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Dynamics of rational maps

Complex dynamics studies properties of holomorphic maps under iteration. )

Let f:C — C be a rational map, and f" =fo---of be the n-th iterate of f.

@ The Julia set Jr is the closure of the set of repelling fixed points of 7, n> 1.

@ The Fatou set Fr := C~ Jr.
A Fatou component is a connected component of Fr.

Intuition: f behaves “regularly” on F¢ and “chaotically” on Jr.
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Dynamics of rational maps

Complex dynamics studies properties of holomorphic maps under iteration. )

Let f:C — C be a rational map, and f" =fo---of be the n-th iterate of f.

@ The Julia set Jr is the closure of the set of repelling fixed points of 7, n> 1.

@ The Fatou set Fr := C~ Jr.
A Fatou component is a connected component of Fr.

Intuition: f behaves “regularly” on F¢ and “chaotically” on Jr.

Question J

What is the structure of the Julia set and how does it change when we change f7
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After Lunch Menu

©@ Main Course: discuss decomposition results in rational dynamics.
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After Lunch Menu

©@ Main Course: discuss decomposition results in rational dynamics.

Decomposition Theorem [Dudko-H.-Schleicher]

Every postcritically-finite rational map with non-empty Fatou set can be
canonically decomposed into

e Sierpinski carpet maps:
Fatou components are
disjoint Jordan discs

e crochet maps:
any two Fatou components
may be linked via a countable
chain of “touching”
Fatou components
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After Lunch Menu

© Dessert: discuss some connections to other fields.

" Surface Automorphisms N 4 Geometrlc Group Theory N

&N

4 Rational Dynamics N

- J

4 Self-similar Groups N Fractal Geometry N
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Pictures courtesy of C. Bishop, D. Calegary, and C. McMullen
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Starter: Geometrization of surface automorphisms

Thurston’s “topology implies geometry” quest:
@ geometry of 3-manifolds;
@ theory of surface automorphisms;

@ dynamics of rational maps.
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Starter: Geometrization of surface automorphisms

Thurston’s “topology implies geometry” quest:
@ geometry of 3-manifolds;
@ theory of surface automorphisms;

@ dynamics of rational maps.

Theorem [Nielsen'44, Thurston'80s]

Let S be a closed oriented surface with a finite set P of marked points.
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Starter: Geometrization of surface automorphisms

Thurston’s “topology implies geometry”’ quest:

@ geometry of 3-manifolds;
@ theory of surface automorphisms;

@ dynamics of rational maps.

Theorem [Nielsen'44, Thurston'80s]

Let S be a closed oriented surface with a finite set P of marked points.

Every homeomorphism f: (S5, P) - (S, P) can be canonically
decomposed into

@ periodic homeomorphisms

@ and pseudo-Anosov homeomorphisms.
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Decomposition pieces — periodic and pseudo-Anosov maps

Let (S, P) be a closed oriented surface with a finite set P of marked
points and f: (S, P) — (5, P) be an automorphism.
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Decomposition pieces — periodic and pseudo-Anosov maps

Let (S, P) be a closed oriented surface with a finite set P of marked
points and f: (S, P) — (5, P) be an automorphism.

© f is periodic if f¥ is isotopic rel. P to the identity for some k > 0.

Misha Hlushchanka Canonical decomposition of rational maps 6/28



Decomposition pieces — periodic and pseudo-Anosov maps

Let (S, P) be a closed oriented surface with a finite set P of marked
points and f: (S, P) — (5, P) be an automorphism.

© f is periodic if f¥ is isotopic rel. P to the identity for some k > 0.

@ f admits a pseudo-Anosov structure if there are two transverse
foliations of (S, P) by lines

such that:
» f is a A-stretch (with A > 1) along the first foliation, and

» f is a A-contraction along the second one.
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Decomposition scissors — invariant multicurves

Let (S, P) be a marked surface.

@ A simple closed curve v € S\ P is non-essential if v bounds a disc in S with
at most one marked point, and is essential otherwise.

@ A multicurve is a finite family [ of essential curves that are pairwise disjoint
and pairwise non-isotopic rel. P.
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Decomposition scissors — invariant multicurves

Let (S, P) be a marked surface.

@ A simple closed curve v € S\ P is non-essential if v bounds a disc in S with
at most one marked point, and is essential otherwise.

~_ 7~

f

@ A multicurve is a finite family [ of essential curves that are pairwise disjoint
and pairwise non-isotopic rel. P.

@ A multicurve I is invariant if each f(~), v €T, is isotopic rel. P to some
curve 7' €T,
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Geometrization of surface homeomorphisms

Theorem [Nielsen'44, Thurston'80s]

Let S be a closed oriented surface with a finite set P of marked points.

Every homeomorphism f: (S5, P) - (S, P) can be canonically
decomposed along an invariant multicurve into

@ periodic homeomorphisms

@ and pseudo-Anosov homeomorphisms.
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hurston theory of rational maps

Each rational map 7:C — C is a branched covering map, thatis, f is
@ continuous;
@ surjective;

@ locally z+— z¥ k eN, after homeomorphic coordinate changes.
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hurston theory of rational maps

Each rational map 7:C — C is a branched covering map, thatis, f is
@ continuous;
@ surjective;

@ locally z+— z¥ k eN, after homeomorphic coordinate changes.

Question

When a branched cover g:S? — S? is realized by a rational map f:C - C?
(i.e., f and g are conjugate up to isotopy)

Answer: Thuston's characterization of rational maps ('80s).
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hurston theory of rational maps

Each rational map 7:C — C is a branched covering map, thatis, f is
@ continuous;
@ surjective;

@ locally z+— z¥ k eN, after homeomorphic coordinate changes.

Question

When a branched cover g:S? — S? is realized by a rational map f:C - C?
(i.e., f and g are conjugate up to isotopy)

Answer: Thuston's characterization of rational maps ('80s).

Setting:  postcritically finite (pcf) branched covers g:S° — S=.

C; — the set of critical points of g, i.e., points where g is not locally injective.

P :=U;2; 8"(Cq) — the postcritical set of g.

The map g is pcf if #P; < oo
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Example:
f(z) = —%(24 —4z)
Cr = {17 e27Ti/37 e471'i/37 OO}

f is critically fixed, i.e., f(c) =cVce Cs.
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Example:
f(z) = —%(z4 —4z)
Cr = {17 e27Ti/37 e47Ti/37 OO}

f is critically fixed, i.e., f(c) =cVce Cs.

For a pcf rational map f:C — C:
(i) Jr is a compact, connected, locally connected set in C.
(i) Fr={ze C: {f"(2)}nen converges to a periodic critical cycle}.

(iii) Each Fatou component € is simply connected, and 02 is locally connected.
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Example: Tt
f(z) = —%(24 —4z)
Cf _ {17 e27Ti/37 e47Ti/37 OO}

f is critically fixed, i.e., f(c) =cVce Cs.

For a pcf rational map f:C — C:
(i) Jr is a compact, connected, locally connected set in C.
(i) Fr={ze C: {f"(2)}nen converges to a periodic critical cycle}.

(iii) Each Fatou component €2 is simply connected, and 02 is locally connected.

@ pcf rational maps are rather special (it is a countable family);

@ BUT! they are structurally very important.

E.g., the combinatorial structure of the Mandelbrot set " may be
described using pcf maps.
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hurston's characterization — decomposition version

Theorem [Thurston’80s, Pilgrim’03, Selinger'12]

Let £:S? - S? be a pcf branched covering map. Then there is a canonical
invariant multicurve [ 1, such that f decomposes into

@ homeomorphisms ;

@ quotients of torus endomorphisms :

@ and rational maps

Misha Hlushchanka Canonical decomposition of rational maps 11 /28



hurston's characterization — decomposition version

Theorem [Thurston’80s, Pilgrim’03, Selinger'12]

Let £:S? - S? be a pcf branched covering map. Then there is a canonical
invariant multicurve [ 1, such that f decomposes into

@ homeomorphisms ;

@ quotients of torus endomorphisms :

@ and rational maps

Question: Which pcf branched covers f:S? — S? are realized by rational maps?

Answer:  Those for which 'ty is empty
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hurston's characterization — decomposition version

Theorem [Thurston’80s, Pilgrim’03, Selinger'12]

Let £:S? - S? be a pcf branched covering map. Then there is a canonical
invariant multicurve [ 1, such that f decomposes into

@ homeomorphisms ;

@ quotients of torus endomorphisms :

@ and rational maps

Question: Which pcf branched covers f:S? — S? are realized by rational maps?

Answer:  Those for which 'ty is empty

Question

Is there a natural way to decompose pcf rational maps? J
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Matings of polynomials / Unmating of rational maps

Mating of polynomials (Douady-Hubbard'80s):
an operation that combines two polynomials into a branched cover of S?.

Unmating is the reverse procedure.
@ not always applicable;

@ non-canonica | . Picture from Buff, Xavier, et al. "Questions about polynomial matings."
Annales de la Faculté des sciences de Toulouse: Mathématiques . Vol. 21. No. S5. 2012.
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Decomposition wrt the topology of the Julia set

ldea: Use the structure of the Julia set! Namely, touching Fatou components

“many” touching Fatou components no touching Fatou components

Extract maximal clusters of

touching Fatou components
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Decomposition theorem [Dudko-H.-Schleicher]

Let f be a pcf rational map, and Jr and Fr be the Julia and Fatou sets of f.
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Decomposition theorem [Dudko-H.-Schleicher]

Let f be a pcf rational map, and Jr and Fr be the Julia and Fatou sets of f.

@ f is called a Sierpinski carpet map if Jr is homeomorphic to the standard
Sierpinski carpet.

@ f is called a crochet map if every two points in P may be connected by a
path o such that o n Jr is countable.
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Decomposition theorem [Dudko-H.-Schleicher]

Let f be a pcf rational map, and Jr and Fr be the Julia and Fatou sets of f.

@ f is called a Sierpinski carpet map if Jr is homeomorphic to the standard
Sierpinski carpet.

@ f is called a crochet map if every two points in P may be connected by a
path o such that o n Jr is countable.

Main Theorem

Every pcf rational map with 7 # @ can be canonically decomposed
along an invariant multicurve [, into

@ crochet maps

@ and Sierpinski carpet maps.
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Proof ingredients | — Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.
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Proof ingredients | — Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.

ldea: Connect postcritical points by a graph using (pre)periodic internal rays.
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Proof ingredients | — Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.

ldea: Connect postcritical points by a graph using (pre)periodic internal rays.

Examples of crochet maps:

@ pcf polynomials — “connect everything to co”;
@ critically fixed rational maps — “Tischler graphs” of fixed rays [H., Pilgrim et.al.];

@ pcf Newton maps — “extended Newton graphs” [Lodge-Mikulich-Schleicher-Drach].
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Proof ingredients || — Clusters of Fatou components

Let G be a finite f-invariant 0-entropy connected graph.

Define G(™ to be the component of f~"(G) containing G, for each n > 0.

\d

(1) (2)
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Proof ingredients || — Clusters of Fatou components

Let G be a finite f-invariant 0-entropy connected graph.

Define G(™ to be the component of f~"(G) containing G, for each n > 0.
®

L

> S
(1) kfz) "

K

K

Set K" .= L) Qand K:= K — the cluster of G.
QNG+ n
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Proof ingredients || — Clusters of Fatou components

Let G be a finite f-invariant 0-entropy connected graph.

Define G(™ to be the component of f~"(G) containing G, for each n > 0.

R

Set K™ = L) Qand K:= K — the cluster of G.
QNG+ n

®,

@ If x e K is a (pre)periodic point in the cluster K then there is a finite f-invariant
O-entropy connected graph G, > G u {x}.

@ If K’ is another cluster and K' n K # @ then K’ n K contain a (pre)periodic point.
Thus, we may “combine clusters”.
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Proof ingredients ||l — Crochet algorithm

Crochet algorithm

(1) Compute maximal clusters of touching Fatou components.
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Proof ingredients ||l — Crochet algorithm

Crochet algorithm
(1) Compute maximal clusters of touching Fatou components.

(2) Decompose the map with respect to the boundary multicurve of the clusters.
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Proof ingredients ||l — Crochet algorithm

Crochet algorithm
(1) Compute maximal clusters of touching Fatou components.
(2) Decompose the map with respect to the boundary multicurve of the clusters.

(3) lterate (1) and (2) for each small map until all small maps are crochet or Sierpinski.
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Proof ingredients ||l — Crochet algorithm

Crochet algorithm

(1) Compute maximal clusters of touching Fatou components.
(2) Decompose the map with respect to the boundary multicurve of the clusters.
(3) lterate (1) and (2) for each small map until all small maps are crochet or Sierpinski.

(4) Glue small crochet maps that correspond to the same point in the cactoid C/..

v

Misha Hlushchanka

Canonical decomposition of rational maps
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Proof ingredients IV — Maximal cactoid quotients

Consider the equivalence relation ~x on C that collapses all Fatou components, i.e.,
~ 7 is the smallest closed equivalence relation on C, s.t.,

~7 o {(x1,x):x1,x € Q for a Fatou component Q}.
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Proof ingredients IV — Maximal cactoid quotients

Consider the equivalence relation ~x on C that collapses all Fatou components, i.e.,
~ 7 is the smallest closed equivalence relation on C, s.t.,

~7 o {(x1,x):x1,x € Q for a Fatou component Q}.

“squeeze the fractal sponge”
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Proof ingredients |V — Maximal cactoid quotients

Q) ‘ ‘ ‘

Consider the equivalence relation ~x on C that collapses all Fatou components, i.e.,
~ 7 is the smallest closed equivalence relation on C, s.t.,

~7 o {(x1,x):x1,x € Q for a Fatou component Q}.
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Proof ingredients |V — Maximal cactoid quotients

Q)

Consider the equivalence relation ~x on C that collapses all Fatou components, i.e.,
~ 7 is the smallest closed equivalence relation on C, s.t.,

~7 o {(x1,x):x1,x € Q for a Fatou component Q}.

The quotient @/Nf is a sphere cactoid — (the closure of) a tree-like countable union of

@ spheres — small Sierpinski carpet maps;
@ segments — Cantor-like multicurves, i.e., Cantor set x St < Jr:
@ points — small crochet maps.
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rite quotient C/
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Characterization of decomposition [Dudko-H.-Schleicher]

Theorem ‘

Let f be a pcf rational map with Fr + &. There is a unique invariant multicurve I ¢,
such that
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Characterization of decomposition [Dudko-H.-Schleicher]

Theorem ‘

Let f be a pcf rational map with Fr + &. There is a unique invariant multicurve I ¢,
such that

(i) each small map in the decomposition along I .., is either Sierpiriski or crochet

and
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Characterization of decomposition [Dudko-H.-Schleicher]

Theorem

Let f be a pcf rational map with Fr + &. There is a unique invariant multicurve I ¢,
such that

(i) each small map in the decomposition along I .., is either Sierpiriski or crochet

and
(ii) the following are true for the quotient map C — C/. . :

@ Julia sets of small Sierpinski maps project onto spheres;
@ Julia sets of small crochet maps project to points;

@ different small crochet Julia sets project to different points in @/ ~
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opological complexity of Julia sets [Dudko-H.-Schleicher]

The following are equivalent:
(i) f is a crochet map;
(i) C/., is a single point;
(iii) there is a finite f-invariant connected graph G with Pr c G such that
g n Jr is countable.

(iv) there is a finite f-invariant connected graph G with Pr c G such that the
topological entropy of f|G is 0.

(v) there is a countable set S c Jr such that Jr \ S is totally disconnected.
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opological complexity of Julia sets [Dudko-H.-Schleicher]

The following are equivalent:
(i) f is a crochet map;
(i) C/., is a single point;
(iii) there is a finite f-invariant connected graph G with Pr c G such that
g N Jr is countable.

(iv) there is a finite f-invariant connected graph G with Pr c G such that the
topological entropy of f|G is 0.

(v) there is a countable set S c Jr such that Jr \ S is totally disconnected.

4
The following are equivalent:
(i) f is Sierpinski-free, that is, no small Sierpinski carpet maps in any decomposition;
(i) C/., is a dendrite;
(iii) Jr has countable separation property, that is, for each x,y € Jr there is a
countable subset S ¢ Jr such that x and y belong to different connected
components of Jr \ S. )
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Dessert menu: Connections of the decomposition theorem

4 Mapplng Class Groups N 4 Geometrlc Group Theory )
) —~ N\ ai;@
sy | @ Y

\ - y, \ — y,

4 Rational Dynamics N

N /

4 Self-similar Groups N Fractal Geometry N
b

Pictures courtesy of C. Bishop, D. Calegary, and C. McMullen
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Connections to fractal geometry

Question: How can we measure “geometric complexity” of a fractal? )
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Connections to fractal geometry

Question: How can we measure “geometric complexity” of a fractal? )

For example, consider Hausdorff dimension dimpy.
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Connections to fractal geometry

Question: How can we measure “geometric complexity” of a fractal? J

For example, consider Hausdorff dimension dimpy.

Conformal dimension of a metric space X:
ConfDim(X) := inf{dimy()) : metric spaces ) quasisymmetric to X'}
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Connections to fractal geometry

Question: How can we measure “geometric complexity” of a fractal? J

For example, consider Hausdorff dimension dimpy.

Conformal dimension of a metric space X:
ConfDim(X) := inf{dimy()) : metric spaces ) quasisymmetric to X'}
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Similarly, one defines Ahlfors-regular conformal dimension ARConfDim.
(provides natural invariants for boundaries of Gromov hyperbolic groups)
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Geometric complexity of Julia sets

Theorem [Park’'22]
A hyperbolic pcf rational map f is crochet if and only if ARConfDim(Jr) = 1. J

< If f is not crochet, then the Julia set J7 contains Cantor set x S!.

= If f is crochet, then there is a 0-entropy f-invariant graph G o Pr.
G provides a basis for a criterion by [Pilgrim-D.Thurston'21].
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Connections to geometric group theory

Sullivan’s dictionary’85:
a framework relating dynamics of rational maps and Kleinian groups.

,,/a@?'/ ?\E Limit spaces Ag of Kleinian groups G

& o \ (A is the closure of the set
l pﬁ*ﬁiﬁi of repelling fixed points of g € G)

3 ‘& W/ . -
\\\ Z Pictures by C. McMullen

@ Similar objects, results, and even proofs
(e.g., Sullivan’s no-wandering-domain theorems);

Theorem [Carrasco-Mackay'21]
TFAE for a Gromov hyperbolic group G with no 2-torsion and not virtually free:
@ ARConfDim(0w G) =1 if and only if

@ G has a hierarchical decomposition with elementary edge groups and
elementary or virtually Fuchsian vertex groups.
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Theorem [Carrasco-Mackay'21]

Let G be a Gromov hyperbolic group that is not virtually free.
Suppose G has a graph of groups decomposition with elementary edge groups
and vertex groups G;. Then

ARConfDim(0w G) = max (ARConfDim (0 G;), 1).

Question

For maps f with Fr # @ and the decomposing curve [.:

Is  ARConfDim(Jr) = max (ARConfDim(small Julia sets), Q(I'cro)) ?

Conjecture [Bonk-Geyer-Pilgrim]
Let f be an obstructed expanding map. Then ARConfDim(Jr) = Q(I'tn).

Theorem [Bonk-H.-Meyer]|
For each symmetric blown-up (n x n)-Lattés map f we have ARConfDim(Jr) = 2.
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Some further questions

@ Is there a natural way to measure “complexity” of crochet maps?

‘R

i -\ 4

Picture by V Nekrashevych

» Cantor-Bendixson rank of (local) separating sets;
» minimal polynomial growth of generating automata.

@ Is there a natural decomposition of crochet maps?

@ Is there a natural decomposition for the limit spaces of contracting
self-similar groups?
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Mapping Class Groups
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Proof ingredients — Maximal cactoid quotients

Properties of the cactoid quotient Q(f)
Consider : Q(f) - Q(f) and the semi-conjugacy 7+: C - Q(f).

@ Small crochet spheres project under 77 to (marked) points in Q(f) and
small Sierpinski spheres project to spheres in Q(f).

@ The quotient map f: Q(f) — Q(f) is topologically expanding with J== Q(f).

@ Let g: X — X be another expanding quotient of f with J, = X and the
semi-conjugacy mg:C — X. Then 7, factors through 7=

C D+
/w;lﬂ

\X\Z)g

That is, Q(f) is maximal compact expanding quotient.

FC Q(f)
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Connections to mapping class groups

Let f: X — X be a homeomorphism of a compact metric space X.

@ x,y € X are zero-entropy equivalent if there is a (not necessarily invariant)
continuum C > x, y that carries zero entropy.

@ f is tight if every continuum in X carries positive entropy.
Example: pseudo-Anosov maps on closed surfaces.

Theorem [de Carvalho-Paternain’02]

Every Cl1**-diffeomorphism of a closed surface factors to a tight homeomorphism
on a generalized cactoid by a semi-conjugacy whose fibers carry zero entropy.
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Connections to self-similar groups
Iterated monodromy groups [Nekrashevych’00s]

Let f:C — C be a pcf rational map and t € C \ P be a basepoint.

t

Preimage tree of t: f=1(t)
LInzo f"(2)

f2(t)

f3(t)

Misha Hlushchanka Canonical decomposition of rational maps 3/27



Connections to self-similar groups
Iterated monodromy groups [Nekrashevych’00s]

Let f:C — C be a pcf rational map and t € C \ P be a basepoint.

t

Preimage tree of t: f=1(t)
LInzo f"(2)

f2(t)

f3(t)

m1(C ~\ P, t) ~ f1(t) by the monodromy action

Misha Hlushchanka Canonical decomposition of rational maps 3/27



Connections to self-similar groups
Iterated monodromy groups [Nekrashevych’00s]

Let f:C — C be a pcf rational map and t € C \ P be a basepoint.

t

Preimage tree of t: f=1(t)
LInzo f"(2)

f2(t)

f3(t)

m1(C ~\ P, t) ~ f1(t) by the monodromy action

1 (C N Pr,t) ~ %2, F"(t) — iterated monodromy action

Misha Hlushchanka Canonical decomposition of rational maps 3/27



Connections to self-similar groups
Iterated monodromy groups [Nekrashevych’00s]

Let f:C — C be a pcf rational map and t € C \ P be a basepoint.

t

Preimage tree of t: f=1(t)
LInzo f"(2)

f2(t)

f3(t)

m1(C ~\ P, t) ~ f1(t) by the monodromy action

1 (C N Pr,t) ~ %2, F"(t) — iterated monodromy action

IMG(f) := 71 (C \ Pf, t)/ ker — iterated monodromy group
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lterated monodromy groups

@ IMG’s provide a useful computable algebraic invariant in complex dynamics.
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lterated monodromy groups

@ IMG’s provide a useful computable algebraic invariant in complex dynamics.

@ IMG’s frequently have “exotic” algebraic properties:

» IMG(z* + i) is of intermediate growth [Bux-Perez'06];

» IMG(z* - 1) is an amenable but not subexponentially amenable group
[Bartholdi-Virag'05].
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lterated monodromy groups

@ IMG’s provide a useful computable algebraic invariant in complex dynamics.

@ IMG’s frequently have “exotic” algebraic properties:

» IMG(z* + i) is of intermediate growth [Bux-Perez'06];

» IMG(z* - 1) is an amenable but not subexponentially amenable group
[Bartholdi-Virag'05].

@ IMG(f) is a contracting self-similar group, so its action may be described by a
finite automaton.
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Self-similar groups

Let X be a finite alphabet, T = X™ be the tree of words in X, and G < Aut(T).
@ G is self-similar if VgeG,VveT: g|, €G.
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Self-similar groups

Let X be a finite alphabet, T = X™ be the tree of words in X, and G < Aut(T).
@ G is self-similar if VgeG,VveT: g|, €G.
@ G is contracting if 3 finite nucleus N c G s.t. Vge G,3n: g|, e N if |v| > n.

@ Contracting self-similar groups G enjoy a natural notion of a limit space Js.

Theorem [Nekrashevych'00s] For a pcf rational map f we have:

IMG(f) is contracting and generated by its nucleus;

the Julia set Jr is homeomorphic to the limit set Jimg(r)-
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Question

Are there connections between dynamical properties of rational maps and algebraic
properties of their IMG's?
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Question

Are there connections between dynamical properties of rational maps and algebraic
properties of their IMG's?

_4
Theorem [Dudko-H.-Schleicher]
f is crochet < IMG(f) is generated by an automaton of polynomial growth.
Vg e IMG(f): #{veX" g|, #id} < n® for some fixed d.
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Question

Are there connections between dynamical properties of rational maps and algebraic
properties of their IMG's?

Theorem [Dudko-H.-Schleicher]

f is crochet < IMG(f) is generated by an automaton of polynomial growth.
Vg e IMG(f): #{veX" g|, #id} s n° for some fixed d.

Corollary
Let f be a crochet map. Then IMG(f) is amenable. J

Based on a criterion for amenability [Juschenko-Nekrashevych-de la Salle], which needs:

(1) recurrence of the simple random walk on the orbital Schreier graphs of IMG(f)
[Nekrashevych-Pilgrim-D. Thurston];

(2) IMG(f) has polynomial activity growth [Dudko-H.-Schleicher].
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Question

Are there connections between dynamical properties of rational maps and algebraic
properties of their IMG's?

Theorem [Dudko-H.-Schleicher]

f is crochet < IMG(f) is generated by an automaton of polynomial growth.
Vg e IMG(f): #{veX" g|, #id} s n° for some fixed d.

Corollary
Let f be a crochet map. Then IMG(f) is amenable. J

Based on a criterion for amenability [Juschenko-Nekrashevych-de la Salle|, which needs:

(1) recurrence of the simple random walk on the orbital Schreier graphs of IMG(f)
[Nekrashevych-Pilgrim-D. Thurston];

(2) IMG(f) has polynomial activity growth [Dudko-H.-Schleicher].

Theorem [Matte Bon-Nekrashevych-Zheng'23]
Let f be a pcf rational map with Fr + @. Then IMG(f) is amenable. J
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Decomposition theory [Pilgrim]
Let 7:S? - S? be a pcf branched covering map.

A multicurve I is f-invariant if:

(i) f1(I') cT: each essential component of f~*(I") is isotopic rel. Pr to a curve in I

(i) T c f(I): each curve in I is isotopic rel. Pr to a component of f~(I).
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Decomposition theory [Pilgrim]
Let 7:S? - S? be a pcf branched covering map.

A multicurve I is f-invariant if:

(i) f1(I') cT: each essential component of f~*(I") is isotopic rel. Pr to a curve in I

(i) T cf(I): each curve in I is isotopic rel. Pr to a component of f"l(r).
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A small sphere 52 is a connected component of S \ T, which we view as a finitely
punctured sphere.

For a periodic small sphere S2, the first return map k.52 - G2
of f to 5?2 is called a small map.
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