3 Relations and functions

Preliminary Definition of a Function

Let A, B be sets. Then a function $f: A \rightarrow B$ is a rule which assigns to each element $a \in A$ a unique element $f(a) \in B$.

We want to reduce this notion to set theory. So a function should be a certain kind of set. Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^{2}$.

Eventually we shall define

$$
g=\left\{\left\langle x, x^{2}\right\rangle \mid x \in \mathbb{R}\right\}
$$

In general, a function $f: A \rightarrow B$ will be defined to be a certain set of ordered pairs $\langle a, b\rangle$, where $a \in A$ and $b \in B$.

What is an ordered pair? An object such that $\langle a, b\rangle=\langle c, d\rangle$ iff $a=c$ and $b=d$.
In particular, $\langle a, b\rangle \neq\{a, b\}$. Order counts in the former but not in the latter.
Definition 3.1. We define $\langle x, y\rangle=\{\{x\},\{x, y\}\}$.
We must check that this definition works.
Theorem 3.2. $\langle u, v\rangle=\langle x, y\rangle$ iff $u=x$ and $v=y$.
Proof. \Leftarrow If $u=x$ and $v=y$, then clearly

$$
\{\{u\},\{u, v\}\}=\{\{x\},\{x, y\}\}
$$

$i e\langle u, v\rangle=\langle x, y\rangle$.
\Rightarrow Suppose that $\langle u, v\rangle=\langle x, y\rangle$, ie $\{\{u\},\{u, v\}\}=\{\{x\},\{x, y\}\}$.
Case 1 Suppose that $u=v$. Then

$$
\begin{aligned}
\{\{u\},\{u, v\}\} & =\{\{u\},\{u, u\}\} \\
& =\{\{u\},\{u\}\} \\
& =\{\{u\}\}
\end{aligned}
$$

Since

$$
\{\{x\},\{x, y\}\}=\{\{u\}\}
$$

it follows that

$$
\{x\}=\{u\} \quad \text { and } \quad\{x, y\}=\{u\}
$$

Thus $x=y=u$. Hence $u=x$ and $v=y$.
Case 2 Suppose that $x=y$. By a similar argument, we find that $x=y=u=v$. Hence $u=x$ and $v=y$.

Case 3 Suppose that $u \neq v$ and $x \neq y$. Since

$$
\{\{u\},\{u, v\}\}=\{\{x\},\{x, y\}\}
$$

we must have that (a) $\{u\}=\{x\}$ or (b) $\{u\}=\{x, y\}$. Clearly (b) is impossible, since $\{u\}$ contains one element and $\{x, y\}$ contains two elements. Thus $\{u\}=\{x\}$ and so $u=x$. Also, we must have that (c) $\{u, v\}=\{x\}$ or (d) $\{u, v\}=\{x, y\}$. Again (c) is clearly impossible and so

$$
\{u, v\}=\{x, y\}=\{u, y\}
$$

It follows that $v=y$.
Question. Suppose that x, y are sets. Do our current axioms prove that $\langle x, y\rangle$ is a set?
Answer. Yes! Suppose that x, y are sets. Applying the Pairing Axiom, we see that $\{x, y\}$ and $\{x, x\}=\{x\}$ are both sets. Applying the Pairing Axiom once more,

$$
\{\{x\},\{x, y\}\}
$$

is also a set.
Definition 3.3. Let A, B be sets. Then their Cartesian product is defined to be

$$
A \times B=\{\langle x, y\rangle \mid x \in A \quad \text { and } \quad y \in B\}
$$

Question. Suppose that A, B are sets. Do our current axioms prove that $A \times B$ is a set?

Answer. Yes! But this requires a bit more effort...
Lemma 3.4. Let C be a set. If $x, y \in C$, then $\langle x, y\rangle \in \mathcal{P} \mathcal{P} C$.
Proof. Suppose that $x, y \in C$. Then $\{x\} \subseteq C$ and $\{x, y\} \subseteq C$. Thus $\{x\},\{x, y\} \in \mathcal{P} C$. Hence $\{\{x\},\{x, y\}\} \subseteq \mathcal{P} C$ and so

$$
\{\{x\},\{x, y\}\} \in \mathcal{P} \mathcal{P} C
$$

Theorem 3.5. Suppose that A, B are sets. Then there exists a set D such that for all x,

$$
x \in D \text { iff there exists } a \in A \text { and } b \in B \text { such that } x=\langle a, b\rangle .
$$

In other words, the Cartesian product of A and B is a set.
Proof. Let A, B be sets. By Pairing, $\{A, B\}$ is a set. By Union, $\bigcup\{A, B\}=A \cup B$ is a set. Applying Powerset twice, we see that $\mathcal{P} \mathcal{P}(A \cup B)$ is a set. Futhermore, by the Lemma, $\langle a, b\rangle \in \mathcal{P} \mathcal{P}(A \cup B)$ for all $a \in A$ and $b \in B$. By Subset, there exists a set D such that

$$
x \in D \text { iff } x \in \mathcal{P} \mathcal{P}(A \cup B) \text { and } x=\langle a, b\rangle \text { for some } a \in A \text { and } b \in B
$$

Cleaarly D satisfies our requirements.

Definition 3.6. Let A, B be sets. Then f is a function from A to B, written $f: A \rightarrow B$, iff

- $f \subseteq A \times B$; and
- for each $a \in A$, there exists a unique $b \in B$ such that $\langle a, b\rangle \in f$. We denote this unique element b by $f(b)$.

Definition 3.7. Let A, B be sets. Then

$$
B^{A}=\{f \mid f: A \rightarrow B\}
$$

It is easily seen that our current axioms imply that B^{A} is a set. To see this, note that if $f: A \rightarrow B$, then $f \subseteq A \times B$ and so $f \in \mathcal{P}(A \times B)$. By Subset,

$$
B^{A}=\{f \in \mathcal{P}(A \times B) \mid f \text { is a function from } A \text { to } B\}
$$

is a set.
We shall develop the basic theory of functions in a little while. First we want to introduce the more general notion of a relation. On second thoughts... we'll develop the basic theory of functions.

Definition 3.8. A function $f: A \rightarrow B$ is one-to-one / an injection iff for all $a_{1}, a_{2} \in A$ if $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

Example 3.9.

- $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n+1$, is an injection.
- $g: \mathbb{Z} \rightarrow \mathbb{Z}, g(z)=z^{2}$, isn't an injection, since $g(1)=1=g(-1)$.

Definition 3.10. A function $f: A \rightarrow B$ is onto / a surjection iff for all $b \in B$, there exists $a \in A$ such that $f(a)=b$.

Example 3.11.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(z)=z+1$, is a surjection.
- $g: \mathbb{N} \rightarrow \mathbb{N}, g(n)=n+1$, isn't a surjection, since there doesn't exist $n \in \mathbb{N}$ such that $g(n)=0$.

Definition 3.12. Suppose that $f: A \rightarrow B$ and $C \subseteq A$. Then

$$
f[C]=\{f(c) \mid c \in C\}
$$

Thus $f: A \rightarrow B$ is a surjection iff $f[A]=B$.

Definition 3.13. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. Then their composition is the function $g \circ f: A \rightarrow C$ defined by

$$
(g \circ f)(a)=g(f(a))
$$

Example 3.14. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $f(x)=x^{2}+1$ and $g(x)=\sin (x)$. Then

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(x^{2}+1\right) \\
& =\sin \left(x^{2}+1\right) \\
(f \circ g)(x) & =f(g(x)) \\
& =f(\sin (x)) \\
& =\sin ^{2}(x)+1
\end{aligned}
$$

Proposition 3.15. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjections, then $g \circ f: A \rightarrow C$ is also a surjection.

Proof. Let $c \in C$. Since g is a surjection, there exists $b \in B$ such that $g(b)=c$. Since f is a surjection, there exists $a \in A$ such that $f(a)=b$. Hence

$$
\begin{aligned}
(g \circ f)(a) & =g(f(a)) \\
& =g(b) \\
& =c \quad \square
\end{aligned}
$$

Exercise 3.16. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injections, then $g \circ f$ is also an injection.
Definition 3.17. A function $f: A \rightarrow B$ is a bijection iff f is both an injection and a surjection.

Remark 3.18. Thus $f: A \rightarrow B$ is a bijection iff for each $b \in B$ there is a unique $a \in A$ such that $f(a)=b$.

Example 3.19. For each set A, we define the identity function on A

$$
I_{A}: A \rightarrow A
$$

by $I_{A}(a)=a$. Clearly I_{A} is a bijection.
Definition 3.20. Suppose that $f: A \rightarrow B$ is a bijection. Then we can define the inverse function $f^{-1}: B \rightarrow A$ by

$$
f^{-1}(b)=\text { the unique } a \in A \text { such that } f(a)=b \text {. }
$$

Remark 3.21. Thus we have that $f^{-1} \circ f=I_{A}$ and $f \circ f^{-1}=I_{B}$. Also notice that f^{-1} is a bijection and that $\left(f^{-1}\right)^{-1}=f$. Also notice that

$$
f^{-1}=\{\langle b, a\rangle \mid\langle a, b\rangle \in f\}
$$

Proposition 3.22. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $g \circ f: A \rightarrow C$ is also a bijection.

Proof. Immediate consequence of the corresponding results for injections and surjections.

Theorem 3.23. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
Example 3.24. Consider $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x$ and $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x+2$ etc.
Proof of Theorem. Let $c \in C$. Let $b=g^{-1}(c)$, so that $g(b)=c$. Let $a=f^{-1}(b)$, so that $f(a)=b$. Then

$$
\begin{aligned}
(g \circ f)(a) & =g(f(a)) \\
& =g(b) \\
& =c
\end{aligned}
$$

Hence $(g \circ f)^{-1}(c)=a$. Also

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right)(c) & =f^{-1}\left(g^{-1}(c)\right) \\
& =f^{-1}(b) \\
& =a
\end{aligned}
$$

Hence $(g \circ f)^{-1}(c)=\left(f^{-1} \circ g^{-1}\right)(c)$.

