3 Relations and functions

Preliminary Definition of a Function

Let A, B be sets. Then a function $f: A \to B$ is a rule which assigns to each element $a \in A$ a unique element $f(a) \in B$.

We want to reduce this notion to set theory. So a function should be a certain kind of set. Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$.

Eventually we shall define

$$g = \{ \langle x, x^2 \rangle \mid x \in \mathbb{R} \}$$

In general, a function $f: A \to B$ will be defined to be a certain set of ordered pairs $\langle a, b \rangle$, where $a \in A$ and $b \in B$.

What is an ordered pair? An object such that $\langle a, b \rangle = \langle c, d \rangle$ iff a = c and b = d. In particular, $\langle a, b \rangle \neq \{a, b\}$. Order counts in the former but not in the latter.

Definition 3.1. We define $\langle x, y \rangle = \{\{x\}, \{x, y\}\}.$

We must check that this definition works.

Theorem 3.2. $\langle u, v \rangle = \langle x, y \rangle$ iff u = x and v = y.

Proof. \leftarrow If u = x and v = y, then clearly

$$\{\{u\}, \{u, v\}\} = \{\{x\}, \{x, y\}\}$$

$$\begin{split} & ie \ \langle u, v \rangle = \langle x, y \rangle. \\ & \Rightarrow \text{Suppose that} \ \langle u, v \rangle = \langle x, y \rangle, \ ie \ \{\{u\}, \{u, v\}\} = \{\{x\}, \{x, y\}\}. \end{split}$$

Case 1 Suppose that u = v. Then

$$\{\{u\}, \{u, v\}\} = \{\{u\}, \{u, u\}\}$$

= $\{\{u\}, \{u\}\}$
= $\{\{u\}\}$

Since

 $\{\{x\},\{x,y\}\} = \{\{u\}\}$

it follows that

 $\{x\} = \{u\}$ and $\{x, y\} = \{u\}$

Thus x = y = u. Hence u = x and v = y.

Case 2 Suppose that x = y. By a similar argument, we find that x = y = u = v. Hence u = x and v = y.

2006/09/13

Case 3 Suppose that $u \neq v$ and $x \neq y$. Since

 $\{\{u\},\{u,v\}\} = \{\{x\},\{x,y\}\}$

we must have that (a) $\{u\} = \{x\}$ or (b) $\{u\} = \{x, y\}$. Clearly (b) is impossible, since $\{u\}$ contains one element and $\{x, y\}$ contains two elements. Thus $\{u\} = \{x\}$ and so u = x. Also, we must have that (c) $\{u, v\} = \{x\}$ or (d) $\{u, v\} = \{x, y\}$. Again (c) is clearly impossible and so

$$\{u, v\} = \{x, y\} = \{u, y\}$$

It follows that v = y.

Question. Suppose that x, y are sets. Do our current axioms prove that $\langle x, y \rangle$ is a set?

Answer. Yes! Suppose that x, y are sets. Applying the Pairing Axiom, we see that $\{x, y\}$ and $\{x, x\} = \{x\}$ are both sets. Applying the Pairing Axiom once more,

$$\{\{x\}, \{x, y\}\}$$

is also a set.

Definition 3.3. Let A, B be sets. Then their *Cartesian product* is defined to be

$$A \times B = \{ \langle x, y \rangle \mid x \in A \quad \text{and} \quad y \in B \}.$$

Question. Suppose that A, B are sets. Do our current axioms prove that $A \times B$ is a set?

Answer. Yes! But this requires a bit more effort...

Lemma 3.4. Let C be a set. If $x, y \in C$, then $\langle x, y \rangle \in \mathcal{PPC}$.

Proof. Suppose that $x, y \in C$. Then $\{x\} \subseteq C$ and $\{x, y\} \subseteq C$. Thus $\{x\}, \{x, y\} \in \mathcal{P}C$. Hence $\{\{x\}, \{x, y\}\} \subseteq \mathcal{P}C$ and so

$$\{\{x\}, \{x, y\}\} \in \mathcal{PPC}$$

Theorem 3.5. Suppose that A, B are sets. Then there exists a set D such that for all x,

$$x \in D$$
 iff there exists $a \in A$ and $b \in B$ such that $x = \langle a, b \rangle$.

In other words, the Cartesian product of A and B is a set.

Proof. Let A, B be sets. By Pairing, $\{A, B\}$ is a set. By Union, $\bigcup \{A, B\} = A \cup B$ is a set. Applying Powerset twice, we see that $\mathcal{PP}(A \cup B)$ is a set. Furthermore, by the Lemma, $\langle a, b \rangle \in \mathcal{PP}(A \cup B)$ for all $a \in A$ and $b \in B$. By Subset, there exists a set D such that

$$x \in D$$
 iff $x \in \mathcal{PP}(A \cup B)$ and $x = \langle a, b \rangle$ for some $a \in A$ and $b \in B$.

Clearly D satisfies our requirements.

2006/09/13

 $\mathbf{2}$

Definition 3.6. Let A, B be sets. Then f is a *function* from A to B, written $f : A \to B$, iff

- $f \subseteq A \times B$; and
- for each $a \in A$, there exists a unique $b \in B$ such that $\langle a, b \rangle \in f$. We denote this unique element b by f(b).

Definition 3.7. Let A, B be sets. Then

$$B^A = \{ f \mid f \colon A \to B \}.$$

It is easily seen that our current axioms imply that B^A is a set. To see this, note that if $f: A \to B$, then $f \subseteq A \times B$ and so $f \in \mathcal{P}(A \times B)$. By Subset,

$$B^{A} = \{ f \in \mathcal{P}(A \times B) \mid f \text{ is a function from } A \text{ to } B \}$$

is a set.

We shall develop the basic theory of functions in a little while. First we want to introduce the more general notion of a relation. On second thoughts... we'll develop the basic theory of functions.

Definition 3.8. A function $f: A \to B$ is one-to-one / an injection iff for all $a_1, a_2 \in A$ if $a_1 \neq a_2$ then $f(a_1) \neq f(a_2)$.

Example 3.9.

- $f: \mathbb{N} \to \mathbb{N}, f(n) = n + 1$, is an injection.
- $g: \mathbb{Z} \to \mathbb{Z}, g(z) = z^2$, isn't an injection, since g(1) = 1 = g(-1).

Definition 3.10. A function $f: A \to B$ is *onto* / a *surjection* iff for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Example 3.11.

- $f: \mathbb{Z} \to \mathbb{Z}, f(z) = z + 1$, is a surjection.
- $g: \mathbb{N} \to \mathbb{N}, g(n) = n + 1$, isn't a surjection, since there doesn't exist $n \in \mathbb{N}$ such that g(n) = 0.

Definition 3.12. Suppose that $f: A \to B$ and $C \subseteq A$. Then

$$f[C] = \{ f(c) \mid c \in C \}.$$

Thus $f: A \to B$ is a surjection iff f[A] = B.

2006/09/13

Definition 3.13. Suppose that $f: A \to B$ and $g: B \to C$. Then their *composition* is the function $g \circ f: A \to C$ defined by

$$(g \circ f)(a) = g(f(a)).$$

Example 3.14. Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ and $g \colon \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = x^2 + 1$ and $g(x) = \sin(x)$. Then

$$(g \circ f)(x) = g(f(x))$$

= $g(x^2 + 1)$
= $\sin(x^2 + 1)$

$$(f \circ g)(x) = f(g(x))$$

= $f(\sin(x))$
= $\sin^2(x) + 1$

Proposition 3.15. If $f: A \to B$ and $g: B \to C$ are surjections, then $g \circ f: A \to C$ is also a surjection.

Proof. Let $c \in C$. Since g is a surjection, there exists $b \in B$ such that g(b) = c. Since f is a surjection, there exists $a \in A$ such that f(a) = b. Hence

$$(g \circ f)(a) = g(f(a))$$
$$= g(b)$$
$$= c \Box$$

Exercise 3.16. If $f: A \to B$ and $g: B \to C$ are injections, then $g \circ f$ is also an injection.

Definition 3.17. A function $f: A \to B$ is a *bijection* iff f is both an injection and a surjection.

Remark 3.18. Thus $f: A \to B$ is a bijection iff for each $b \in B$ there is a unique $a \in A$ such that f(a) = b.

Example 3.19. For each set A, we define the *identity function* on A

$$I_A \colon A \to A$$

by $I_A(a) = a$. Clearly I_A is a bijection.

Definition 3.20. Suppose that $f: A \to B$ is a bijection. Then we can define the *inverse* function $f^{-1}: B \to A$ by

$$f^{-1}(b)$$
 = the unique $a \in A$ such that $f(a) = b$.

2006/09/13

Remark 3.21. Thus we have that $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$. Also notice that f^{-1} is a bijection and that $(f^{-1})^{-1} = f$. Also notice that

$$f^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in f \}.$$

Proposition 3.22. If $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f: A \to C$ is also a bijection.

Proof. Immediate consequence of the corresponding results for injections and surjections. $\hfill \Box$

Theorem 3.23. If $f: A \to B$ and $g: B \to C$ are bijections, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Example 3.24. Consider $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = 2x and $g \colon \mathbb{R} \to \mathbb{R}$, g(x) = x + 2 etc.

Proof of Theorem. Let $c \in C$. Let $b = g^{-1}(c)$, so that g(b) = c. Let $a = f^{-1}(b)$, so that f(a) = b. Then

$$(g \circ f)(a) = g(f(a))$$
$$= g(b)$$
$$= c$$

Hence $(g \circ f)^{-1}(c) = a$. Also

$$(f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c))$$

= $f^{-1}(b)$
= a

Hence $(g \circ f)^{-1}(c) = (f^{-1} \circ g^{-1})(c)$.