The Model Theory of the Curve Graph

Valentina Disarlo

Universität Heidelberg

< ロ > < 同 > < 回 > < 回 > < 回 > <

joint work with T. Koberda (Virginia) and J. de la Nuez Gonzàlez (KIAS)

イロト イ団ト イヨト イヨト

크

Overview

- Our model-theoretic approach
- The model theory of the curve graph
 - *L*-structures
 - Definable sets
 - Interpretations of structures
 - Morley rank
 - Quantifier elimination

★ ∃ >

Simplicial actions of the mapping class group

Let S be a topological surface of finite type. The **mapping class group** of S is

 $Mod(S) := \{\phi : S \to S \text{ homeos } \}/\text{isotopy.}$

studying $G \leq Mod(S) \iff G \curvearrowright \mathcal{K}(S)$ "nice" simplicial complex

The simplicial complex $\mathcal{K}(S)$ encodes the combinatorics of various "useful" topological objects on *S*: curves, arcs, triangulations...

- (Hatcher-Thurston '80s) Mod(S) is finitely presented
- (Harer '80s) homology/cohomology of Mod(S)
- (Farb, Hamenstaedt, ... '00s) Coarse Geometry of Mod(S)
- (... '20s) Model Theory of Mod(S) ???

Simplicial actions of the mapping class group: the curve complex C(S)

The **curve complex** C(S) is a simplicial complex encoding the combinatorics of simple essential closed curves on *S* (taken up to isotopy):

- each vertex corresponds to a s. e. closed curve on S (up iso.);
- two vertices are joined by an edge if the curves are disjoint on S (up iso);
- k + 1 vertices span a k-simplex if the curves are pairwise disjoint (up iso).

Figure: $V(\mathcal{C}(S)) = \{ [s. e. closed curves] \}$ and $E(\mathcal{C}(S)) = \{ "being disjoint" \} \}$

Mod(S) acts on C(S) by simplicial automorphisms.

Simplicial actions of the mapping class group: the curve complex C(S)

The curve complex C(S) is connected, ∞ -diameter, locally infinite.

Applications: 3-manifolds, Teichmüller theory, GGT of Mod(*S*)

Ivanov '87 Aut $C(S) \cong Mod(S) \cong Iso(Teich(S), d_{Teich})$

Masur-Minsky '99 The curve graph C(S) is Gromov-hyperbolic Masur-Schleimer '13 Under "good hypothesis" $\mathcal{K}(S)$ are Gromov-hyperbolic. Betsvina-Bromberg-Fujiwara '15 Mod(S) has finite asymptotic dimension

Simplicial actions of the mapping class group: Ivanov Theorem

Theorem (Ivanov '87, Luo '00)

If S is non-sporadic then $Mod(S) \cong Aut C(S) \cong Iso(Teich(S), d_T)$.

• Many other graphs $\mathcal{K}(S)$ such that $\operatorname{Aut} \mathcal{K}(S) \cong \operatorname{Mod}(S)$.

graphs $\mathcal{K}(S)$	vertices $V(\mathcal{K}(S))$	author	
pants graph $\mathcal{P}(S)$	pants decomp.	Margalit	
nonsep. curve graph $\mathcal{N}(S)$	non-sep. curves	Irmak-Korkmaz	
multi-curve graph $C_k(S)$	multi-curves	Erlandsson-Fanoni	
arc graph $\mathcal{A}(S)$	simple arcs	Irmak, D.	
arc-and-curve graph $\mathcal{A}(S)$	simple arcs	Korkmaz-Papadopoulos	
polygonalization complex $\mathcal{P}(S)$	polygonalisations	Bell-DTang	

Simplicial actions of the mapping class group

Ivanov Metaconjecture

Figure: Pants graph $\mathcal{P}(S)$: each vertex is a pants decomposition

Figure: Pants graph $\mathcal{P}(S)$: each edge corresponds to an elementary move

A metaconjecture by Ivanov

Meta-conjecture (Ivanov '10s)

Every object naturally associated to a surface *S* and having a sufficiently rich structure has Mod(S) as its groups of automorphisms. Moreover, this can be proved by a reduction to the theorem about Aut C(S).

- object naturally associated ???
- sufficiently rich ???
- reduction ???

A metaconjecture by Ivanov: the graph of domains $\Gamma(S)$

Counterexample (McCarthy-Papadopoulos'10): Graph of domains $\Gamma(S_{g,n})$

 $V(\Gamma(S_{g,n})) = \{ \text{ connected subsurfaces } R \subset S \text{ (up to isotopy)} \}$ $E(\Gamma(S_{g,n})) = \{ \text{ being disjoint (up to isotopy)} \}$ If $n \ge 2$ then Aut $\Gamma(S_{g,n})$ is **much larger** than $Mod(S_{g,n})$.

Figure: Adjacency relation on $\Gamma(S)$

< ロ > < 同 > < 回 > < 回 >

Brendle-Margalit's topological approach

Theorem (Brendle-Margalit '17)

Let $\mathcal{R}(S_g)$ be a connected subgraph of $\Gamma(S_g)$ such that no vertex is a hole or a cork. There exists a constant $c(V(\mathcal{R}))$ such that for every $g \ge c(V(\mathcal{R}))$:

Aut $\mathcal{R}(S_g) \cong \mathrm{Mod}(S_g)$

< □ > < □ > < □ > < □ >

Figure: Corks and Holes

Brendle-Margalit's topological approach

Applications to normal subgroups of the mapping class group.

Open Problem: Extend Brendle-Margalit's work to other classes of complexes, which are popular in geometric group theory:

- graphs on punctured surfaces;
- graphs of (multi-)arcs;
- graphs of (multi-)curves where the edge relation is not disjointness;
- graphs of multi-regions.

Some progress: McLeay '18, Aougab-Loving et. al '19

< ロ > < 同 > < 回 > < 回 >

Our model-theoretic approach

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Model theory machinery in a nutshell

- **(**) a first-order **structure** \mathcal{M} on a language \mathcal{L} ;
- definable subsets of *M*, with a notion of "dimension" (the Morley rank);
- Interpretation for *L*-structures *M* → *N*: if two structures *M* and *N* are **bi-interpretable** then

 $\mathrm{Aut}(\mathcal{M})\cong\mathrm{Aut}(\mathcal{N})\;;$

Shelah's classification theory provides invariants of interpretability: Morley rank of definable sets, ω-stability, etc...

< ロ > < 同 > < 回 > < 回 >

Model theory machinery: the curve graph C(S)

The curve graph C(S) is actually a \mathcal{L} -structure with $\mathcal{L} = \{\mathcal{E}^2\}$ be the language of "edge-adjacency".

In 1987 Ivanov actually proves that these sets are **definable** in $Th(\mathcal{C}(S))$:

- $\mathcal{N} = \{ \gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a nonseparating curve } \};$
- $S = \{\gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a separating curve } \};$
- $\mathcal{I} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 1\};$
- $\mathcal{J} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 2 \text{ and } Fill(\alpha, \beta) \cong S_{0,4}\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

A model-theoretical frame for Ivanov's metaconjecture

Meta-conjecture (Ivanov '06)

Every object naturally associated to a surface *S* and having a sufficiently rich structure has Mod(S) as its groups of automorphisms. Moreover, this can be proved by a reduction to the theorem about Aut C(S).

Model-theoretic Reformulation // Exercise Every \mathcal{L} -structure $\mathcal{K}(S)$ bi-interpretable with $\mathcal{C}(S)$ has Mod(S) as its group of automorphisms. Moreover, this follows by a reduction to the theorem about $Aut \mathcal{C}(S)$. Indeed, by bi-interpretability we have:

Aut
$$\mathcal{K}(S) \cong \operatorname{Aut} \mathcal{C}(S) \stackrel{IV.}{\cong} \operatorname{Mod}(S)$$
.

Motivating questions in our work

Many other configurations of arcs and curves can be described with first-order formulas, in particular many graphs X(S) have

Aut $X(S) \cong Mod(S)$.

• Is X(S) interpretable/bi-interpretable with C(S) ?

 ω -stability is a natural obstruction to (bi-)interpretability.

• Understand the stability type of C(S) (or X(S)): is $C(S) \omega$ -stable ?

< ロ > < 同 > < 回 > < 回 >

Our results: the first-order theory of C(S)

The **Morley rank** measures the "dimension" of definable sets of \mathcal{M} :

 $MR: \{ \text{ definable sets in } \mathcal{M} \} \rightarrow \{-1\} \cup Ord \cup \{\infty\}$

If every definable set *X* has $MR(X) \in \{-1\} \cup \text{Ord then Th}(\mathcal{M})$ is ω -stable.

Theorem (D. – Koberda – de la Nuez Gonzàlez)

Let *S* be a non-sporadic surface. Then Th(C(S)) is ω -stable. If *S* has genus *g* and *n* punctures, then we have:

 $MR(Th(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

Our results: ω -stability and interpretability of geometric graphs

We define X(S) = (V(X(S)); E(X(S))) geometric if $\exists N > 0$:

- Each $v \in V(X(S))$ is made by at most N curves or arcs;
- Mod(S) acts on X(S) via its action on curves and arcs with

V(X(S))/Mod(S) finite and E(X(S))/Mod(S) finite.

Theorem (D. – Koberda – de la Nuez Gonzàlez) Every geometric graph X(S) is interpretable in C(S).

Corollary

Every geometric graph X(S) is ω -stable.

(日)

Our results: ω -stability and interpretability of geometric graphs

Geometric graphs include the following:

- the Hatcher-Thurston graph;
- the pants graph;
- the marking graph;
- the non-separating curve graph;
- the separating curve graph;

- the arc graph;
- the flip graph;
- the polygonalization graph;
- the arc-and-curve graph;
- the Schmutz -Schaller graph.

Our results: ω -stability and interpretability of geometric graphs

Figure: A map of the model theory universe by Gabriel Conant https://www.forkinganddividing.com/

< ロ > < 同 > < 回 > < 回 > < 回 > <

Our results: a recipe for definable sets

(Ivanov '87) $\mathcal{I} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 1\}$ is definable.

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Let *X* be a subset of $V(\mathcal{C}(S))^k$. If *X* is invariant by the diagonal action of Mod(S) on V^k and its projection to $Mod(S)/V^k$ is finite or cofinite, then *X* is definable in $\mathcal{C}(S)$.

In particular, the following set is definable in C(S):

$$\mathcal{I}_n = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = n\}$$

where $i(\cdot, \cdot)$ is the geometric intersection number between curves.

< ロ > < 同 > < 回 > < 回 >

Our results: relative QE and non-definable sets of C(S)

Theorem (D. – Koberda – de la Nuez Gonzàlez)

For all non-sporadic *S* the theory of C(S) has quantifier elimination relative to the collection of $\forall \exists$ -formulas.

Corollary

The following sets are not definable:

- the set $X_n = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid |ai(\alpha, \beta)| = n\}$ for n > 1;
- the set $Y = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid ai(\alpha, \beta) = 0 \mod 2\}.$

where $ai(\cdot, \cdot)$ is the algebraic intersection number between curves.

Our results: a bridge between geometric topology and model theory

(Baudisch - Pizarro - Ziegler '18) Model theory of Right-Angled Buildings

- Contribute to Shelah's classification of theories with many examples coming from geometry and topology;
- Model-theoretical framework for Ivanov's metaconjecture;
- Future study the curve complex in analogy with other ω -stable theories.

C-structures Definable sets nterpretations of structures Morley rank Quantifier elimination

The model theory of the curve graph

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

L-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Relational *L*-structures

A **relational language** \mathcal{L} is a collection of relations symbols $\mathcal{R}^{(k)}$ with an associated arity $k \ge 1$.

A first-order **relational** \mathcal{L} -structure \mathcal{M} consists of the following:

- a set M called **universe**;
- an interpretation of \mathcal{L} , that is, a relation $R^k_{\mathcal{M}} \subset M^k$ for each symbol $\mathcal{R}^{(k)} \in \mathcal{L}$.

L-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Relational *L*-structures: examples

- A graph G is a \mathcal{L} -structure with language $\mathcal{L} = \{\mathcal{E}^2\}$:
 - V(G) is the universe;
 - *E*(*G*) ⊂ *V*(*G*)² is the set of edges
 (*E*² is interpreted by the edge relation).
- A k-dimensional simplicial complex C is a L-structure in the relational language L = {E²,..., E^{k+1}}:
 - V(C) is the universe;
 - $\Sigma^{j+1} \subset V(C)^{j+1}$ is the set of all *j*-simplices $(\mathcal{E}^{j} \text{ corresponds to the simplex relation})$

L-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

First order theories: graphs

A \mathcal{L} -sentence is a first-order formula with no free variables. A collection of \mathcal{L} -sentences is called a **first-order theory**.

- **1** "The graph \mathcal{G} has no isolated vertices" : $\mathcal{G} \models \forall u \exists v (E(u, v))$.
- 2 "All edges have a common endpoint" : $\mathcal{G} \models \exists v (\forall u \ E(u, v) \lor (u = v))$.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Definable sets

Let \mathcal{M} be a \mathcal{L} -structure. A set $X \subset M^n$ is **definable** in \mathcal{M} if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ such that

$$X = \{(m_1,\ldots,m_n) \in M^n : \mathcal{M} \vDash \phi(m_1,\ldots,m_n)\}.$$

Example:

 $Y = \{(x, y) \in V(G)^2 \mid d(x, y) = 2\}$ is definable via the formula:

 $\psi(x,y) \equiv (x \neq y) \land \neg E(x,y) \land (\exists z \ (\ E(x,z) \land E(z,y))) \ .$

< □ > < 同 > < 回 > < 回 > .

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Definable sets: example

• $Z_2 = \{(x, y, z) \in V(G)^3 \mid (x, y, z) \text{ is 2-clique } \}$ is definable: $\phi(x, y, z) \equiv (x \neq y) \land (x \neq z) \land (y \neq z) \land E(x, y) \land E(x, z) \land E(y, z)$

2 Lk(v) = { $x \in V(G)$ | x is adjacent to v} is definable over {v} by: $\phi(v, x) \equiv (x \neq v) \land E(v, x)$.

< ロ > < 同 > < 三 > < 三 > -

L-structures **Definable sets** Interpretations of structures Morley rank Quantifier elimination

Definable sets: examples in C(S)

• (Ivanov '87) $\mathcal{N} = \{\gamma \in V(\mathcal{C}(S)) \mid \gamma \text{ is a separating curve} \}$ is definable

(Ivanov '87) $\mathcal{I} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 1\}$ is definable

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Let *X* be a subset of $V(\mathcal{C}(S))^k$. If *X* is invariant by the diagonal action of Mod(S) on V^k and its projection to $Mod(S)/V^k$ is finite or cofinite, then *X* is definable in $\mathcal{C}(S)$.

In particular, the following set is definable in C(S):

$$\mathcal{I}_n = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = n\}$$

where $i(\cdot, \cdot)$ is the geometric intersection number between curves.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretable structures

We say that a \mathcal{L}' -structure \mathcal{N} is **interpretable** in an \mathcal{L} -structure \mathcal{M} if

- there is a definable set X in \mathcal{M} ;
- there is a definable equivalence relation *R* on *X*;
- for each symbol \mathcal{L}' there is a definable *R*-invariant set on *X* such that *X*/*R* is isomorphic to \mathcal{N} .

Example: When *R* is the identity, we say that \mathcal{N} is **definable** in \mathcal{M} .

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretation (technical definition)

Given an \mathcal{L}' -structure \mathcal{N} and a \mathcal{L} -structure \mathcal{M} , an **interpretation** $\mu : \mathcal{N} \rightsquigarrow \mathcal{M}$ consists of:

- An integer $k \ge 0$;
- 2 A definable subset $X \subseteq M^k$;
- A definable equivalence relation R on X;
- A map $F_{\mu}: X \to N$ which factors through a bijection

$$\overline{F}_{\mu}: X/R \cong N.$$

such that $F_{\mu}^{-1}(E_{\mathcal{N}}) \subseteq X^{r}$ is definable in \mathcal{M} for any relation symbol $\mathcal{E}^{(r)} \in \mathcal{L}'$.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretable structures: examples

The nonseparating curve graph $\mathcal{N}(S)$ is definable in the curve graph $\mathcal{C}_1(S)$.

- (Ivanov) $X = \{\gamma \in V(\mathcal{C}_1(S)) \mid \gamma \text{ nonseparating }\} = V(\mathcal{N}(S)) \text{ definable};$
- language \mathcal{L}' : the same as \mathcal{L} .

The curve complex C(S) is definable in the curve graph $C_1(S)$.

- $X = V(C_1(S))$ (same universe);
- language L' = {E²,..., E^{3g+n-3}} for C(S): each Eⁱ⁺¹ is a "*i*-clique" in C₁(S) the *k*-cliques are definable in C₁(S) by a first-order formula:

$$\mathcal{E}^k(v_1,\ldots,v_k) \iff \forall v_i \forall v_j \ (v_i = v_j) \lor ((v_i \neq v_j) \land E(v_i,v_j))$$
.

L-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretable structures: examples

The pants graph $\mathcal{P}(S_{0,n})$ is interpretable in the curve graph $\mathcal{C}(S_{0,n})$.

- $X = \{(c_1, ..., c_N) \in V(C(S))^{3g+n-3} | (3g+n-3)-\text{cliques} \}$ definable in C(S);
- Definable equivalence relation R: permutation of the components;
- (Ivanov) Definable *R*-invariant set corresponding to $\mathcal{E}(P_1, P_2)$:

$$\exists \alpha \in P_1 \ \exists \beta \in P_2 \ ((P_1 \smallsetminus \{\alpha\}) = (P_2 \smallsetminus \{\beta\})) \land (\alpha, \beta) \in \mathcal{J}$$

where $\mathcal{J} = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid i(\alpha, \beta) = 2 \text{ and } Fill(\alpha, \beta) \cong S_{0,4}\}.$

L-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretable structures: examples

We define X(S) = (V(X(S)); E(X(S))) geometric if $\exists N > 0$:

- Each $v \in V(X(S))$ is made by at most N curves or arcs;
- Mod(S) acts on X(S) via its action on curves and arcs such that

V(X(S))/Mod(S) finite and E(X(S))/Mod(S) finite.

Corollary (D. – Koberda – de la Nuez Gonzàlez)

Every geometric graph X(S) is interpretable in C(S).

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Interpretable structures: bi-interpretability

An interpretation $\mu : \mathcal{N} \rightsquigarrow \mathcal{M}$ induces a homomorphism

 $\hat{\mu}$: Aut $(\mathcal{M}) \to$ Aut (\mathcal{N}) .

We say that \mathcal{N} and \mathcal{M} are **bi-interpretable** if there are $\mu : \mathcal{N} \rightsquigarrow \mathcal{M}$ and $\eta : \mathcal{M} \rightsquigarrow \mathcal{N}$ such that $\mu \circ \zeta$ and $\zeta \circ \mu$ are definable.

• The curve complex C(S) is bi-interpretable to the curve graph $C_1(S)$.

Fact: If \mathcal{N} and \mathcal{M} are bi-interpretable, then $\operatorname{Aut}(\mathcal{N}) \cong \operatorname{Aut}(\mathcal{M})$.

L-structures Definable sets Interpretations of structures **Morley rank** Quantifier elimination

Given a complete theory *T*, the **Morley rank** is a class function

 $MR: \{ \text{ formulas in } T \} \to \{-1\} \cup \text{Ord} \cup \{\infty\} ,$

defined recursively that serves as a notion of "dimension". The Morley rank of a theory *T* is defined as MR(x = x).

If M is a L-structure that models T, then the Morley rank also serves as a measure of "dimension" for the definable sets of M:

MR: { definable sets in \mathcal{M} } \rightarrow {-1} \cup Ord \cup { ∞ }.

(ACF) If *K* an algebraically closed field and $V \subset K^n$ is an algebraic set, MR(V) = Krulldim(V).

L-structures Definable sets Interpretations of structures **Morley rank** Quantifier elimination

Morley rank: classification theory

(Shelah's Classification Theory '70s) Theories on countable languages can be classified according to the Morley rank of the first-order sentences.

If every definable set *X* has $MR(X) \in \{-1\} \cup \text{Ord then } T \text{ is } \omega$ -stable.

 ω -stable theories include so far:

- algebraically closed fields;
- algebraic groups over algebraically closed fields;
- groups of finite Morley rank.

(Sela '06) The theory of free groups and torsion-free hyperbolic groups is stable but not ω -stable.

L-structures Definable sets Interpretations of structures **Morley rank** Quantifier elimination

Morley rank: classification theory

Figure: A map of the model theory universe by Gabriel Conant https://www.forkinganddividing.com/

L-structures Definable sets Interpretations of structures **Morley rank** Quantifier elimination

Morley rank as an obstruction to interpretability

Theorem (D. - Koberda - de la Nuez Gonzàlez)

Let *S* be a non-sporadic surface. Then Th(C(S)) is ω -stable. If *S* has genus *g* and *n* punctures, then we have:

 $MR(Th(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

If $\operatorname{Th}(\mathcal{M})$ is ω -stable and $\mathcal{N} \rightsquigarrow \mathcal{M}$, then $\operatorname{Th}(\mathcal{N})$ is ω -stable.

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Every geometric graph X(S) is ω -stable.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Morley rank as an obstruction to interpretability: $C(S) \not\sim X(S)$

Is C(S) interpretable in X(S) ?

The Morley rank of a theory is a natural obstruction to interpretability:

• If for every $k \ge 1$ we have $MR_{Th(\mathcal{N})}(N) > MR_{Th(\mathcal{M})}(M^k)$, then $\mathcal{N} \not \to \mathcal{M}$.

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Let *S* be a surface with genus *g* with *n* punctures. Then the curve complex C(S) is not interpretable in any the following graphs:

- the pants graph $\mathcal{P}(S)$ (when 3g + n > 4);
- the separating curve graph S(S) (when $g \ge 2$ and $n \le 1$);
- the arc complex $\mathcal{A}(S)$ (when $g \ge 2$ and n = 1).

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Quantifier elimination

A first-order theory T has **quantifier elimination** if every formula $\phi(\mathbf{x})$ is equivalent modulo T to some quantifier-free formula $\psi(\mathbf{x})$.

Example: Let $\phi(a, b, c)$ be the formula $\exists x \ ax^2 + bx + c = 0$. We have:

$$\mathbb{C} \vDash \phi(a, b, c) \leftrightarrow (a \neq 0 \lor b \neq 0 \lor c = 0)$$

The fomula ϕ is not equivalent to a quantifier-free formula over \mathbb{Q} .

Example: The theory of every algebraically closed field (ACF) has quantifier elimination.

If T has quantifier elimination then every definable set in T is definable using a formula *without quantifiers*.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Relative Quantifier Elimination

We say that a theory *T* has **quantifier elimination relative to the class of** $\forall \exists$ **– formulas** if any formula is equivalent modulo *T* to a Boolean combination of $\forall \exists$ -formulae.

Theorem (D. - Koberda - de la Nuez Gonzàlez)

For all non-sporadic *S* the theory of C(S) has quantifier elimination relative to the collection of $\forall \exists$ -formulas.

C-structures Definable sets Interpretations of structures Morley rank Quantifier elimination

Relative Quantifier Elimination: applications in C(S)

As a consequence of relative quantifier elimination for C(S), we have:

Corollary (D. - Koberda - de la Nuez Gonzàlez)

Suppose *S* has positive genus and is not a torus with \leq 3 boundary components. The following sets are not definable:

- the set $X_n = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid |ai(\alpha, \beta)| = n\}$ for each n > 1;
- the set $Y = \{(\alpha, \beta) \in V(\mathcal{C}(S))^2 \mid ai(\alpha, \beta) = 0 \mod 2\}.$

where $ai(\cdot, \cdot)$ is the algebraic intersection number between curves.

Sketch of the proof

Theorem (D. - Koberda - de la Nuez Gonzàlez)

Let *S* be a non-sporadic surface. Then Th(C(S)) is ω -stable. If *S* has genus *g* and has *n* punctures, then

 $MR(Th(\mathcal{C}(S))) \leq \omega^{3g+n-3}$.

In addition, $\text{Th}(\mathcal{C}(S))$ has quantifier elimination with respect to $\forall \exists$ -formulas.

Sketch

(Baudisch - Ziegler - Martin Pizarro '18) Study of Right-Angled buildings

- **O** Define an auxiliary structure $\mathcal{M}(S)$ encoding the geometry of Mod(S);
- 2 Prove that the structures C(S) and $\mathcal{M}(S)$ are bi-interpretable; (*)
- Solution Prove that the structure $\mathcal{M}(S)$ has the quantifier elimination property; (**)
- Sompute the Morley rank of $\mathcal{M}(S)$ and prove that $\mathcal{M}(S)$ is ω -stable.
- Use the interpretation of C(S) in M(S) to deduce the ω-stability of C(S), get upper bounds on the Morley Ranks, and relative QE.

(*) relies on strongly finite rigid exhaustions for C(S) (Aramayona-Leininger) (**) relies on HHS structure of Mod(S) (Behrstock's inequality)

Proof of Theorem: Step 1

- **Define an auxiliary structure** $\mathcal{M}(S)$ encoding the geometry of Mod(S):
- universe: Mod(S) as a set
- Two types of binary relations:
 - R_g for $g \in Mod(S)$ with $R_g(x, y)$ if and only if $x^{-1}y = g$;
 - R_D for any region $D \subseteq S$ so that $R_D(x, y)$ if and only if $x^{-1}y$ is supported on D.

Let \mathcal{W} the collection of finite words in $\mathcal{A} = \{ \text{ subsurface } D \}_{D \in S} \cup (\text{Mod}(S) \setminus \text{id}).$ If $w = \delta_1 \dots \delta_k$ is a word in \mathcal{W} , we write

$$R_w := R_{\delta_1} \circ \ldots \circ R_{\delta_k} \; .$$

イロト イポト イヨト イヨト

Proof of Theorem: Step 2

2 The structures C(S) and $\mathcal{M}(S)$ are bi-interpretable.

A set $\chi \subset C(S)$ is **strongly rigid** if any isomorphism between χ and another subgraph of C(S) extends to a unique automorphism of C(S).

(Aramayona – Leininger) There exists an exhaustion of the curve complex C(S) by strongly finite rigid sets.

< ロ > < 同 > < 回 > < 回 >

Proof of Theorem: Step 3

③ $\mathcal{M}(S)$ has the quantifier elimination property.

Back-and-forth Property \implies Quantifier Elimination

Back-and-forth property. Every isomorphism $\phi : A \to B$ between a substructure $A \subset C(S)$ and a substructure $B \subset \mathcal{M}(S)$ admits a "suitable extension":

- $\forall a \in \mathcal{C}(S) \exists b \in \mathcal{M}(S)$ such that ϕ extends to an iso. $\overline{\phi} : A \cup \{a\} \rightarrow B \cup \{b\}$
- $\forall b \in \mathcal{M}(S) \exists a \in \mathcal{C}(S)$ such that ϕ extends to an iso. $\overline{\phi} : A \cup \{a\} \to B \cup \{b\}$.

Proof of Theorem: Step 3

M(S) has the quantifier elimination property.

 HHS structure on Mod(S) ⇒ Back-and-Forth Property

HHS structure of Mod(*S*) (Berhstock – Hagen – Sisto):

- Subsurface Projections $\pi_D : \mathcal{C}(S) \to \mathcal{C}(D)$ (Masur Minsky);
- Berhstock Inequality for projections π_D .

Proof of Theorem: Step 4

• $MR(\mathcal{M}(S)) = \omega^{3g+n-3}$, therefore $\mathcal{M}(S)$ and $\mathcal{C}(S)$ are ω -stable.

Since $\mathcal{M}(S)$ has QE, every definable set has a canonical form as a Boolean combination of definable sets described by "simple" formulas:

 $R_w(a,x)$ and $\neg R_w(a,x)$

where the *w*'s are words with letters in A. We find:

$$RM(R_w(a,x)) = \omega^{k(S)}$$

where k(S) = 3g + n - 3 is the length of the longest chain of subsurfaces:

$$\varnothing \subset D_0 \subset \ldots \subset D_k = S$$
.

< ロ > < 同 > < 三 > < 三 > -

Future questions

Conjectural picture for ω -stability of other analogue graphs:

RAAGs	Mod(S)	handlebody groups \mathcal{H}_{g}	$\operatorname{Out}(\mathbb{F}_n)$	$\operatorname{Aff}(S,q)$
buildings	$\mathcal{C}(S)$	$\mathcal{D}(V_g)$	\mathcal{FF}_n	$\mathcal{SC}(S,q)$
	X(S)			

The key ingredients for in our proof are :

- Analogies between C(S) and Right-Angled Buildings;
- Good understanding of the coarse geometry of Mod(S);
- Rigidity results for C(S) (finite strongly rigid exhaustion).

< ロ > < 同 > < 回 > < 回 >

THANKS!

Valentina Disarlo The Model Theory of the Curve Graph

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>