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Dynamics of rational maps

Complex dynamics studies properties of holomorphic maps under iteration.

Let f ∶ Ĉ→ Ĉ be a rational map, and f n = f ○ ⋅ ⋅ ⋅ ○ f be the n-th iterate of f .

The Julia set Jf is the closure of the set of repelling fixed points of f n, n ≥ 1.
The Fatou set Ff ∶= Ĉ �Jf .
A Fatou component is a connected component of Ff .

Intuition: f behaves “regularly” on Ff and “chaotically” on Jf .

Question
What is the structure of the Julia set and how does it change when we change f ?

Misha Hlushchanka Canonical decomposition of rational maps 2 / 28


































































Dynamics of rational maps

Complex dynamics studies properties of holomorphic maps under iteration.
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After Lunch Menu

1 Main Course: discuss decomposition results in rational dynamics.

Decomposition Theorem [Dudko-H.-Schleicher]

Every postcritically-finite rational map with non-empty Fatou set can be

canonically decomposed into

● Sierpiński carpet maps:

Fatou components are
disjoint Jordan discs

● crochet maps:

any two Fatou components
may be linked via a countable
chain of “touching”
Fatou components
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After Lunch Menu

2 Dessert: discuss some connections to other fields.

Rational Dynamics

Geometric Group Theory

Fractal GeometrySelf-similar Groups

Surface Automorphisms

Pictures courtesy of C. Bishop, D. Calegary, and C. McMullen
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Starter: Geometrization of surface automorphisms

Thurston’s “topology implies geometry” quest:

geometry of 3-manifolds;

theory of surface automorphisms;

dynamics of rational maps.

Theorem [Nielsen’44, Thurston’80s]

Let S be a closed oriented surface with a finite set P of marked points.

Every homeomorphism f ∶ (S ,P)→ (S ,P) can be canonically

decomposed into

periodic homeomorphisms

and pseudo-Anosov homeomorphisms.
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Decomposition pieces – periodic and pseudo-Anosov maps

Let (S ,P) be a closed oriented surface with a finite set P of marked

points and f ∶ (S ,P)→ (S ,P) be an automorphism.

1 f is periodic if f k is isotopic rel. P to the identity for some k > 0.

2 f admits a pseudo-Anosov structure if there are two transverse

foliations of (S ,P) by lines (with singularities at finitely many points)

such that:

� f is a �-stretch (with � > 1) along the first foliation, and

� f is a �-contraction along the second one.
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Decomposition scissors – invariant multicurves

Let (S ,P) be a marked surface.

A simple closed curve � ∈ S � P is non-essential if � bounds a disc in S with

at most one marked point, and is essential otherwise.

A multicurve is a finite family � of essential curves that are pairwise disjoint

and pairwise non-isotopic rel. P .

A multicurve � is invariant if each f (�), � ∈ �, is isotopic rel. P to some

curve �′ ∈ �.
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Geometrization of surface homeomorphisms

Theorem [Nielsen’44, Thurston’80s]

Let S be a closed oriented surface with a finite set P of marked points.

Every homeomorphism f ∶ (S ,P)→ (S ,P) can be canonically

decomposed along an invariant multicurve into

periodic homeomorphisms

and pseudo-Anosov homeomorphisms.
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Thurston theory of rational maps

Each rational map f ∶ Ĉ→ Ĉ is a branched covering map, that is, f is

continuous;

surjective;

locally z � zk , k ∈ N, after homeomorphic coordinate changes.

Question

When a branched cover g ∶S2 → S
2
is realized by a rational map f ∶ Ĉ→ Ĉ?

(i.e., f and g are conjugate up to isotopy)

Answer: Thuston’s characterization of rational maps (’80s).

Setting: postcritically finite (pcf) branched covers g ∶S2 → S
2
.

Cg – the set of critical points of g , i.e., points where g is not locally injective.

Pg ∶= �∞n=1 gn(Cg) – the postcritical set of g .

The map g is pcf if #Pg <∞, i.e., each critical point has finite orbit.
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Example:

f (z) = − 1

3
(z4 − 4z)

Cf = {1, e2⇡i�3, e4⇡i�3,∞}
f is critically fixed, i.e., f (c) = c ∀c ∈ Cf .

For a pcf rational map f ∶ Ĉ→ Ĉ:

(i) Jf is a compact, connected, locally connected set in Ĉ.

(ii) Ff = �z ∈ Ĉ ∶ {f n(z)}n∈N converges to a periodic critical cycle�.
(iii) Each Fatou component ⌦ is simply connected, and @⌦ is locally connected.

pcf rational maps are rather special (it is a countable family);

BUT! they are structurally very important.

E.g., the combinatorial structure of the Mandelbrot set may be

described using pcf maps.
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(i) Jf is a compact, connected, locally connected set in Ĉ.
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Thurston’s characterization — decomposition version

Theorem [Thurston’80s, Pilgrim’03, Selinger’12]

Let f ∶S2 → S
2
be a pcf branched covering map. Then there is a canonical

invariant multicurve �Th (possibly empty) such that f decomposes into

homeomorphisms (elliptic type);

quotients of torus endomorphisms (parabolic type);

and rational maps (hyperbolic type).

Proof: Iteration on a Teichmüller space (the space of complex structures on (S2,Pf )).

Question: Which pcf branched covers f ∶S2 → S
2
are realized by rational maps?

Answer: Those for which �Th is empty (for maps f with hyperbolic orbifold).

Question

Is there a natural way to decompose pcf rational maps?
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Matings of polynomials / Unmating of rational maps

Mating of polynomials (Douady-Hubbard’80s):

an operation that combines two polynomials into a branched cover of S
2
.

Unmating is the reverse procedure.

not always applicable;

non-canonical.
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Picture from Buff, Xavier, et al. "Questions about polynomial matings." 

Annales de la Faculté des sciences de Toulouse: Mathématiques . Vol. 21. No. S5. 2012.



Decomposition wrt the topology of the Julia set

Idea: Use the structure of the Julia set! Namely, touching Fatou components

“many” touching Fatou components no touching Fatou components

Extract maximal clusters of

touching Fatou components
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Decomposition theorem [Dudko-H.-Schleicher]

Let f be a pcf rational map, and Jf and Ff be the Julia and Fatou sets of f .

f is called a Sierpiński carpet map if Jf is homeomorphic to the standard

Sierpiński carpet.

f is called a crochet map if every two points in Pf may be connected by a

path ↵ such that ↵ ∩Jf is countable.

Main Theorem
Every pcf rational map with Ff ≠ � can be canonically decomposed

along an invariant multicurve �cro into

crochet maps

and Sierpiński carpet maps.

Remark: True in a more general setup of Böttcher expanding maps
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and Sierpiński carpet maps.

Remark: True in a more general setup of Böttcher expanding maps
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Proof ingredients I – Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.

Idea: Connect postcritical points by a graph using (pre)periodic internal rays.

Examples of crochet maps:

pcf polynomials – “connect everything to ∞”;

critically fixed rational maps – “Tischler graphs” of fixed rays [H., Pilgrim et.al.];

pcf Newton maps – “extended Newton graphs” [Lodge-Mikulich-Schleicher-Drach].

Misha Hlushchanka Canonical decomposition of rational maps 15 / 28














































































Proof ingredients I – Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.

Idea: Connect postcritical points by a graph using (pre)periodic internal rays.

Examples of crochet maps:

pcf polynomials – “connect everything to ∞”;

critically fixed rational maps – “Tischler graphs” of fixed rays [H., Pilgrim et.al.];

pcf Newton maps – “extended Newton graphs” [Lodge-Mikulich-Schleicher-Drach].

Misha Hlushchanka Canonical decomposition of rational maps 15 / 28














































































Proof ingredients I – Graphs of internal rays

Observation (Pilgrim)

Touching Fatou components contain (pre)periodic internal rays landing at a common
(pre)periodic point.

Idea: Connect postcritical points by a graph using (pre)periodic internal rays.

Examples of crochet maps:

pcf polynomials – “connect everything to ∞”;

critically fixed rational maps – “Tischler graphs” of fixed rays [H., Pilgrim et.al.];

pcf Newton maps – “extended Newton graphs” [Lodge-Mikulich-Schleicher-Drach].

Misha Hlushchanka Canonical decomposition of rational maps 15 / 28














































































Proof ingredients II – Clusters of Fatou components

Let G be a finite f -invariant 0-entropy connected graph.

Define G(n) to be the component of f −n(G) containing G, for each n ≥ 0.

Set K (n) ∶= �
⌦∩Gn≠�⌦ and K ∶=�

n
K (n) – the cluster of G.

If x ∈ K is a (pre)periodic point in the cluster K then there is a finite f -invariant
0-entropy connected graph Gx ⊃ G ∪ {x}.
If K ′ is another cluster and K ′ ∩K ≠ � then K ′ ∩K contain a (pre)periodic point.
Thus, we may “combine clusters”.
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Proof ingredients III — Crochet algorithm

Crochet algorithm
(1) Compute maximal clusters of touching Fatou components.

(2) Decompose the map with respect to the boundary multicurve of the clusters.

(3) Iterate (1) and (2) for each small map until all small maps are crochet or Sierpiński.

(4) Glue small crochet maps that correspond to the same point in the cactoid Ĉ�∼F .

Misha Hlushchanka Canonical decomposition of rational maps 17 / 28














































































Proof ingredients III — Crochet algorithm

Crochet algorithm
(1) Compute maximal clusters of touching Fatou components.

(2) Decompose the map with respect to the boundary multicurve of the clusters.

(3) Iterate (1) and (2) for each small map until all small maps are crochet or Sierpiński.
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Proof ingredients IV — Maximal cactoid quotients

Consider the equivalence relation ∼F on Ĉ that collapses all Fatou components, i.e.,∼F is the smallest closed equivalence relation on Ĉ, s.t.,

∼F ⊃ {(x1, x2) ∶ x1, x2 ∈ ⌦ for a Fatou component ⌦}.

The quotient Ĉ�∼F is a sphere cactoid – (the closure of) a tree-like countable union of

spheres – small Sierpiński carpet maps;

segments – Cantor-like multicurves, i.e., Cantor set × S1 � Jf ;

points – small crochet maps.
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“squeeze the fractal sponge”
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Consider the equivalence relation ∼F on Ĉ that collapses all Fatou components, i.e.,∼F is the smallest closed equivalence relation on Ĉ, s.t.,
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Dendrite quotient Ĉ�∼F
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Characterization of decomposition [Dudko-H.-Schleicher]

Theorem
Let f be a pcf rational map with Ff ≠ �. There is a unique invariant multicurve �cro

such that

(i) each small map in the decomposition along �cro is either Sierpiński or crochet

and
(ii) the following are true for the quotient map Ĉ→ Ĉ�∼F :

Julia sets of small Sierpiński maps project onto spheres;

Julia sets of small crochet maps project to points;

di↵erent small crochet Julia sets project to di↵erent points in Ĉ�∼F .
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Topological complexity of Julia sets [Dudko-H.-Schleicher]

The following are equivalent:

(i) f is a crochet map;

(ii) Ĉ�∼F is a single point;

(iii) there is a finite f -invariant connected graph G with Pf ⊂ G such thatG ∩Jf is countable.

(iv) there is a finite f -invariant connected graph G with Pf ⊂ G such that the
topological entropy of f �G is 0.

(v) there is a countable set S ⊂ Jf such that Jf � S is totally disconnected.

The following are equivalent:

(i) f is Sierpiński-free, that is, no small Sierpiński carpet maps in any decomposition;

(ii) Ĉ�∼F is a dendrite;

(iii) Jf has countable separation property, that is, for each x , y ∈ Jf there is a
countable subset S ⊂ Jf such that x and y belong to di↵erent connected
components of Jf � S .
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Dessert menu: Connections of the decomposition theorem

Rational Dynamics

Geometric Group Theory

Fractal GeometrySelf-similar Groups

Mapping Class Groups

Pictures courtesy of C. Bishop, D. Calegary, and C. McMullen
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Connections to fractal geometry

Question: How can we measure “geometric complexity” of a fractal?

For example, consider Hausdor↵ dimension dimH.

Conformal dimension of a metric space X :
ConfDim(X ) ∶= inf{dimH(Y) ∶ metric spaces Y quasisymmetric to X}

Picture by C. Bishop

Similarly, one defines Ahlfors-regular conformal dimension ARConfDim.

(provides natural invariants for boundaries of Gromov hyperbolic groups)
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Geometric complexity of Julia sets

Theorem [Park’22]

A hyperbolic pcf rational map f is crochet if and only if ARConfDim(Jf ) = 1.
⇐ If f is not crochet, then the Julia set Jf contains Cantor set × S1.
⇒ If f is crochet, then there is a 0-entropy f -invariant graph G ⊃ Pf .G provides a basis for a criterion by [Pilgrim-D.Thurston’21].
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Connections to geometric group theory

Sullivan’s dictionary’85:

a framework relating dynamics of rational maps and Kleinian groups.

Limit spaces ⇤G of Kleinian groups G

(⇤G is the closure of the set

of repelling fixed points of g ∈ G)

Pictures by C. McMullen

Similar objects, results, and even proofs

(e.g., Sullivan’s no-wandering-domain theorems);

Theorem [Carrasco-Mackay’21]

TFAE for a Gromov hyperbolic group G with no 2-torsion and not virtually free:

ARConfDim(@∞G) = 1 if and only if

G has a hierarchical decomposition with elementary edge groups and
elementary or virtually Fuchsian vertex groups.
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Theorem [Carrasco-Mackay’21]

Let G be a Gromov hyperbolic group that is not virtually free.

Suppose G has a graph of groups decomposition with elementary edge groups

and vertex groups Gi . Then

ARConfDim(@∞G) = max (ARConfDim(@∞Gi), 1) .
Question

For maps f with Ff ≠ � and the decomposing curve �cro:

Is ARConfDim(Jf ) = max (ARConfDim(small Julia sets), Q(�cro)) ?

Conjecture [Bonk-Geyer-Pilgrim]

Let f be an obstructed expanding map. Then ARConfDim(Jf ) = Q(�Th).
Theorem [Bonk-H.-Meyer]

For each symmetric blown-up (n × n)-Lattès map f we have ARConfDim(Jf ) = 2.
Misha Hlushchanka Canonical decomposition of rational maps 26 / 28














































































Some further questions

Is there a natural way to measure “complexity” of crochet maps?

Picture by V. Nekrashevych

� Cantor-Bendixson rank of (local) separating sets;

� minimal polynomial growth of generating automata.

Is there a natural decomposition of crochet maps?

Is there a natural decomposition for the limit spaces of contracting

self-similar groups?
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THANK YOU!
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Proof ingredients — Maximal cactoid quotients

Properties of the cactoid quotient Q(f )
Consider f̃ ∶Q(f )→ Q(f ) and the semi-conjugacy ⇡f̃ ∶ Ĉ→ Q(f ).

Small crochet spheres project under ⇡f̃ to (marked) points in Q(f ) and
small Sierpiński spheres project to spheres in Q(f ).
The quotient map f̃ ∶Q(f )→ Q(f ) is topologically expanding with Jf̃ = Q(f ).
Let g ∶X → X be another expanding quotient of f with Jg = X and the
semi-conjugacy ⇡g ∶ Ĉ→ X . Then ⇡g factors through ⇡f̃ .

Ĉ

Q(f )
X

⇡f̃ ⇡g

f

f̃

g

That is, Q(f ) is maximal compact expanding quotient.
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Connections to mapping class groups

Let f ∶X → X be a homeomorphism of a compact metric space X .

x , y ∈ X are zero-entropy equivalent if there is a (not necessarily invariant)

continuum C ∋ x , y that carries zero entropy.

f is tight if every continuum in X carries positive entropy.

Example: pseudo-Anosov maps on closed surfaces.

Theorem [de Carvalho-Paternain’02]

Every C 1+↵
-di↵eomorphism of a closed surface factors to a tight homeomorphism

on a generalized cactoid by a semi-conjugacy whose fibers carry zero entropy.
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Connections to self-similar groups

Iterated monodromy groups [Nekrashevych’00s]

Let f ∶ Ĉ→ Ĉ be a pcf rational map and t ∈ Ĉ � Pf be a basepoint.

t

f −1(t)

f −2(t)

f −3(t)

Preimage tree of t:

�∞n=0 f −n(t)

⇡1(Ĉ � Pf , t)� f −1(t) by the monodromy action

⇡1(Ĉ � Pf , t)� �∞n=0 f −n(t) — iterated monodromy action

IMG(f ) ∶= ⇡1(Ĉ � Pf , t)� ker — iterated monodromy group
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Iterated monodromy groups

IMG’s provide a useful computable algebraic invariant in complex dynamics.

IMG’s frequently have “exotic” algebraic properties:
� IMG(z2 + i) is of intermediate growth [Bux-Perez’06];
� IMG(z2 − 1) is an amenable but not subexponentially amenable group

[Bartholdi-Virag’05].

IMG(f ) is a contracting self-similar group, so its action may be described by a
finite automaton.

z2 − 1 ∶

z2 + i ∶
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Self-similar groups

Let X be a finite alphabet, T = X ∗ be the tree of words in X , and G < Aut(T).
G is self-similar if ∀g ∈ G ,∀v ∈ T ∶ g �v ∈ G .

G is contracting if ∃ finite nucleus N ⊂ G s.t. ∀g ∈ G ,∃n ∶ g �v ∈N if �v � ≥ n.
Contracting self-similar groups G enjoy a natural notion of a limit space JG .

Theorem [Nekrashevych’00s] For a pcf rational map f we have:

� IMG(f ) is contracting and generated by its nucleus;

� the Julia set Jf is homeomorphic to the limit set JIMG(f ).
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Question
Are there connections between dynamical properties of rational maps and algebraic
properties of their IMG’s?

Theorem [Dudko-H.-Schleicher]

f is crochet ⇔ IMG(f ) is generated by an automaton of polynomial growth.∀g ∈ IMG(f ) ∶ #{v ∈ X n∶ g �v ≠ id} � nd for some fixed d .

Corollary

Let f be a crochet map. Then IMG(f ) is amenable.

Based on a criterion for amenability [Juschenko-Nekrashevych-de la Salle], which needs:

(1) recurrence of the simple random walk on the orbital Schreier graphs of IMG(f )
[Nekrashevych-Pilgrim-D. Thurston];

(2) IMG(f ) has polynomial activity growth [Dudko-H.-Schleicher].

Theorem [Matte Bon-Nekrashevych-Zheng’23]

Let f be a pcf rational map with Ff ≠ �. Then IMG(f ) is amenable.
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Decomposition theory [Pilgrim]

Let f ∶S2 → S
2 be a pcf branched covering map.

A multicurve � is f -invariant if:

(i) f −1(�) ⊂ �: each essential component of f −1(�) is isotopic rel. Pf to a curve in �.

(ii) � ⊂ f −1(�): each curve in � is isotopic rel. Pf to a component of f −1(�).

A small sphere Ŝ2 is a connected component of S2 � �, which we view as a finitely
punctured sphere.

For a periodic (up to isotopy rel. Pf ) small sphere Ŝ2, the first return map f k ∶ Ŝ2 → Ŝ2

of f to Ŝ2 is called a small map.
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