The Model Theory of the Curve Graph

Valentina Disarlo

Universität Heidelberg

メロトメ 倒 トメ ミトメ ヨト

目

 298

joint work with T. Koberda (Virginia) and J. de la Nuez Gonzàlez (KIAS)

メロトメ 御 トメ き トメ き ト

 299

活

Overview

- ² [Our model-theoretic approach](#page-12-0)
- ³ [The model theory of the curve graph](#page-24-0)
	- *C*[-structures](#page-25-0)
	- **•** [Definable sets](#page-28-0)
	- [Interpretations of structures](#page-31-0)
	- [Morley rank](#page-37-0)
	- [Quantifier elimination](#page-42-0)

D. 化重新润滑

 209

Simplicial actions of the mapping class group

Let *S* be a topological surface of finite type. The **mapping class group** of *S* is

 $Mod(S) := \{ \phi : S \rightarrow S \text{ homogeneous } \} / \text{isotopy}.$

studying $G \leq Mod(S) \longleftrightarrow G \sim \mathcal{K}(S)$ "nice" simplicial complex

The simplicial complex $K(S)$ encodes the combinatorics of various "useful" topological objects on *S*: curves, arcs, triangulations...

- (Hatcher-Thurston '80s) Mod(*S*) is finitely presented
- (Harer '80s) homology/cohomology of Mod(*S*)
- (Farb, Hamenstaedt, . . . '00s) Coarse Geometry of Mod(*S*)
- (... '20s) **Model Theory of** Mod(*S*) ???

イロト イ何 トイヨ トイヨ トー

 QQ

Simplicial actions of the mapping class group: the curve complex C(*S*)

The **curve complex** $C(S)$ is a simplicial complex encoding the combinatorics of simple essential closed curves on *S* (taken up to isotopy):

- **e** each vertex corresponds to a s. e. closed curve on *S* (up iso.);
- \bullet two vertices are joined by an edge if the curves are disjoint on *S* (up iso);
- \bullet $k + 1$ vertices span a *k*-simplex if the curves are pairwise disjoint (up iso).

Figure: $V(C(S)) = \{ [s. e. closed curves] \}$ and $E(C(S)) = \{$ "being disjoint" $\}$

 $Mod(S)$ acts on $C(S)$ by simplicial automorphisms.

∢ □ ▶ ∢r¶ ▶ ∢ ∃ ▶ ∢

Simplicial actions of the mapping class group: the curve complex C(*S*)

The curve complex $C(S)$ is connected, ∞ -diameter, locally infinite.

Applications: 3-manifolds, Teichmüller theory, GGT of Mod(*S*)

Ivanov '87 Aut C(*S*) ≅ Mod(*S*) ≅ Iso(Teich(*S*), *dTeich*)

Masur-Minsky '99 The curve graph C(*S*) is Gromov-hyperbolic Masur-Schleimer '13 Under "good hypothesis" K(*S*) are Gromov-hyperbolic. Betsvina-Bromberg-Fujiwara '15 Mod(*S*) has finite asymptotic dimension

イロト イ押ト イヨト イヨ

Simplicial actions of the mapping class group: Ivanov Theorem

Theorem (Ivanov '87, Luo '00)

If S is non-sporadic then $Mod(S) \cong Aut C(S) \cong Iso(Teich(S), d_T)$.

Many other graphs $\mathcal{K}(S)$ such that Aut $\mathcal{K}(S) \cong Mod(S)$.

イロト イ押ト イヨト イヨ

[Ivanov Metaconjecture](#page-3-0)

[Our model-theoretic approach](#page-12-0) [The model theory of the curve graph](#page-24-0) [The main theorem: sketch of the proof](#page-45-0)

Simplicial actions of the mapping class group

Ivanov Metaconjecture

Figure: Pants graph $P(S)$: each vertex is a pants decomposition

Figure: Pants graph $P(S)$: each edge corresponds to an elementary move

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

つへへ

A metaconjecture by Ivanov

Meta-conjecture (Ivanov '10s)

Every **object naturally associated** to a surface *S* and having a **sufficiently rich structure** has Mod(*S*) as its groups of automorphisms. Moreover, this can be proved by a **reduction** to the theorem about Aut $C(S)$.

- **object naturally associated** ???
- **sufficiently rich** ???
- **reduction** ???

∢ □ ▶ ∢ n³

14 B K 4 B

 209

A metaconjecture by Ivanov: the graph of domains Γ(*S*)

Counterexample (McCarthy-Papadopoulos'10): Graph of domains Γ(*Sg*,*n*)

 $V(\Gamma(S_{g,n})) = \{$ connected subsurfaces $R \subset S$ (up to isotopy) } $E(\Gamma(S_{g,n})) = \{$ being disjoint (up to isotopy) $\}$

If $n \geq 2$ then Aut $\Gamma(S_{g,n})$ is **much larger** than Mod($S_{g,n}$).

Figure: Adjacency relation on Γ(*S*)

イロト イ押 トイヨ トイヨ

Brendle-Margalit's topological approach

Theorem (Brendle-Margalit '17)

Let R(*Sg*) *be a connected subgraph of* Γ(*Sg*) *such that no vertex is a hole or a cork. There exists a constant* $c(V(\mathcal{R}))$ *such that for every* $g \geq c(V(\mathcal{R}))$ *:*

Aut $\mathcal{R}(S_{g}) \cong Mod(S_{g})$

Figure: Corks and Holes

Brendle-Margalit's topological approach

Applications to normal subgroups of the mapping class group.

Open Problem: Extend Brendle-Margalit's work to other classes of complexes, which are popular in geometric group theory:

- graphs on punctured surfaces;
- graphs of (multi-)arcs;
- **quaphs of (multi-)curves where the edge relation is not disjointness;**
- graphs of multi-regions.

Some progress: McLeay '18 , Aougab-Loving et. al '19

イロト イ押ト イヨト イヨト

Our model-theoretic approach

メロメメ 倒 メメ きょく きょう

重

 299

Model theory machinery in a nutshell

- \bullet a first-order **structure** M on a language \mathcal{L} ;
- ² **definable** subsets of M, with a notion of "dimension" (the **Morley rank**);
- **3** interpretation for \mathcal{L} -structures $\mathcal{M} \rightarrow \mathcal{N}$: if two structures M and N are **bi-interpretable** then

Aut $(\mathcal{M}) \cong$ Aut (\mathcal{N}) ;

⁴ Shelah's **classification theory** provides invariants of interpretability: Morley rank of definable sets, ω -stability, etc...

 Ω

∢ ロ ▶ ィ伺 ▶ ィ ヨ ▶ ィ ヨ ▶

Model theory machinery: the curve graph C(*S*)

The curve graph $C(S)$ is actually a $\mathcal L$ **-structure** with $\mathcal L$ = $\{\mathcal E^2\}$ be the language of "edge-adjacency".

In 1987 Ivanov actually proves that these sets are **definable** in Th(C(*S*)):

- $\bullet \mathcal{N} = \{ \gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a nonseparating curve } \};$
- $S = \{ \gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a separating curve } \};$
- $\mathcal{I} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 1\};$
- $\mathcal{J} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 2 \text{ and } \text{Fill}(\alpha, \beta) \cong S_{0,4}\}.$

 209

イロト イ押ト イヨト イヨト

A model-theoretical frame for Ivanov's metaconjecture

Meta-conjecture (Ivanov '06)

Every **object naturally associated** to a surface *S* and having a **sufficiently rich structure** has Mod(*S*) as its groups of automorphisms. Moreover, this can be proved by a **reduction** to the theorem about Aut $C(S)$.

Model-theoretic Reformulation // Exercise Every L**-structure** K(*S*) **bi-interpretable with** $C(S)$ has $Mod(S)$ as its group of automorphisms. Moreover, this **follows** by a **reduction** to the theorem about Aut C(*S*). Indeed, by bi-interpretability we have:

$$
\text{Aut }\mathcal{K}(S) \cong \text{Aut }\mathcal{C}(S) \stackrel{IV.}{\cong} \text{Mod}(S) .
$$

Motivating questions in our work

Many other configurations of arcs and curves can be described with first-order formulas, in particular many graphs *X*(*S*) have

Aut $X(S) \cong Mod(S)$.

 \bullet Is *X(S)* interpretable/bi-interpretable with $C(S)$?

 ω -stability is a natural obstruction to (bi-)interpretability.

• Understand the stability type of $C(S)$ (or $X(S)$): is $C(S)$ w-stable ?

イロト イ押ト イヨト イヨト

 209

Our results: the first-order theory of C(*S*)

The **Morley rank** measures the "dimension" of definable sets of M:

MR : { definable sets in \mathcal{M} } \rightarrow {−1} ∪ Ord ∪ {∞}

If every definable set *X* has $MR(X) \in \{-1\} \cup Ord$ then $Th(\mathcal{M})$ is ω -stable.

Theorem (D. – Koberda – de la Nuez Gonzàlez)

Let S be a non-sporadic surface. Then $\text{Th}(C(S))$ *is* ω -stable. If *S* has genus g *and n punctures, then we have:*

 $MR(\text{Th}(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

イロト イ何 トイヨ トイヨ トー

Our results: ω -stability and interpretability of geometric graphs

We define $X(S) = (V(X(S)) : E(X(S)))$ geometric if $\exists N > 0$:

- Each *v* ∈ *V*(*X*(*S*)) is made by at most *N* curves or arcs;
- Mod(*S*) acts on *X*(*S*) via its action on curves and arcs with

 $V(X(S))$ /Mod(*S*) finite and $E(X(S))$ /Mod(*S*) finite .

Theorem (D. – Koberda – de la Nuez Gonzàlez)

Every geometric graph X(*S*) *is interpretable in* C(*S*)*.*

Corollary

Every geometric graph X(*S*) *is* ω*-stable.*

 Ω

イロト イ押ト イヨト イヨト

Our results: ω -stability and interpretability of geometric graphs

Geometric graphs include the following:

- the Hatcher-Thurston graph;
- \bullet the pants graph;
- \bullet the marking graph;
- \bullet the non-separating curve graph;
- \bullet the separating curve graph;
- \bullet the arc graph;
- \bullet the flip graph;
- the polygonalization graph;
- \bullet the arc-and-curve graph;
- the Schmutz -Schaller graph.

イロト イ押 トイヨ トイヨト

Our results: ω -stability and interpretability of geometric graphs

Figure: A map of the model theory universe by Gabriel Conant <https://www.forkinganddividing.com/>

イロト イ押ト イヨト イヨト

 QQ

Our results: a recipe for definable sets

(Ivanov '87) $\mathcal{I} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 1\}$ is definable.

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Let *X* be a subset of $V(\mathcal{C}(S))^k$. If *X* is invariant by the diagonal action of $\operatorname{Mod}(S)$ *on* V^k *and its projection to* $\operatorname{Mod}(S)/V^k$ *is finite or cofinite, then X is definable in* C(*S*)*.*

In particular, the following set is definable in $C(S)$:

$$
\mathcal{I}_n = \{(\alpha, \beta) \in V(C(S))^2 \mid i(\alpha, \beta) = n\}
$$

where *i*(⋅,⋅) is the geometric intersection number between curves.

イロト イ押 トイヨ トイヨト

Our results: relative QE and non-definable sets of C(*S*)

Theorem (D. – Koberda – de la Nuez Gonzàlez)

For all non-sporadic S the theory of C(*S*) *has quantifier elimination relative to the collection of* ∀∃*-formulas.*

Corollary

The following sets are not definable:

- *the set* $X_n = \{ (\alpha, \beta) \in V(C(S))^2 \mid |ai(\alpha, \beta)| = n \}$ *for* $n > 1$ *;*
- *the set* $Y = \{(\alpha, \beta) \in V(C(S))^2 | \alpha i(\alpha, \beta) = 0 \mod 2\}.$

where ai(⋅, ⋅) *is the algebraic intersection number between curves.*

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ヨ ▶ . ∢ ヨ

Our results: a bridge between geometric topology and model theory

(Baudisch - Pizarro - Ziegler '18) Model theory of Right-Angled Buildings

- Contribute to Shelah's classification of theories with many examples coming from geometry and topology;
- Model-theoretical framework for Ivanov's metaconjecture;
- **Future study the curve complex in analogy with other** ω **-stable theories.**

イロト イ押 トイヨ トイヨ

L[-structures](#page-25-0) [Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

The model theory of the curve graph

メロトメ 御 トメ 君 トメ 君 トッ

 299

高

 \mathcal{L} [-structures](#page-25-0) [Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Relational \mathcal{L} -structures

A **relational language** $\mathcal L$ is a collection of relations symbols $\mathcal R^{(k)}$ with an associated arity $k \geq 1$.

A first-order **relational** \mathcal{L} -structure \mathcal{M} consists of the following:

- a set *M* called **universe**;
- an interpretation of $\mathcal{L},$ that is, a relation $R^k_{\mathcal{M}}\subset M^k$ for each symbol $\mathcal{R}^{(k)}$ $\in \mathcal{L}.$

イロト イ押ト イヨト イヨト

 \mathcal{L} [-structures](#page-25-0) [Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Relational \mathcal{L} -structures: examples

D A graph *G* is a *L*-structure with language $\mathcal{L} = \{ \mathcal{E}^2 \}$:

- \bullet *V(G)* is the universe;
- $E(G) \subset V(G)^2$ is the set of edges
	- (\mathcal{E}^2) is interpreted by the edge relation).
- **2** A *k*-dimensional **simplicial complex** C is a \mathcal{L} -structure in the relational language $\mathcal{L} = \{\mathcal{E}^2, \ldots, \mathcal{E}^{k+1}\}$:
	- \bullet *V(C)* is the universe;
	- $\Sigma^{j+1} \subset V(C)^{j+1}$ is the set of all *j*-simplices $(E^j$ corresponds to the simplex relation)

 Ω

∢ ロ ▶ ィ伺 ▶ ィ ヨ ▶ ィ ヨ ▶

 \mathcal{L} [-structures](#page-25-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

First order theories: graphs

A L-**sentence** is a first-order formula with no free variables. A collection of L-sentences is called a **first-order theory**.

- **1** "The graph G has no isolated vertices" : $G \models \forall u \exists v (E(u, v))$.
- 2 "All edges have a common endpoint" : $G \models \exists v (\forall u \ E(u, v) \lor (u = v))$.

イロト イ押ト イヨト イヨト

[Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Definable sets

Let *M* be a *L*-structure. A set *X* ⊂ *M*ⁿ is **definable** in *M* if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ such that

$$
X = \{(m_1,\ldots,m_n) \in M^n : \mathcal{M} \models \phi(m_1,\ldots,m_n)\}.
$$

Example:

Y = { $(x, y) ∈ V(G)^2 | d(x, y) = 2$ } is definable via the formula:

 $\psi(x, y) \equiv (x \neq y) \land \neg E(x, y) \land (\exists z (E(x, z) \land E(z, y)))$.

イロト イ母 トイヨ トイヨ トー

[Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Definable sets: example

1 $Z_2 = \{(x, y, z) \in V(G)^3 \mid (x, y, z)$ is 2-clique } is definable: $\phi(x, y, z) \equiv (x \neq y) \wedge (x \neq z) \wedge (y \neq z) \wedge E(x, y) \wedge E(x, z) \wedge E(y, z)$

2 Lk(v) = { $x \in V(G)$ | x is adjacent to v } is definable over { v } by: $\phi(v, x) \equiv (x \neq v) \wedge E(v, x)$.

イロト イ母 トイヨ トイヨ トー

[Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Definable sets: examples in C(*S*)

1 (Ivanov '87) $\mathcal{N} = \{ \gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a separating curve} \}$ is definable

2 (Ivanov '87) $\mathcal{I} = \{(\alpha,\beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha,\beta) = 1\}$ is definable

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Let *X* be a subset of $V(\mathcal{C}(S))^k$. If *X* is invariant by the diagonal action of $\operatorname{Mod}(S)$ *on* V^k *and its projection to* $\operatorname{Mod}(S)/V^k$ *is finite or cofinite, then X is definable in* C(*S*)*.*

In particular, the following set is definable in $C(S)$:

$$
\mathcal{I}_n = \{(\alpha, \beta) \in V(C(S))^2 \mid i(\alpha, \beta) = n\}
$$

where *i*(⋅,⋅) is the geometric intersection number between curves.

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretable structures

We say that a \mathcal{L}' -structure $\mathcal N$ is **interpretable** in an $\mathcal L$ -structure $\mathcal M$ if

- \bullet there is a definable set *X* in *M*:
- \bullet there is a definable equivalence relation *R* on *X*;
- for each symbol \mathcal{L}' there is a definable *R*-invariant set on X

such that X/R is isomorphic to N .

Example: When *R* is the identity, we say that N is **definable** in M .

イロト イ押 トイヨ トイヨ

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretation (technical definition)

Given an \mathcal{L}' -structure \mathcal{N} and a \mathcal{L} -structure $\mathcal{M},$ an **interpretation** μ : $\mathcal{N} \rightsquigarrow \mathcal{M}$ consists of:

- \bullet An integer $k \geq 0$;
- 2 A definable subset $X \subseteq M^k$;
- ³ A definable equivalence relation *R* on *X*;
- 4 A map $F_u: X \to N$ which factors through a bijection

$$
\bar{F}_{\mu}:X/R\cong N.
$$

such that $F_\mu^{-1}(E_{\mathcal{N}})\subseteq X^r$ is definable in ${\mathcal{M}}$ for any relation symbol ${\mathcal{E}}^{(r)}\in {\mathcal{L}}'.$

イロト イ何 トイヨ トイヨ ト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretable structures: examples

The nonseparating curve graph $\mathcal{N}(S)$ is definable in the curve graph $\mathcal{C}_1(S)$.

- (Ivanov) $X = \{ \gamma \in V(\mathcal{C}_1(S)) \mid \gamma \text{ nonseparating } \} = V(\mathcal{N}(S))$ definable;
- language \mathcal{L}' : the same as \mathcal{L} .

The curve complex $C(S)$ is definable in the curve graph $C_1(S)$.

- $X = V(C_1(S))$ (same universe);
- language $\mathcal{L}' = \{ \mathcal{E}^2, \ldots, \mathcal{E}^{3g+n-3} \}$ for $\mathcal{C}(S)$: each \mathcal{E}^{i+1} is a "*i*-clique" in $\mathcal{C}_1(S)$ the *k*-cliques are definable in $C_1(S)$ by a first-order formula:

$$
\mathcal{E}^{k}(v_1,\ldots,v_k) \iff \forall v_i \forall v_j \ (v_i=v_j) \lor ((v_i \neq v_j) \land E(v_i,v_j)) .
$$

イロト イ何 トイヨ トイヨ トー

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretable structures: examples

The pants graph $\mathcal{P}(S_{0,n})$ is interpretable in the curve graph $\mathcal{C}(S_{0,n})$.

- X = $\{(c_1,\ldots,c_N) \in V(C(S))^{3g+n-3} \mid (3g+n-3)$ –cliques $\}$ definable in $\mathcal{C}(S);$
- Definable equivalence relation *R*: permutation of the components;
- (Ivanov) Definable *R*-invariant set corresponding to $\mathcal{E}(P_1, P_2)$:

$$
\exists \alpha \in P_1 \; \exists \beta \in P_2 \; ((P_1 \setminus {\alpha}) = (P_2 \setminus {\beta})) \land (\alpha, \beta) \in \mathcal{J}
$$

where $\mathcal{J} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 2 \text{ and } \text{Fill}(\alpha, \beta) \cong S_{0,4}\}.$

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretable structures: examples

We define $X(S) = (V(X(S)); E(X(S)))$ geometric if $\exists N > 0$:

- Each *v* ∈ *V*(*X*(*S*)) is made by at most *N* curves or arcs;
- \bullet Mod(*S*) acts on $X(S)$ via its action on curves and arcs such that

 $V(X(S))/Mod(S)$ finite and $E(X(S))/Mod(S)$ finite.

Corollary (D. – Koberda – de la Nuez Gonzàlez)

Every geometric graph X(*S*) *is interpretable in* C(*S*)*.*

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Interpretable structures: bi-interpretability

An interpretation $\mu : \mathcal{N} \rightarrow \mathcal{M}$ induces a homomorphism

 $\hat{\mu}$: Aut $(\mathcal{M}) \rightarrow$ Aut (\mathcal{N}) .

We say that N and M are **bi-interpretable** if there are $\mu : \mathcal{N} \rightarrow \mathcal{M}$ and $\eta: \mathcal{M} \rightsquigarrow \mathcal{N}$ such that $\mu \circ \zeta$ and $\zeta \circ \mu$ are definable.

• The curve complex $C(S)$ is bi-interpretable to the curve graph $C_1(S)$.

Fact: If N and M are bi-interpretable, then $Aut(N) \cong Aut(M)$.

イロト イ押ト イヨト イヨト

L[-structures](#page-25-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Morley rank

Given a complete theory *T*, the **Morley rank** is a class function

MR : { formulas in T } \rightarrow {-1} ∪ Ord ∪ {∞},

defined recursively that serves as a notion of "dimension". The Morley rank of a theory *T* is defined as $MR(x = x)$.

If M is a \mathcal{L} -structure that models T , then the Morley rank also serves as a measure of "dimension" for the definable sets of M:

MR : { definable sets in \mathcal{M} \rightarrow {-1} ∪ Ord ∪ { ∞ }.

(ACF) If *K* an algebraically closed field and $V \subset K^n$ is an algebraic set, $MR(V)$ = Krulldim(*V*).

イロト イ何 トイヨ トイヨ トー

L[-structures](#page-25-0) [Definable sets](#page-28-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Morley rank: classification theory

(Shelah's Classification Theory '70s) Theories on countable languages can be classified according to the Morley rank of the first-order sentences.

If every definable set *X* has $MR(X) \in \{-1\} \cup Ord$ then *T* is ω -stable.

ω-stable theories include so far:

- algebraically closed fields;
- algebraic groups over algebraically closed fields;
- groups of finite Morley rank.

(Sela '06) The theory of free groups and torsion-free hyperbolic groups is stable but not ω-stable.

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Morley rank: classification theory

Figure: A map of the model theory universe by Gabriel Conant <https://www.forkinganddividing.com/>

イロト イ押ト イヨト イヨト

 298

L[-structures](#page-25-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Morley rank as an obstruction to interpretability

Theorem (D. - Koberda - de la Nuez Gonzàlez)

Let S be a non-sporadic surface. Then $\text{Th}(C(S))$ *is* ω -stable. If *S* has genus g *and n punctures, then we have:*

 $MR(\text{Th}(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

If Th(M) is w-stable and $\mathcal{N} \rightarrow \mathcal{M}$, then Th(N) is w-stable.

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Every geometric graph X(*S*) *is* ω*-stable.*

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

L[-structures](#page-25-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Morley rank as an obstruction to interpretability: $C(S) \nrightarrow X(S)$

Is C(*S*) interpretable in *X*(*S*) ?

The Morley rank of a theory is a natural obstruction to interpretability:

If for every $k \geq 1$ we have $MR_{Th(\mathcal{N})}(N) > MR_{Th(\mathcal{M})}(M^k)$, then $\mathcal{N} \not\rightarrow \mathcal{M}.$

Corollary (D. – Koberda – de la Nuez Gonzàlez)

Let S be a surface with genus g with n punctures. Then the curve complex C(*S*) *is not interpretable in any the following graphs:*

- the pants graph $P(S)$ (when $3g + n > 4$);
- the separating curve graph $S(S)$ (when $g \ge 2$ and $n \le 1$);
- the arc complex $A(S)$ (when $g \ge 2$ and $n = 1$).

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Quantifier elimination

A first-order theory *T* has **quantifier elimination** if every formula $\phi(\mathbf{x})$ is equivalent modulo *T* to some quantifier-free formula $\psi(\mathbf{x})$.

Example: Let $\phi(a, b, c)$ be the formula $\exists x \ ax^2 + bx + c = 0$. We have:

$$
\mathbb{C} \vDash \phi(a, b, c) \leftrightarrow (a \neq 0 \vee b \neq 0 \vee c = 0)
$$

The fomula ϕ is not equivalent to a quantifier-free formula over \mathbb{Q} .

Example: The theory of every algebraically closed field (ACF) has quantifier elimination.

If *T* has quantifier elimination then every definable set in *T* is definable using a formula *without quantifiers*.

イロト イ押ト イヨト イヨト

[Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Relative Quantifier Elimination

We say that a theory *T* has **quantifier elimination relative to the class of** ∀∃**– formulas** if any formula is equivalent modulo *T* to a Boolean combination of ∀∃-formulae.

Theorem (D. - Koberda - de la Nuez Gonzàlez)

For all non-sporadic S the theory of C(*S*) *has quantifier elimination relative to the collection of* ∀∃*-formulas.*

イロト イ押ト イヨト イヨト

L[-structures](#page-25-0) [Interpretations of structures](#page-31-0) [Morley rank](#page-37-0) [Quantifier elimination](#page-42-0)

Relative Quantifier Elimination: applications in C(*S*)

As a consequence of relative quantifier elimination for $C(S)$, we have:

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Suppose S has positive genus and is not a torus with ≤ 3 *boundary components. The following sets are not definable:*

- *the set* $X_n = \{(\alpha, \beta) \in V(C(S))^2 \mid |ai(\alpha, \beta)| = n\}$ *for each* $n > 1$ *;*
- *the set* $Y = \{(\alpha, \beta) \in V(C(S))^2 | \alpha i(\alpha, \beta) = 0 \mod 2 \}.$

where ai(⋅, ⋅) *is the algebraic intersection number between curves.*

イロト イ押ト イヨト イヨト

Sketch of the proof

Theorem (D. - Koberda - de la Nuez Gonzàlez)

Let S be a non-sporadic surface. Then $\text{Th}(C(S))$ *is* ω -stable. If *S* has genus g *and has n punctures, then*

 $MR(\text{Th}(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

In addition, Th(C(*S*)) *has quantifier elimination with respect to* ∀∃*-formulas.*

イロト イ押ト イヨト イヨト

 298

Sketch

(Baudisch – Ziegler – Martin Pizarro '18) Study of Right-Angled buildings

- Define an auxiliary structure $\mathcal{M}(S)$ encoding the geometry of $Mod(S)$;
- **2** Prove that the structures $C(S)$ and $M(S)$ are bi-interpretable; (*)
- **3** Prove that the structure $\mathcal{M}(S)$ has the quantifier elimination property; (**)
- **4** Compute the Morley rank of $M(S)$ and prove that $M(S)$ is ω -stable.
- **6** Use the interpretation of $C(S)$ in $M(S)$ to deduce the ω -stability of $C(S)$, get upper bounds on the Morley Ranks, and relative QE.

(*) relies on strongly finite rigid exhaustions for C(*S*) (Aramayona-Leininger) (**) relies on HHS structure of Mod(*S*) (Behrstock's inequality)

イロト イ押ト イヨト イヨト

Proof of Theorem: Step 1

- Define an auxiliary structure $\mathcal{M}(S)$ encoding the geometry of $Mod(S)$:
- universe: Mod(*S*) as a set
- Two types of binary relations:
	- *R*^{*g*} for *g* ∈ Mod(*S*) with *R*_{*g*}(*x*, *y*) if and only if $x^{-1}y = g$;
	- *R_D* for any region $D ⊆ S$ so that $R_D(x, y)$ if and only if $x^{-1}y$ is supported on D .

Let W the collection of finite words in $\mathcal{A} = \{$ subsurface $D \}_{D \in S} \cup (Mod(S) \setminus id)$. If $w = \delta_1 \ldots \delta_k$ is a word in W, we write

$$
R_w := R_{\delta_1} \circ \ldots \circ R_{\delta_k} \ .
$$

 209

イロト イ押ト イヨト イヨト

Proof of Theorem: Step 2

2 The structures $C(S)$ and $M(S)$ are bi-interpretable.

A set $\chi \subset \mathcal{C}(S)$ is **strongly rigid** if any isomorphism between χ and another subgraph of $C(S)$ extends to a unique automorphism of $C(S)$.

(Aramayona – Leininger) There exists an exhaustion of the curve complex $C(S)$ by strongly finite rigid sets.

イロト イ押ト イヨト イヨト

Proof of Theorem: Step 3

3 $M(S)$ has the quantifier elimination property.

Back-and-forth Property \implies Quantifier Elimination

Back-and-forth property. Every isomorphism $\phi : A \rightarrow B$ between a substructure $A \subset C(S)$ and a substructure $B \subset \mathcal{M}(S)$ admits a "suitable" extension":

 $\bullet \ \forall a \in \mathcal{C}(S) \exists b \in \mathcal{M}(S)$ such that ϕ extends to an iso. $\overline{\phi}: A \cup \{a\} \rightarrow B \cup \{b\}$

 $\bullet \forall b \in \mathcal{M}(S) \exists a \in \mathcal{C}(S)$ such that ϕ extends to an iso. $\overline{\overline{\phi}} : A \cup \{a\} \rightarrow B \cup \{b\}$.

イロト イ押ト イヨト イヨト

 209

Proof of Theorem: Step 3

 \bullet $\mathcal{M}(S)$ has the quantifier elimination property. HHS structure on $Mod(S) \implies$ Back-and-Forth Property

HHS structure of Mod(*S*) (Berhstock – Hagen – Sisto):

- \bullet Subsurface Projections π_D ∶ $C(S)$ → $C(D)$ (Masur Minsky);
- **Berhstock Inequality for projections π***D*.

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ヨ ▶ . ∢ ヨ

つへへ

Proof of Theorem: Step 4

 $M(R(\mathcal{M}(S))) = \omega^{3g+n-3}$, therefore $\mathcal{M}(S)$ and $\mathcal{C}(S)$ are ω -stable.

Since M(*S*) has QE, every definable set has a canonical form as a Boolean combination of definable sets described by "simple" formulas:

 $R_w(a, x)$ and $\neg R_w(a, x)$

where the *w*'s are words with letters in A. We find:

$$
RM(R_w(a,x)) = \omega^{k(S)}
$$

where $k(S) = 3g + n - 3$ is the length of the longest chain of subsurfaces:

$$
\emptyset \subset D_0 \subset \ldots \subset D_k = S.
$$

イロト イ何 トイヨ トイヨ トー

Future questions

Conjectural picture for ω -stability of other analogue graphs:

The key ingredients for in our proof are :

- Analogies between $C(S)$ and Right-Angled Buildings;
- Good understanding of the coarse geometry of Mod(*S*);
- Rigidity results for $C(S)$ (finite strongly rigid exhaustion).

イロト イ押ト イヨト イヨト

THANKS!

Valentina Disarlo [The Model Theory of the Curve Graph](#page-0-0)

メロトメ 倒 トメ 君 トメ 君 トー

画

 299