, b \in \Gamma_n$. By definition, we have that $\chi(a) = \chi_n(a)$ and $\chi(b) = \chi_n(b)$. Since χ_n is a k-coloring of Γ_n , it follows that $\chi_n(a) \neq \chi_n(b)$. Thus $\chi(a) \neq \chi(b)$.

Finally we use König's Lemma to give a proof of the Compactness Theorem.

Proof of Compactness Theorem. Suppose that Σ is a finitely satisfiable set of wffs in the propositional language with sentence symbols $\{A_1, A_2, \ldots, A_n, \ldots\}$. We define a tree T as follows.

• Lev_T(0) = { \emptyset }

• If $n \ge 1$, then $\text{Lev}_T(n)$ is the set of all partial truth assignments $v: \{A_1, \ldots, A_n\} \rightarrow \{T, F\}$ which satisfy every $\sigma \in \Sigma$ which only mention A_1, \ldots, A_n .

We partially order T as follows. Suppose that $v \in \text{Lev}_T(n)$ and $v' \in \text{Lev}_T(m)$, where $1 \leq n < m$. Then

$$v \prec v'$$
 iff $v = v' | \{A_1, \dots, A_n\}.$

Clearly $|\text{Lev}_T(n)| \leq 2^n$ and so each level $\text{Lev}_T(n)$ is finite.

Claim 17.10. For each $n \ge 0$, $\text{Lev}_T(n) \neq \emptyset$.

Proof. Clearly we can suppose that $n \geq 1$. Let Σ_n be the set of wffs in Σ which only involve A_1, \ldots, A_n . If Σ_n is finite, the result holds by the finite satisfiability of Σ . Hence we can suppose that Σ_n is infinite; say $\Sigma_n = \{\sigma_1, \sigma_2, \ldots, \sigma_t, \ldots\}$. For each $t \geq 1$, let $\Delta_t = \{\sigma_1, \ldots, \sigma_t\}$. Then there exists a partial truth assignment $\omega_t \colon \{A_1, \ldots, A_n\} \to \{T, F\}$ which satisfies Δ_t . By the pigeon hole principle, there exists a fixed $\omega \colon \{A_1, \ldots, A_n\} \to \{T, F\}$ such that $\omega_t = \omega$ for infinitely many $t \geq 1$. Clearly $\omega \in \text{Lev}_T(n)$.

Thus T is an infinite, finitely branching tree. By König's Lemma, there exists an infinite branch $\mathcal{B} = \{v_n \mid n \in \mathbb{N}\}$ through T, where $v_n \in \text{Lev}_T(n)$. It follows that $v = \bigcup_n v_n$ is a truth assignment which satisfies Σ .

18 First Order Logic

Definition 18.1. The *alphabet* of a first order language \mathcal{L} consists of:

A. Symbols common to all languages (Logical Symbols)

- (a) Parentheses (,)
- (b) Connectives \rightarrow, \neg
- (c) Variables $v_1, v_2, \ldots, v_n, \ldots, n \ge 0$
- (d) Quantifier \forall
- (e) Equality symbol =

B. Symbols particular to the language (Non-logical Symbols)

- (a) For each $n \ge 1$, a (possibly empty) countable set of *n*-place predicate symbols.
- (b) A (possibly empty) countable set of constant symbols.
- (c) For each $n \ge 1$, a (possibly empty) countable set of *n*-place function symbols.

Remark 18.2. It is easily checked that the alphabet is countable.

Definition 18.3. An *expression* is a finite sequence of symbols from the alphabet.

2006/03/20

Remark 18.4. The set of expressions is countable.

Definition 18.5. The set of terms is defined inductively as follows:

- 1. Each variable and each constant symbol is a term.
- 2. If f is an n-place function symbol and t_1, \ldots, t_n are terms, then $ft_1 \ldots t_n$ is a term.

Definition 18.6. An *atomic formula* is an expression of the form

$$Pt_1 \dots t_n$$

where P is an n-place predicate symbol and t_1, \ldots, t_n are terms.

Remark 18.7. The equality symbol = is a two-place predicate symbol. Hence every language has atomic formulas.

Definition 18.8. The set of *well-formed formulas* (wffs) is defined inductively as follows:

- 1. Every atomic formula is a wff.
- 2. If α and β are wffs and v is a variable, then

$$(\neg \alpha), (\alpha \rightarrow \beta), \text{ and } \forall v \alpha$$

are wffs.

Some abbreviations We usually write

$$\begin{array}{ll} (\alpha \lor \beta) & \text{instead of} & ((\neg \alpha) \to \beta) \\ (\alpha \land \beta) & " & (\neg (\alpha \to (\neg \beta))) \\ \exists v \alpha & " & (\neg \forall v (\neg \alpha)) \\ u = t & " & = ut \\ u \neq t & " & (\neg = ut) \end{array}$$

We also use common sense in our use of parentheses.

Definition 18.9. Let x be a variable.

- 1. If α is atomic, then x occurs free in α iff x occurs in α .
- 2. x occurs free in $(\neg \alpha)$ iff x occurs free in α .
- 3. x occurs free in $(\alpha \to \beta)$ iff x occurs free in α or x occurs free in β .
- 4. x occurs free in $\forall v \alpha$ iff x occurs free in α and $x \neq v$.

Definition 18.10. The wff σ is a *sentence* iff σ has no free variables.

19 Truth and Structures

Definition 19.1. A structure \mathcal{A} for the first order language \mathcal{L} consists of:

- 1. a non-empty set A, the *universe* of A.
- 2. for each *n*-place predicate symbol P, an *n*-ary relation $P^{\mathcal{A}} \subseteq A^n$.
- 3. for each constant symbol c, an element $c^{\mathcal{A}} \in A$.
- 4. for each function symbol f, an *n*-ary operation $f^{\mathcal{A}} \colon A^n \to A$.

Example 19.2. Suppose that \mathcal{L} has the following non-logical symbols:

- 1. a 1-place predicate symbol S
- 2. a 2-place predicate symbol R
- 3. a constant symbol c
- 4. a 1-place function symbol f.

Then we can define a structure

$$\mathcal{A} = \langle A; S^{\mathcal{A}}, R^{\mathcal{A}}, c^{\mathcal{A}}, f^{\mathcal{A}} \rangle$$

for \mathcal{L} as follows:

1.
$$A = \{1, 2, 3, 4\}$$

2. $S^{\mathcal{A}} = \{\langle 2 \rangle, \langle 3 \rangle\}$
3. $R^{\mathcal{A}} = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$
4. $c^{\mathcal{A}} = 1$
5. $f^{\mathcal{A}} \colon A \to A$ where $1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4$, and $4 \mapsto 1$.

Target Let \mathcal{L} be any first order language. For each sentence σ and each structure \mathcal{A} for \mathcal{L} , we want to define

$$\mathcal{A} \models \sigma$$

" \mathcal{A} satisfies σ " or " σ is true in \mathcal{A} ".

Example 19.3 (Example Cont.). Let σ be the sentence

$$\forall x \forall y (fx = y \to Rxy)$$

Clearly

$$\mathcal{A} \models \sigma$$
.

2006/03/20

First we need to define a more involved notion. Let

- φ be a wff
- \mathcal{A} be a structure for \mathcal{L}
- $s: V \to A$ be a function, where v is the set of variables.

Then we will define

$$\mathcal{A} \models \varphi[s]$$

" φ is true in \mathcal{A} if each free occurrence of x in φ is interpreted as s(x) in \mathcal{A} ."

Step 1

Let T be the set of terms. We first define an extension $\bar{s}: T \to A$ as follows:

- 1. For each variable $v \in V$, $\bar{s}(v) = s(v)$.
- 2. For each constant symbol c, $\bar{s}(c) = c^{\mathcal{A}}$.
- 3. If f is an n-place function symbol and t_1, \ldots, t_n are terms, then

$$\bar{s}(ft_1\dots t_n) = f^{\mathcal{A}}(\bar{s}(t_1),\dots,\bar{s}(t_n)).$$

Step 2 Atomic formulas.

- (a). $\mathcal{A} \models = t_1 t_2[s]$ iff $\bar{s}(t_1) = \bar{s}(t_2)$.
- (b). If P is an n-place predicate symbol different from = and t_1, \ldots, t_n are terms, then

$$\mathcal{A} \models Pt_1 \dots t_n[s] \text{ iff } \langle \bar{s}(t_1), \dots, \bar{s}(t_n) \rangle \in P^{\mathcal{A}}.$$

Step 3 Other wffs.

(c). A ⊨ (¬α)[s] iff A ⊭ α[s].
(d). A ⊨ (α → β)[s] iff A ⊭ α[s] or A ⊨ β[s].
(e). A ⊨ ∀xα[s] iff for all a ∈ A, A ⊨ α[s(x|a)] where s(x|a) is defined by

$$s(x|a)(y) = s(y), \quad y \neq x$$
$$= a, \quad y = x$$

Theorem 19.4. Assume that $s_1, s_2: V \to A$ agree on all free variables (if any) of the wff φ . Then

$$\mathcal{A} \models \varphi[s_1] \quad iff \quad \mathcal{A} \models \varphi[s_2].$$

Proof slightly delayed.

Corollary 19.5. If σ is a sentence, then either

- 1. $\mathcal{A} \models \sigma[s]$ for all $s: V \to A$ or
- 2. $\mathcal{A} \not\models \sigma[s]$ for all $s: V \to A$.

Definition 19.6. Let σ be a sentence. Then $\mathcal{A} \models \sigma$ iff $\mathcal{A} \models \sigma[s]$ for all $s: V \to A$.

Exercise 19.7. Let \mathcal{A} be a structure and let t be a term. If $s_1, s_2 \colon V \to A$ agree on all variables (if any) in t, then $\bar{s_1}(t) = \bar{s_2}(t)$.

Proof of Theorem 19.4. We argue by induction on the complexity of φ .

Case 1 Suppose that φ is an atomic formula. First suppose that φ is $= t_1 t_2$. By the Exercise, $\bar{s}_1(t_1) = \bar{s}_2(t_1)$ and $\bar{s}_1(t_2) = \bar{s}_2(t_2)$. Hence

$$\mathcal{A} \models = t_1 t_2[s_1] \quad \text{iff} \quad \bar{s_1}(t_1) = \bar{s_1}(t_2)$$
$$\text{iff} \quad \bar{s_2}(t_1) = \bar{s_2}(t_2)$$
$$\text{iff} \quad \mathcal{A} \models = t_1 t_2[s_2].$$

Next suppose that φ is $Pt_1 \dots t_n$. Again by the Exercise, $\bar{s}_1(t_i) = \bar{s}_2(t_i)$ for $1 \le i \le n$. Hence

$$\mathcal{A} \models Pt_1 \dots t_n[s_1] \quad \text{iff} \quad \langle \bar{s}_1(t_1), \dots, \bar{s}_1(t_n) \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad \langle \bar{s}_2(t_1), \dots, \bar{s}_2(t_n) \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad \mathcal{A} \models Pt_1 \dots t_n[s_2].$$

Case 2 Suppose that φ is $(\neg \psi)$. Then s_1, s_2 agree on the free variables of ψ . Hence

$$\mathcal{A} \models (\neg \psi)[s_1] \quad \text{iff} \quad \mathcal{A} \not\models \psi[s_1]$$
$$\text{iff} \quad \mathcal{A} \not\models \psi[s_2] \text{ by ind. hyp.}$$
$$\text{iff} \quad \mathcal{A} \models (\neg \psi)[s_2].$$

Case 3 A similar argument deals with the case when φ is $(\psi \to \theta)$.

Case 4 Suppose that φ is $\forall x\psi$. Then s_1, s_2 agree on all free variables of ψ except possibly x. Hence for all $a \in A$, $s_1(x|a)$ and $s_2(x|a)$ agree on all free variables of ψ . Thus

$$\mathcal{A} \models \forall x \psi[s_1] \quad \text{iff} \quad \text{for all } a \in A, \ \mathcal{A} \models \psi[s_1(x|a)]$$
$$\text{iff} \quad \text{for all } a \in A, \ \mathcal{A} \models \psi[s_2(x|a)]$$
$$\text{iff} \quad \mathcal{A} \models \forall x \psi[s_2].$$

20 Compactness in first order logic

Definition 20.1. Let Σ be a set of wffs.

- (a) \mathcal{A} satisfies Σ with s iff $\mathcal{A} \models \sigma[s]$ for all $\sigma \in \Sigma$.
- (b) Σ is *satisfiable* iff there exists a structure \mathcal{A} and a function $s: V \to A$ such that \mathcal{A} satisfies Σ with s.
- (c) Σ is *finitely satisfiable* iff every finite subset of Σ is satisfiable.

One of the deepest results of the course:

Theorem 20.2 (Compactness). Let Σ be a set of wffs in the first order language \mathcal{L} . If Σ is finitely satisfiable, then Σ is satisfiable.

Application of the Compactness Theorem Let \mathcal{L} be the language of arithmetic; ie \mathcal{L} has non-logical symbols $\{+, \times, <, 0, 1\}$. Let

 $Th\mathbb{N} = \{ \sigma \mid \sigma \text{ is a sentence satisfied by } \langle \mathbb{N}; +, \times, <, 0, 1 \rangle \}.$

Consider the following set Σ of wffs:

Th
$$\mathbb{N} \cup \{x > \underbrace{1 + \ldots + 1}_{n \text{ times}} | n \ge 1\}.$$

We claim that Σ is finitely satisfiable. To see this, suppose that $\Sigma_0 \subseteq \Sigma$ is any finite subset; say, $\Sigma_0 = T \cup \{x > \underbrace{1 + \ldots + 1}_{n_1}, \ldots, x > \underbrace{1 + \ldots + 1}_{n_t}\}$, where $T \subseteq \text{Th}\mathbb{N}$. Let $m = \max\{n_1, \ldots, n_t\}$ and let $s \colon V \to \mathbb{N}$ with s(x) = m + 1. Then \mathbb{N} satisfies Σ_0

2006/04/03

with s. By the Compactness Theorem, there exists a structure \mathcal{A} for \mathcal{L} and a function $s: V \to A$ such that \mathcal{A} satisfies Σ with s. Thus \mathcal{A} is a "model of artihmetic" containing the "infinite natural number" $s(x) \in A$.

Discussion of the order relation in \mathcal{A}

Now we return to the systematic development of first order logic.

Definition 20.3. Let \mathcal{A}, \mathcal{B} be structures for the language \mathcal{L} . A function $f: \mathcal{A} \to \mathcal{B}$ is an *isomorphism* iff the following conditions are satisfied.

- 1. f is a bijection.
- 2. For each *n*-ary predicate symbol *P* and any *n*-tuple $a_1, \ldots, a_n \in A$,

$$\langle a_1, \ldots, a_n \rangle \in P^{\mathcal{A}} \text{ iff } \langle f(a_1), \ldots, f(a_n) \rangle \in P^{\mathcal{B}}.$$

- 3. For each constant symbol $c, f(c^{\mathcal{A}}) = c^{\mathcal{B}}$.
- 4. For each *n*-ary function symbol *h* and *n*-tuple $a_1, \ldots, a_n \in A$,

$$f(h^{\mathcal{A}}(a_1,\ldots,a_n)) = h^{\mathcal{B}}(f(a_1),\ldots,f(a_n)).$$

We write $\mathcal{A} \cong \mathcal{B}$ iff \mathcal{A} and \mathcal{B} are isomorphic.

Theorem 20.4. Suppose that $\varphi \colon A \to B$ is an isomorphism. If σ is any sentence, then $\mathcal{A} \models \sigma$ iff $\mathcal{B} \models \sigma$.

In order to prove the above theorem, we must prove the following more general statement.

Theorem 20.5. Suppose that $\varphi \colon A \to B$ is an isomorphism and $s \colon V \to A$. Then for any wff α

$$\mathcal{A} \models \alpha[s] \quad iff \quad \mathcal{B} \models \alpha[\varphi \circ s].$$

We shall make use of the following result.

Lemma 20.6. With the above hypotheses, for each term t,

$$\varphi(\bar{s}(t)) = (\overline{\varphi \circ s})(t).$$

Proof. Exercise.

Proof of Theorem 20.5. We argue by induction of the complexity of α . First suppose that α is atomic, say $Pt_1 \dots t_n$. Then

$$\mathcal{A} \models Pt_1 \dots t_n[s] \quad \text{iff} \quad \langle \bar{s}(t_1), \dots, \bar{s}(t_n) \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad \langle \varphi(\bar{s}(t_1)), \dots, \varphi(\bar{s}(t_n)) \rangle \in P^{\mathcal{B}}$$
$$\text{iff} \quad \langle (\overline{\varphi \circ s})(t_1)), \dots, (\overline{\varphi \circ s})(t_n) \rangle \in P^{\mathcal{B}}$$
$$\text{iff} \quad \mathcal{B} \models Pt_1 \dots t_n[\varphi \circ s]$$

Next suppose that α is $\neg\beta$. Then

$$\begin{array}{lll} \mathcal{A} \models \neg \beta[s] & \text{iff} & \mathcal{A} \not\models \beta[s] \\ & \text{iff} & \mathcal{B} \not\models \beta[\varphi \circ s] \\ & \text{iff} & \mathcal{B} \models \neg \beta[\varphi \circ s] \end{array}$$

A similar argument deals with the case when α is $(\beta \implies \gamma)$.

Finally suppose that α is $\forall v\beta$. Then

$$\mathcal{A} \models \forall v \beta[s] \quad \text{iff} \quad \mathcal{A} \models \beta[s(v|a)], \text{ for all } a \in A$$

$$\text{iff} \quad \mathcal{B} \models \beta[\varphi \circ s(v|a)], \text{ for all } a \in A$$

$$\text{iff} \quad \mathcal{B} \models \beta[(\varphi \circ s)(v|\varphi(a))], \text{ for all } a \in A$$

$$\text{iff} \quad \mathcal{B} \models \beta[(\varphi \circ s)(v|b)], \text{ for all } b \in B$$

$$\text{iff} \quad \mathcal{B} \models \forall v \beta[\varphi \circ s]$$

Example 20.7. $\langle \mathbb{N}, \langle \mathcal{P}, \langle \mathcal{Z}, \rangle \rangle$

Proof. Consider the sentence σ given by

$$(\exists x)(\forall y)(y = x \lor x < y)$$

Then $\langle \mathbb{N}, < \rangle \models \sigma$ and $\langle \mathbb{Z}, < \rangle \not\models \sigma$. Thus $\langle \mathbb{N}, < \rangle \not\cong \langle \mathbb{Z}, < \rangle$.

Example 20.8. $\langle \mathbb{Z}, < \rangle \not\cong \langle \mathbb{Q}, < \rangle$.

Proof. Consider the sentence σ given by

$$(\forall x)(\forall y)(x < y \to (\exists z)(x < z \land z < y)).$$

Definition 20.9. Let T be a set of sentences.

- 1. \mathcal{A} is a *model* for T iff $\mathcal{A} \models \sigma$ for every $\sigma \in T$.
- 2. Mod(T) is the class of all models of T.

Abbreviation If E is a binary predicate symbol, then we usually write xEy instead of Exy.

2006/04/03

Example 20.10. Let T be the following set of sentences:

$$\neg (\exists x)(xEx)$$
$$(\forall x)(\forall y)(xEy \to yEx)$$

Then Mod(T) is the class of graphs.

Example 20.11. Let T be the following set of sentences:

$$\neg (\exists x)(xEx)$$
$$(\forall x)(\forall y)(\forall z)((xEy \land yEz) \rightarrow xEz)$$
$$(\forall x)(\forall y)(x = y \lor xEy \lor yEx)$$

Then Mod(T) is the class of linear orders.

Definition 20.12. A class C of structures is *axiomatizable* iff there is a set T of sentences such that C = Mod(T). If there exists a finite set T of sentences such that C = Mod(T), then C is *finitely axiomatizable*.

Example 20.13. The class of graphs is finitely axiomatizable.

Example 20.14. The class of infinite graphs is axiomatizable.

Proof. For each $n \geq 1$ let \mathcal{O}_n be the sentence

"There exist at least n elements."

For example \mathcal{O}_3 is the sentence

$$(\exists x)(\exists y)(\exists z)(x \neq y \land y \neq z \land z \neq x).$$

Then $\mathcal{C} = Mod(T)$, where T is the following set of sentences:

$$\neg (\exists x)(xEx)$$
$$(\forall x)(\forall y)(xEy \to yEx)$$
$$\mathcal{O}_n, \quad n \ge 1.$$

Question 20.15. Is the class of infinite graphs finitely axiomatizable?

Question 20.16. Is the class of finite graphs axiomatizable?

Another application of the Compactness Theorem...

Theorem 20.17. Let T be a set of sentences in a first order language \mathcal{L} . If T has arbitrarily large finite models, then T has an infinite model.

Proof. For each $n \geq 1$, let \mathcal{O}_n be the sentence which says:

"There exist at least n elements."

Let Σ be the set of sentences $T \cup \{\mathcal{O}_n \mid n \geq 1\}$. We claim that Σ is finitely satisfiable. Suppose $\Sigma_0 \subseteq \Sigma$ is any finite subset. Then wlog

$$\Sigma_0 = T \cup \{\mathcal{O}_{n_1}, \dots, \mathcal{O}_{n_t}\}.$$

Let $m = \max\{n_1, \ldots, n_t\}$. Then there exists a finite model \mathcal{A}_0 of T such that \mathcal{A}_0 has at least m elements. Clearly \mathcal{A}_0 satisfies Σ_0 . By the Compactness Theorem, there exists a model \mathcal{A} of Σ . Clearly \mathcal{A} is an infinite model of T.

Corollary 20.18. The class \mathcal{F} of finite graphs is not axiomatizable.

Proof. Suppose T is a set of sentences such that $\mathcal{F} = \text{Mod}(T)$. Clearly there are arbitrarly large finite graphs and hence T has arbitrarly large finite models. But this means that T has an infinite model, which is a contradiction.

Corollary 20.19. The class C of infinite graphs is not finitely axiomatizable.

Proof. Suppose that there exists a finite set $T = \{\varphi_1, \ldots, \varphi_n\}$ of sentences such that $\mathcal{C} = \text{Mod}(T)$. Consider the following set T' of sentences.

$$\neg (\exists x)(xEx)$$
$$(\forall x)(\forall y)(xEy \to yEx)$$
$$\neg (\varphi_1 \land \ldots \land \varphi_n).$$

Then clearly Mod(T') is the class of finite graphs, which is a contradiction.

21 Valid sentences

Definition 21.1. Let Σ be a set of wffs and let φ be a wff. Then Σ logically implies/semantically implies φ iff for every structure \mathcal{A} and for every function $s: V \to A$, if \mathcal{A} satisfies Σ with s, then \mathcal{A} satisfies φ with s. In this case we write $\Sigma \models \varphi$.

Definition 21.2. The wff φ is valid iff $\emptyset \models \varphi$; *ie*, for all structures \mathcal{A} and functions $s: V \to A, \mathcal{A} \models \varphi[s].$

Example 21.3. $\{\forall x Px\} \models Pc$.

Question 21.4. Suppose that Σ is an infinite set of wffs and that $\Sigma \models \varphi$. Does there exist a finite set $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \varphi$?

Answer Yes. We shall show that $\Sigma \models \varphi$ iff there exists a proof of φ from Σ . Such a proof will only use a finite subset $\Sigma_0 \subseteq \Sigma$.

We now return to the syntactic aspect of first order languages. We will next define rigorously the notion of a *deduction* or proof.

Notation Λ will denote the set of *logical axioms*. These will be defined explicitly a little later.

eg
$$(\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)).$$

Each logical axiom will be valid.

Definition 21.5. Let Γ be a set of wffs and φ a wff. A *deduction* of φ from Γ is a finite sequence of wffs

$$\langle \alpha_1, \ldots, \alpha_n \rangle$$

such that $\alpha_n = \varphi$ and for each $1 \leq i \leq n$, either:

- (a) $\alpha_i \in \Lambda \cup \Gamma$; or
- (b) there exist j, k < i such that α_k is $(\alpha_j \to \alpha_i)$.

Remark 21.6. In case (b), we have

$$\langle \alpha_1, \ldots, \alpha_j, \ldots, (\alpha_j \to \alpha_i), \ldots, \alpha_i, \ldots, \alpha_n \rangle$$

We say that α_i follows from α_j and $(\alpha_j \rightarrow \alpha_i)$ by modus ponens (MP).

Definition 21.7. φ is a *theorem* of Γ , written $\Gamma \vdash \varphi$, iff there exists a deduction of φ from Γ .

The two main results of this course...

Theorem 21.8 (Soundness). If $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.

Theorem 21.9 (Completeness (Godel)). If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

22 The Logical Axioms Λ

 φ is a generalization of ψ iff for some $n \ge 0$ and variables x_1, \ldots, x_n , we have that φ is

$$\forall x_1 \dots \forall x_n \psi.$$

The logical axioms are all generalizations of all wffs of the following forms:

- 1. Tautologies.
- 2. $(\forall x \alpha \to \alpha_t^x)$, where t is a term which is substitutable for x in α .

- 3. $(\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)).$
- 4. $(\alpha \to \forall x \alpha)$, where x doesn't appear free in α .
- 5. x = x.
- 6. $(x = y \rightarrow (\alpha \rightarrow \alpha'))$, where α is atomic and α' is obtained from α be replacing some (possibly none) of the occurrences of x by y.

Explanation 1. A tautology is a wff that can be obtained from a propositional tautology by substituting wffs for sentence symbols.

$$eg \ (P \to \neg Q) \to (Q \to \neg P)$$

is a propositional tautology.

$$(\forall x\alpha \to \neg\beta) \to (\beta \to \neg\forall x\alpha)$$

is a first order tautology.

Explanation 2. α_t^x is the result of replacing each free occurrence of x by t. We say that t is substitutable for x in α iff no variable of t gets bound by a quantifier in α_t^x .

eg Let α be $\neg \forall y(x = y)$. Then y is not substitutable for x in α . Note that in this case

$$\forall x \alpha \to \alpha_t^x$$

becomes

$$\forall x \neg \forall y (x = y) \rightarrow \neg \forall y (y = y)$$

which is *not* valid. So we need the above restriction.

Explanation 4. A typical example is

$$Pyz \rightarrow \forall xPyz.$$

Here " $\forall x$ " is a "dummy quantifier" which does nothing. Note that

$$x = 0 \to \forall x(x = 0)$$

is *not* valid. So we need the above restriction.

23 Some examples of deductions

Example 23.1. $\vdash (Px \rightarrow \exists yPy)$

Proof. Note that $(Px \to \exists yPy)$ is an abbreviation of $(Px \to \neg \forall y \neg Py)$. The following is a deduction from \emptyset .

- 1. $(\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py)$ [Axiom 1]
- 2. $(\forall y \neg Py \rightarrow \neg Px)$ [Axiom 2]
- 3. $(Px \rightarrow \neg \forall y \neg Py)$ [MP, 1, 2]

Example 23.2. $\vdash \forall x (Px \rightarrow \neg \forall y \neg Py)$

Proof. The following is a deduction from \emptyset .

- 1. $\forall x((\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py))$ [Axiom 1]
- 2. $\forall x (\forall y \neg Py \rightarrow \neg Px)$ [Axiom 2]
- 3. $\forall x((\forall y \neg Py \rightarrow \neg Px) \rightarrow (Px \rightarrow \neg \forall y \neg Py)) \rightarrow (\forall x(\forall y \neg Py \rightarrow \neg Px) \rightarrow \forall x(Px \rightarrow \neg \forall y \neg Py))$ [Axiom 3]
- 4. $\forall x (\forall y \neg Py \rightarrow \neg Px) \rightarrow \forall x (Px \rightarrow \neg \forall y \neg Py)$ [MP, 1, 3]
- 5. $\forall x(Px \rightarrow \neg \forall y \neg Py))$ [MP, 2, 4]

24 Soundness Theorem

Theorem 24.1 (Soundness). *If* $\Gamma \vdash \varphi$ *, then* $\Gamma \models \varphi$ *.*

We shall make use of the following result.

Lemma 24.2. Every logical axiom $\varphi \in \Lambda$ is valid

Proof. We just consider the case where φ has the form

$$(\alpha \rightarrow \forall x \alpha)$$

where x isn't free in α . Let \mathcal{A} be any structure and $s: V \to A$. If $\mathcal{A} \not\models \alpha[s]$, then $\mathcal{A} \models (\alpha \to \forall x \alpha)[s]$. So suppose that $\mathcal{A} \models \alpha[s]$. Let $a \in A$ be any element. Then s and s(x|a) agree on the free variables of α . Hence $\mathcal{A} \models \alpha[s(x|a)]$ and so $\mathcal{A} \models (\alpha \to \forall x \alpha)[s]$. \Box

2006/04/12

Remark 24.3. The other cases are equally easy, except for the case of

$$(\forall x \alpha \to \alpha_t^x)$$

which is harder. We will give a detailed proof of this case later.

Exercise 24.4. Show that

$$(\forall x(\alpha \to \beta) \to (\forall x\alpha \to \beta))$$

is valid.

Proof of the Soundness Theorem. We argue by induction on the minimal length $n \ge 1$ of a deduction that if $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$.

First suppose that n = 1. Then $\varphi \in \Gamma \cup \Lambda$. If $\varphi \in \Gamma$ then clearly $\Gamma \models \varphi$. If $\varphi \in \Lambda$, then the lemma (24.2) says that φ is valid. Thus $\emptyset \models \varphi$ and so $\Gamma \models \varphi$.

Now suppose that n > 1. Let

$$\langle \alpha_1, \ldots, \alpha_n = \varphi \rangle$$

be a deduction of φ from Γ . Then φ must follow from MP from two earlier wffs θ and $(\theta \to \varphi)$. Note that proper initial segments of deductions from Γ are also deductions from Γ . Thus $\Gamma \vdash \theta$ and $\Gamma \vdash (\theta \to \varphi)$ via deductions of length less than n. By induction hypothesis, $\Gamma \models \theta$ and $\Gamma \models (\theta \to \varphi)$. Let \mathcal{A} be any structure and $s \colon V \to A$. Suppose that \mathcal{A} satisfies Γ with s. Then $\mathcal{A} \models \theta[s]$ and $\mathcal{A} \models (\theta \to \varphi)[s]$. Hence $\mathcal{A} \models \varphi[s]$. Thus $\Gamma \models \varphi$.

Definition 24.5. A set Γ of wffs is *inconsistent* iff there exists a wff β such that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Otherwise, Γ is *consistent*.

Corollary 24.6. If Γ is satisfiable, then Γ is consistent.

Proof. Suppose that Γ is satisfiable. Let \mathcal{A} satisfy Γ with $s: V \to A$. Now suppose that Γ is inconsistent; say $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. By Soundness $\Gamma \models \beta$ and $\Gamma \models \neg \beta$. But this means that $\mathcal{A} \models \beta[s]$ and $\mathcal{A} \models \neg \beta[s]$, which is a contradiction. \Box

25 Meta-theorems

Now we turn to the proof of the Completeness Theorem. First we need to prove a number of "Meta-Theorems".

Theorem 25.1 (Generalization). If $\Gamma \vdash \varphi$ and x doesn't occur free in any wff of Γ , then $\Gamma \vdash \forall x \varphi$.

Remark 25.2. Note that if c is a constant symbol, then

$$\{x = c\} \vdash x = c$$

However,

$$\{x=c\} \not\vdash \forall x(x=c).$$

How do we know this? By the Soundness Theorem, it is enough to show that

$$\{x = c\} \not\models \forall x(x = c).$$

Proof of Generalization Theorem. We argue by induction on the minimal length n of a deduction of φ from Γ that $\Gamma \vdash \forall x \varphi$.

First suppose that n = 1. Then $\varphi \in \Gamma \cup \Lambda$.

Case 1 Suppose that $\varphi \in \Lambda$. Then $\forall x \varphi \in \Lambda$ and so $\Gamma \vdash \forall x \varphi$.

Case 2 Suppose that $\varphi \in \Gamma$. Then x doesn't occur free in φ and so $(\varphi \to \forall x \varphi) \in \Lambda$. Hence the following is a deduction of $\forall x \varphi$ from Γ .

1. φ [in Γ]

2.
$$\varphi \to \forall x \varphi \; [Ax \; 4]$$

3. $\forall x \varphi$ [MP, 1, 2]

Now suppose that n > 1. Then in a deduction of minimal length, φ follows from earlier wffs θ and $(\theta \to \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash \forall x \theta$ and $\Gamma \vdash \forall x (\theta \to \varphi)$. Hence the following is a deduction of $\forall x \varphi$ from Γ .

1. ... deduction of $\forall x \theta$ from Γ .

n. $\forall x\theta$

n+1. ... deduction of $\forall x(\theta \to \varphi)$ from Γ .

n+m.
$$\forall x(\theta \to \varphi)$$

n+m+1. $\forall x(\theta \to \varphi) \to (\forall x\theta \to \forall x\varphi)$ [Ax 3]

n+m+2.
$$\forall x\theta \rightarrow \forall x\varphi \; [MP, n+m, n+m+1]$$

n+m+3. $\forall x \varphi$ [MP, n, n + m + 2]

Definition 25.3. $\{\alpha_1, \ldots, \alpha_n\}$ tautologically implies β iff

$$(\alpha_1 \to (\alpha_2 \to \dots (\alpha_n \to \beta) \dots))$$

is a tautology.

Theorem 25.4 (Rule T). If $\Gamma \vdash \alpha_1, \ldots, \Gamma \vdash \alpha_n$ and $\{\alpha_1, \ldots, \alpha_n\}$ tautologically implies β , the $\Gamma \vdash \beta$.

Proof. Obvious, via repeated applications of MP.

Theorem 25.5 (Deduction). If $\Gamma \cup \{\gamma\} \vdash \varphi$, then $\Gamma \vdash (\gamma \rightarrow \varphi)$.

Proof. We argue by induction on the minimal length n of a deduction of φ from $\Gamma \cup \{\gamma\}$. First suppose that n = 1.

Case 1 Suppose that $\varphi \in \Gamma \cup \Lambda$. Then the following is a deduction from Γ .

- 1. φ [in $\Gamma \cup \Lambda$]
- 2. $(\varphi \to (\gamma \to \varphi))$ [Ax 1]
- 3. $(\gamma \rightarrow \varphi)$ [MP, 1, 2]

Case 2 Suppose that $\varphi = \gamma$. In this case $(\gamma \to \varphi)$ is a tautology and so $\Gamma \vdash (\gamma \to \varphi)$.

Now suppose that n > 1. Then in a deduction of minimal length φ follows from earlier wffs θ and $(\theta \to \varphi)$ by MP. By induction hypothesis, $\Gamma \vdash (\gamma \to \theta)$ and $\Gamma \vdash (\gamma \to (\theta \to \varphi))$. Clearly $\{(\gamma \to \theta), (\gamma \to (\theta \to \varphi))\}$ tautologically implies $(\gamma \to \varphi)$. By Rule T, $\Gamma \vdash (\gamma \to \varphi)$.

Theorem 25.6 (Contraposition). $\Gamma \cup \{\varphi\} \vdash \neg \psi \text{ iff } \Gamma \cup \{\psi\} \vdash \neg \varphi.$

Proof. Suppose that $\Gamma \cup \{\varphi\} \vdash \neg \psi$. By the deduction theorem $\Gamma \vdash (\varphi \to \neg \psi)$. By Rule T, $\Gamma \vdash (\psi \to \neg \varphi)$. Hence $\Gamma \cup \{\psi\} \vdash \psi$ and $\Gamma \cup \{\psi\} \vdash (\psi \to \neg \varphi)$. By Rule T, $\Gamma \cup \{\psi\} \vdash \neg \varphi$. The other direction is similar.

Theorem 25.7 (Reductio Ad Absurdum). If $\Gamma \cup \{\varphi\}$ is inconsistent, then $\Gamma \vdash \neg \varphi$.

Proof. Suppose that $\Gamma \cup \{\varphi\} \vdash \beta$ and $\Gamma \cup \{\varphi\} \vdash \neg \beta$. By the Deduction Theorem , $\Gamma \vdash (\varphi \rightarrow \beta)$ and $\Gamma \vdash (\varphi \rightarrow \neg \beta)$. Since $\{(\varphi \rightarrow \beta), (\varphi \rightarrow \neg \beta)\}$ tautologically implies $\neg \varphi$, Rule T gives $\Gamma \vdash \neg \varphi$.

Remark 25.8. If Γ is inconsistent, then $\Gamma \vdash \alpha$ for ever wff α .

Proof. Suppose that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Clearly

$$(\beta \to (\neg \beta \to \alpha))$$

is a tautology. By Rule T, $\Gamma \vdash \alpha$.

2006/04/17

26 Applications: some theorems about equality

Eq 1.
$$\vdash \forall x(x =$$

Proof. This is a logical axiom.

x)

Eq 2.

 $\begin{array}{l} \vdash \forall x \forall y (x = y \rightarrow y = x) \\ Proof. \quad 1. \ \vdash x = y \rightarrow (x = x \rightarrow y = x) \ [Ax \ 6] \\ 2. \ \vdash x = x \ [Ax \ 5] \\ 3. \ \vdash x = y \rightarrow y = x \ [Rule \ T, \ 1, \ 2] \\ 4. \ \vdash \forall y (x = y \rightarrow y = x) \ [Gen, \ 3] \\ 5. \ \vdash \forall x \forall y (x = y \rightarrow y = x) \ [Gen, \ 4] \end{array}$

Eq 3. $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$ Proof. 1. $\vdash y = x \rightarrow (y = z \rightarrow x = z)$ [Ax 6] 2. $\vdash x = y \rightarrow y = x$ [Shown in proof of Eq 2] 3. $\vdash x = y \rightarrow (y = z \rightarrow x = z)$ [Rule T, 1, 2] 4. $\vdash \forall x \forall y \forall z (x = y \rightarrow (y = z \rightarrow x = z))$ [Gen cubed, 3]

27 Generalization on constants

Theorem 27.1 (Generalization on constants). Assume that $\Gamma \vdash \varphi$ and that c is a constant symbol which doesn't occur in Γ . Then there exists a variable y (which doesn't occur in φ) such that $\Gamma \vdash \forall y \varphi_{y}^{c}$.

Furthermore, there exists a deduction of $\forall y \varphi_y^c$ from Γ in which c doesn't occur.

Remark 27.2. Intuitively, suppose that Γ says nothing about c and that $\Gamma \vdash \varphi(c)$. Then $\Gamma \vdash \forall y \varphi(y)$. In other words, to prove $\forall y \varphi(y)$, let c be arbitrary and prove $\varphi(c)$.

Remark 27.3. Suppose that Γ is a consistent set of wffs in the language \mathcal{L} . Let \mathcal{L}^+ be the language obtained by adding a new constant symbol c. Then Γ is still consistent in \mathcal{L}^+ .

Why? Suppose not. Then there exists a wff β in \mathcal{L}^+ such that $\Gamma \vdash \beta \land \neg \beta$ in \mathcal{L}^+ . By the above theorem, for some variable y which doesn't occur in β ,

$$\Gamma \vdash \forall y (\beta_y^c \land \neg \beta_y^c)$$

via a deduction that doesn't involve c. Since

$$\forall y (\beta_y^c \land \neg \beta_y^c) \to (\beta_y^c \land \neg \beta_y^c)$$

is a logical axiom,

$$\Gamma \vdash \beta_y^c \land \neg \beta_y^c$$

in \mathcal{L} . This implies that Γ is inconsistent in \mathcal{L} , which is a contradiction.

Proof of Generalization on Constants. Suppose that

(*)
$$\langle \alpha_1, \ldots, \alpha_n \rangle$$

is a deduction of φ from Γ . Let y be a variable which doesn't occur in any of the α_i . We claim that

$$(**) \quad \langle (\alpha_1)_y^c, \dots, (\alpha_n)_y^c \rangle$$

is a deduction of φ_y^c from Γ . We shall prove that, for all $i \leq n$, either $(\alpha_i)_y^c \in \Gamma \cup \Lambda$ or $(\alpha_i)_y^c$ follows from earlier wffs in (**) via MP.

Case 1 Suppose that $\alpha_i \in \Gamma$. Since c doesn't occur in Γ , it follows that $(\alpha_i)_y^c = \alpha_i \in \Gamma$.

Case 2 Suppose that $\alpha_i \in \Lambda$. Then it is easily checked that $(\alpha_i)_y^c \in \Lambda$.

Case 3 Suppose there exist j, k < i such that α_k is $(\alpha_j \to \alpha_i)$. Then $(\alpha_k)_y^c$ is $((\alpha_j)_y^c \to (\alpha_i)_y^c)$. Hence $(\alpha_i)_y^c$ follows from $(\alpha_k)_y^c$ and $(\alpha_j)_y^c$ by MP.

Let Φ be the finite subset of Γ which occurs in (**). Then $\Phi \vdash \varphi_y^c$ via a deduction in which c doesn't occur. By the Generalization Theorem, since y doesn't occur free in Φ , it follows that $\Phi \vdash \forall y \varphi_y^c$ via a deduction in which c doesn't occur. It follows that $\Gamma \vdash \forall y \varphi_y^c$ via a deduction in which c doesn't occur. \Box

- **Exercise 27.4.** 1. Show by induction on φ that if y doesn't occur in φ , then x is substitutable for y in φ_y^x and $(\varphi_y^x)_x^y = \varphi$.
 - 2. Find a wff φ such that $(\varphi_u^x)_x^y \neq \varphi$.

Corollary 27.5. Suppose that $\Gamma \vdash \varphi_c^x$, where c is a constant symbol that doesn't occur in Γ or φ . Then $\Gamma \vdash \forall x \varphi$, via a deduction in which c doesn't occur.

2006/04/17

Proof. By the above theorem, $\Gamma \vdash \forall y(\varphi_c^x)_y^c$ for some variable y which doesn't occur in φ_c^x . Since c doesn't occur in φ , $(\varphi_c^x)_y^c = \varphi_y^x$. Thus $\Gamma \vdash \forall y \varphi_y^x$. By the exercise, the following is a logical axiom: $\forall y \varphi_y^x \to \varphi$. Thus $\forall y \varphi_y^x \vdash \varphi$. Since x doesn't occur free in $\forall y \varphi_y^x$, Generalization gives that $\forall y \varphi_y^x \vdash \forall x \varphi$. Hence Deduction yields that $\vdash \forall y \varphi_y^x \to \forall x \varphi$. Since $\Gamma \vdash \forall y \varphi_y^x$, Rule T gives $\Gamma \vdash \forall x \phi$.

Theorem 27.6 (Existence of Alphabetic Variants). Let φ be a wff, t a term and x a variable. Then there exists a wff φ' (which differs from φ only in the choice of quantified variables) such that:

- (a) $\varphi \vdash \varphi'$ and $\varphi' \vdash \varphi$.
- (b) t is substitutable for x in φ' .

Proof Omitted

28 Completeness

Now we are ready to begin the proof of:

Theorem 28.1 (Completeness). *If* $\Gamma \models \varphi$ *, then* $\Gamma \vdash \varphi$ *.*

We shall base our strategy on the following observation.

Proposition 28.2. The following statements are equivalent:

- (a) The Completeness Theorem: ie if $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.
- (b) If Γ is a consistent set of wffs, then Γ is satisfiable.

Proof. (a) \Rightarrow (b)

Suppose that Γ is consistent. Then there exists a wff φ such that $\Gamma \not\models \varphi$. By Completeness, $\Gamma \not\models \varphi$. Hence there exists a structure \mathcal{A} and a function $s \colon V \to A$ such that \mathcal{A} satisfies Γ with s and $\mathcal{A} \not\models \varphi[s]$. In particular, Γ is satisfiable.

 $(b) \Rightarrow (a)$

Suppose that $\Gamma \not\vdash \varphi$. Applying Reductio ad Absurdum, $\Gamma \cup \{\neg\varphi\}$ is consistent. It follows that $\Gamma \cup \{\neg\varphi\}$ is satisfiable and hence $\Gamma \not\models \varphi$.

Now we prove:

Theorem 28.3 (Completeness'). If Γ is a consistent set of wffs in a countable language \mathcal{L} , then there exists a countable structure \mathcal{A} and $s: V \to A$ such that \mathcal{A} satisfies Γ with s. *Proof.* Step 1 Expand \mathcal{L} to a larger language \mathcal{L}^+ by adding a countably infinite set of new constant symbols. Then Γ remains consistent as a set of wffs in \mathcal{L}^+ .

Proof of Step 1. Suppose not. Then there exists a wff β of \mathcal{L}^+ such that $\Gamma \vdash \beta \land \neg \beta$ in \mathcal{L}^+ . Suppose that c_1, \ldots, c_n includes the new constants (if any) which appear in β . By Generalization on Constants, there are variables y_1, \ldots, y_n such that:

(a) $\Gamma \vdash \forall y_1 \dots \forall y_n (\beta' \land \neg \beta')$, where β' is the result of replacing each c_i by y_i ; and

(b) the deduction doesn't involve any new constants.

Since y_i is substitutable for y_i in β' , we obtain that $\Gamma \vdash \beta' \land \neg \beta'$. But this means that Γ is inconsistent in the original language \mathcal{L} , which is a contradiction.

Step 2 (We add witnesses to existential wffs.) Let

$$\langle \varphi_1, x_1 \rangle, \langle \varphi_2, x_2 \rangle, \dots, \langle \varphi_n, x_n \rangle, \dots$$

enumerate all pairs $\langle \varphi, x \rangle$, where φ is a wff of \mathcal{L}^+ and x is a variable. Let θ_1 be the wff

$$\neg \forall x_1 \varphi_1 \to (\neg \varphi_1)_{c_1}^{x_1},$$

where c_1 is the first new constant which doesn't occur in φ_1 . If n > 1, then θ_n is the wff

$$\neg \forall x_n \varphi_n \to (\neg \varphi_n)_{c_n}^{x_n},$$

where c_n is the first new constant which doesn't occur in $\{\varphi_1, \ldots, \varphi_n\} \cup \{\theta_1, \ldots, \theta_{n-1}\}$. Let

$$\Theta = \Gamma \cup \{\theta_n \mid n \ge 1\}.$$

Claim 28.4. Θ is consistent.

Proof. Suppose not. Let $n \ge 0$ be the least integer such that $\Gamma \cup \{\theta_1, \ldots, \theta_{n+1}\}$ is inconsistent. By Reductio ad Absurdum,

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \neg \theta_{n+1}.$$

Recall that θ_{n+1} has the form

$$\neg \forall x \varphi \to \neg \varphi_c^x.$$

By Rule T,

$$\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \neg \forall x \varphi.$$

and

2006/04/17

 $\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \varphi_c^x.$

Since c doesn't occur in $\Gamma \cup \{\theta_1, \ldots, \theta_n\} \cup \{\varphi\}$, we have that

 $\Gamma \cup \{\theta_1, \ldots, \theta_n\} \vdash \forall x \varphi.$

But this contradicts the minimality of n, or the consistency of Γ if n = 0.

Step 3 We extend Θ to a consistent set of wffs Δ such that for every wff φ of \mathcal{L}^+ , either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$.

Proof. Let $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ enumerate all the wffs of \mathcal{L}^+ . We define inductively an increasing sequence of consistent sets of wffs

$$\Delta_0 \subseteq \Delta_1 \subseteq \ldots \subseteq \Delta_n \subseteq \ldots$$

as follows

- $\Delta_0 = \Theta$
- Suppose that Δ_n has been defined. If $\Delta_n \cup \{\alpha_{n+1}\}$ is consistent, then we set $\Delta_{n+1} = \Delta \cup \{\alpha_{n+1}\}$. Otherwise, if $\Delta_n \cup \{\alpha_{n+1}\}$ is inconsistent, then $\Delta \vdash \neg \alpha_{n+1}$ so we can set $\Delta_{n+1} = \Delta \cup \{\neg \alpha_{n+1}\}$.

Finally let $\Delta = \bigcup_{n \ge 0} \Delta_n$. Clearly Δ satisfies our requirements.

Notice that Δ is deductively closed; *ie* if $\Delta \vdash \varphi$, then $\varphi \in \Delta$. Otherwise, $\neg \varphi \in \Delta$ and so $\Delta \vdash \varphi$ and $\Delta \vdash \neg \varphi$, which contradicts the consistency of Δ .

Step 4 For each of the following wffs φ , $\Delta \vdash \varphi$ and so $\varphi \in \Delta$.

Eq 1 $\forall x(x = x)$.

- Eq 2 $\forall x \forall y (x = y \rightarrow y = x).$
- Eq 3 $\forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z).$
- Eq 4 For each n-ary predicate symbol P

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n) \to (Px_1 \dots x_n \leftrightarrow Py_1 \dots y_n)$$

Eq 5 For each n-ary function symbol f

 $\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n) \to (fx_1 \dots x_n = fy_1 \dots y_n)$

Similarly, since Δ is deductively closed and $\forall x \forall y (x = y \rightarrow y = x) \in \Delta$, if t_1, t_2 are any terms, then $(t_1 = t_2 \rightarrow t_2 = t_1) \in \Delta$ etc.

Step 5 We construct a structure \mathcal{A} for \mathcal{L}^+ as follows.

Let T be the set of terms in \mathcal{L}^+ . Define a relation E on T by

$$t_1 E t_2$$
 iff $(t_1 = t_2) \in \Delta$.

Claim 28.5. E is an equivalence relation.

Proof. Suppose that $t \in T$. Then $(t = t) \in \Delta$ and so tEt. Thus E is reflexive.

Next suppose that t_1Et_2 . Then $(t_1 = t_2) \in \Delta$. Since $(t_1 = t_2 \rightarrow t_2 = t_1) \in \Delta$, it follows that $(t_2 = t_1) \in \Delta$. Thus t_2Et_1 and so E is symmetric.

Similarly E is transitive.

Definition 28.6. For each $t \in T$, let

$$[t] = \{s \in T \mid tEs\}.$$

Then we define

$$A = \{ [t] \mid t \in T \}.$$

Definition 28.7. For each *n*-ary predicate symbol P, we define an *n*-ary relation $P^{\mathcal{A}}$ on A by

 $\langle [t_1], \ldots, [t_n] \rangle \in P^{\mathcal{A}} \text{ iff } Pt_1 \ldots t_n \in \Delta.$

Claim 28.8. $P^{\mathcal{A}}$ is well-defined.

Proof. Suppose that $[s_1] = [t_1], \ldots, [s_n] = [t_n]$. We must show that

$$Ps_1 \dots s_n \in \Delta$$
 iff $Pt_1 \dots t_n \in \Delta$.

By assumption, $(s_1 = t_1) \in \Delta, \ldots, (s_n = t_n) \in \Delta$. Since

$$[(s_1 = t_1 \land \ldots \land s_n = t_n) \to (Ps_1 \ldots s_n \leftrightarrow Pt_1 \ldots t_n)] \in \Delta,$$

the result follows.

Definition 28.9. For each constant symbol $c, c^{\mathcal{A}} = [c]$.

Definition 28.10. For each *n*-ary function symbol f, we define an *n*-ary operation $f^{\mathcal{A}} \colon A^n \to A$ by

$$f^{\mathcal{A}}([t_1],\ldots,[t_n])=[ft_1\ldots t_n].$$

2006/04/17

Claim 28.11. $f^{\mathcal{A}}$ is well-defined.

Proof. Similar.

that φ is atomic.

Finally we define $s: V \to A$ by s(x) = [x].

Claim 28.12 (Target). For every wff φ of \mathcal{L}^+ ,

$$\mathcal{A} \models \varphi[s] \text{ iff } \varphi \in \Delta.$$

We shall make use of the following result.

Claim 28.13. For each term $t \in T$, $\bar{s}(t) = [t]$.

Proof. By definition, the result holds when t is a variable or a constant symbol. Suppose that t is $ft_1 \ldots t_n$. Then by induction hypothesis, $\bar{s}(t_1) = [t_1], \ldots, \bar{s}(t_n) = [t_n]$. Hence

$$\bar{s}(ft_1 \dots t_n) = f^{\mathcal{A}}(\bar{s}(t_1), \dots, \bar{s}(t_1))$$
$$= f^{\mathcal{A}}([t_1], \dots, [t_1])$$
$$= [ft_1, \dots, t_1]$$

Proof of Target Claim. We argue by induction on the complexity of φ . First suppose

Case 1 Suppose that φ is $t_1 = t_2$. Then

$$\mathcal{A} \models (t_1 = t_2)[s] \quad \text{iff} \quad \bar{s}(t_1) = \bar{s}(t_2)$$
$$\text{iff} \quad [t_1] = [t_2]$$
$$\text{iff} \quad (t_1 = t_2) \in \Delta$$

Case 2 Suppose that φ is $Pt_1 \ldots t_n$. Then

$$\mathcal{A} \models Pt_1 \dots t_n[s] \quad \text{iff} \quad \langle \bar{s}(t_1), \dots, \bar{s}(t_n) \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad \langle [t_1], \dots, [t_n] \rangle \in P^{\mathcal{A}}$$
$$\text{iff} \quad Pt_1 \dots t_n \in \Delta$$

Next we consider the case when φ isn't atomic.

Case 3 Suppose that φ is $\neg \psi$. Then

$$\mathcal{A} \models \neg \psi[s] \quad \text{iff} \quad \mathcal{A} \not\models \psi[s]$$
$$\text{iff} \quad \psi \notin \Delta$$
$$\text{iff} \quad \neg \psi \in \Delta$$

2006/04/17

Case 4 The case where φ is $(\theta \rightarrow \psi)$ is similar.

Case 5 Finally suppose that φ is $\forall x\psi$. We shall make use of the following result.

Lemma 28.14 (Substitution). If the term t is substitutable for x in ψ , then

 $\mathcal{A} \models \psi_t^x[s] \quad iff \quad \mathcal{A} \models \psi[s(x|\bar{s}(t))].$

Proof. Omitted.

Recall that φ is $\forall x\psi$. By construction, for some constant c,

$$(\neg \forall \psi \to \neg \psi_c^x) \in \Delta \quad (*)$$

First suppose that $\mathcal{A} \models \forall x \psi[s]$. Then, in particular, $\mathcal{A} \models \psi[s(x|[c])]$ and so $\mathcal{A} \models \psi[s(x|\bar{s}(c))]$. By the Substitution Lemma, $\mathcal{A} \models \psi_c^x[s]$. Hence by induction hypothesis, $\psi_c^x \in \Delta$ and so $\neg \psi_c^x \notin \Delta$. By (*), $\neg \forall x \psi \notin \Delta$ and so $\forall x \psi \in \Delta$.

Conversely, suppose that $\mathcal{A} \not\models \forall x \psi[s]$. Then there exists a term $t \in T$ such that $\mathcal{A} \not\models \psi[s(x|[t])]$. Thus $\mathcal{A} \not\models \psi[s(x|\bar{s}(t))]$. Let ψ' be an alphabetic variant of ψ such that t is substitutable for x in ψ' . Then $\mathcal{A} \not\models \psi'[s(x|\bar{s}(t))]$. By the Substitution Lemma, $\mathcal{A} \not\models (\psi')_t^x[s]$. By induction hypothesis, $(\psi')_t^x \notin \Delta$. Since t is substitutable for x in ψ' is follows that $(\forall x\psi' \to (\psi')_t^x) \in \Delta$. Hence $\forall x\psi' \notin \Delta$ and so $\forall x\psi \notin \Delta$.

Finally let \mathcal{A}_0 be the structure for \mathcal{L} obtained from \mathcal{A} by forgetting the interpretations of the new constant symbols. Then \mathcal{A}_0 satisfies Γ with s.

This completes the proof of the Completeness Theorem.

Corollary 28.15. $\Gamma \models \varphi$ iff $\Gamma \vdash \varphi$.

Theorem 28.16. Let Γ be a set of wffs in a countable first order language. If Γ is finitely satisfiable, then Γ is satisfiable in some countable structure.

Proof. Suppose that every finite subset $\Gamma_0 \subseteq \Gamma$ is satisfiable. By Soundness, every finite subset $\Gamma_0 \subseteq \Gamma$ is consistent. Hence Γ is consistent. By Completeness', Γ is satisfiable in some countable structure.

Theorem 28.17. Let T be a set of sentences in a first order language \mathcal{L} . If the class $\mathcal{C} = \operatorname{Mod}(T)$ is finitely axiomatizable, then there exists a finite subset $T_0 \subseteq T$ such that $\mathcal{C} = \operatorname{Mod}(T_0)$.

Proof. Suppose that $\mathcal{C} = \operatorname{Mod}(T)$ is finitely axiomatizable. Then there exists a sentence σ such that $\mathcal{C} = \operatorname{Mod}(\sigma)$. Since $\operatorname{Mod}(T) = \operatorname{Mod}(\sigma)$, it follows that $T \models \sigma$. By the Completeness Theorem, $T \vdash \sigma$ and hence there exists a finite subset $T_0 \subseteq T$ such that $T_0 \vdash \sigma$. By Soundness, $T_0 \models \sigma$. Hence

$$\mathcal{C} = \operatorname{Mod}(T) \subseteq \operatorname{Mod}(T_0) \subseteq \operatorname{Mod}(\sigma) = \mathcal{C}$$

and so $\mathcal{C} = \operatorname{Mod}(T_0)$.

2006/04/17

Definition 28.18. Let \mathcal{A} , \mathcal{B} be structures for the first-order language \mathcal{L} . Then \mathcal{A} and \mathcal{B} are *elementarily equivalent*, written $\mathcal{A} \equiv \mathcal{B}$, iff for every sentence σ of \mathcal{L} ,

 $\mathcal{A} \models \sigma \text{ iff } \mathcal{B} \models \sigma.$

Remark 28.19. If $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$. Howevery, the converse does not hold, *eg* consider a nonstandard model of arithmetic.

Definition 28.20. A consistent set of sentences T is said to be *complete* iff for every sentence σ , either $T \vdash \sigma$ or $T \vdash \neg \sigma$.

Example 28.21. Let \mathcal{A} be any structure and let

 $Th(\mathcal{A}) = \{ \sigma \mid \sigma \text{ is a sentence such that } \mathcal{A} \models \sigma \}.$

Then $\operatorname{Th}(\mathcal{A})$ is a complete theory.

Theorem 28.22. If T is a complete theory in the first-order language \mathcal{L} and \mathcal{A} , \mathcal{B} are models of T, then $\mathcal{A} \equiv \mathcal{B}$.

Proof. Let σ be any sentence. Then either $T \vdash \sigma$ or $T \vdash \neg \sigma$. Suppose that $T \vdash \sigma$. By Soundness, $T \models \sigma$. Hence $\mathcal{A} \models \sigma$ and $\mathcal{B} \models \sigma$. Similarly if $T \vdash \neg \sigma$, then $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \neg \sigma$.

Theorem 28.23 (Los-Vaught). Let T be a consistent theory in a countable language \mathcal{L} . Suppose that

- (a) T has no finite models.
- (b) If \mathcal{A} , \mathcal{B} are countably infinite models of T, then $\mathcal{A} \cong \mathcal{B}$.

Then T is complete.

Proof. Suppose not. Then there exists a sentence σ such that $T \not\vdash \sigma$ and $T \not\vdash \neg \sigma$. Hence $T \cup \{\neg\sigma\}$ and $T \cup \{\sigma\}$ are both consistent. By Completeness, there exists countable structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models T \cup \{\neg\sigma\}$ and $\mathcal{B} \models T \cup \{\sigma\}$. By (a), \mathcal{A} and \mathcal{B} must be countably infinite. Hence, by (b), $\mathcal{A}\cong\mathcal{B}$. But this contradicts the fact that $\mathcal{A} \models \neg \sigma$ and $\mathcal{B} \models \sigma$.

Corollary 28.24. Let T_{DLO} be the theory of dense linear orders without endpoints. Then T_{DLO} is complete.

Proof. Clearly T_{DLO} has no finite models. Also, if \mathcal{A} , \mathcal{B} are countable dense linear orders without endpoints, then $\mathcal{A}\cong \mathcal{B}$. Hence T_{DLO} is complete.

Corollary 28.25. $\langle \mathbb{Q}, \langle \rangle \equiv \langle \mathbb{R}, \langle \rangle$.

Proof. $\langle \mathbb{Q}, \langle \rangle$ and $\langle \mathbb{R}, \langle \rangle$ are both models of the complete theory T_{DLO} .

The rationals $\langle \mathbb{Q}, < \rangle$ are a countable linear order in which "every possible finite configuration is realized."