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Ivanov Metaconjecture

Simplicial actions of the mapping class group

Let S be a topological surface of finite type. The mapping class group of S is

Mod(S) := {¢: S — S homeos }/isotopy.

studying G < Mod(S) <— G ~ K(S) "nice" simplicial complex

The simplicial complex K(S) encodes the combinatorics of various “useful”
topological objects on S: curves, arcs, triangulations...

@ (Hatcher-Thurston '80s) Mod(S) is finitely presented
@ (Harer '80s) homology/cohomology of Mod(S)
@ (Farb, Hamenstaedt, ... 00s) Coarse Geometry of Mod(S)

@ (... '20s) Model Theory of Mod(S) ???
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Ivanov Metaconjecture

Simplicial actions of the mapping class group: the curve complex C(S)

The curve complex C(S) is a simplicial complex encoding the combinatorics
of simple essential closed curves on S (taken up to isotopy):

@ each vertex corresponds to a s. e. closed curve on S (up iso.) ;
@ two vertices are joined by an edge if the curves are disjoint on S (up iso);
@ k+ 1 vertices span a k-simplex if the curves are pairwise disjoint (up iso).

&=

Figure: V(C(S)) = {[ s. e. closed curves |} and E(C(S)) = { "being disjoint" }

Mod(S) acts on C(S) by simplicial automorphisms.
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Ivanov Metaconjecture

Simplicial actions of the mapping class group: the curve complex C(S)

The curve complex C(S) is connected, co-diameter, locally infinite.

Applications: 3-manifolds, Teichmuller theory, GGT of Mod(S)

Ivanov 87 Aut C(S) = Mod(S) 2 Iso(Teich(S), dricn)
Masur-Minsky '99 The curve graph C(S) is Gromov-hyperbolic
Masur-Schleimer "13 Under "good hypothesis" K(S) are Gromov-hyperbolic.
Betsvina-Bromberg-Fujiwara '15 Mod(S) has finite asymptotic dimension
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Ivanov Metaconjecture

Simplicial actions of the mapping class group: Ivanov Theorem

Theorem (lvanov '87, Luo ’00)
If S is non-sporadic then Mod(S) = Aut C(S) = Iso(Teich(S),dr) .

@ Many other graphs C(S) such that Aut K(S) = Mod(S) .

graphs K(S) vertices V(K(S)) author
pants graph P(S) pants decomp. Margalit
nonsep. curve graph N (S) non-sep. curves Irmak-Korkmaz
multi-curve graph Ci(S) multi-curves Erlandsson-Fanoni
arc graph A(S) simple arcs Irmak, D.
arc-and-curve graph A(S) simple arcs Korkmaz-Papadopoulos
polygonalization complex P(S) | polygonalisations Bell-D.-Tang
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Ivanov Metaconjecture

Simplicial actions of the mapping class group

Ivanov Metaconjecture

Figure: Pants graph P(S): each vertex is a pants decomposition

Figure: Pants graph P(S): each edge corresponds to an elementary move

Valentina Disarlo The Model Theory of the Curve Graph




Ivanov Metaconjecture

A metaconjecture by Ivanov

Meta-conjecture (lvanov '10s)

Every object naturally associated to a surface S and having a sufficiently
rich structure has Mod(S) as its groups of automorphisms. Moreover, this
can be proved by a reduction to the theorem about Aut C(S).

@ object naturally associated ???
@ sufficiently rich ???
@ reduction ???

Valentina Disarlo The Model Theory of the Curve Graph



Ivanov Metaconjecture

A metaconjecture by Ivanov: the graph of domains I'(S)

Counterexample (McCarthy-Papadopoulos’10): Graph of domains I'(S,,,)

V(L' (S,,)) = { connected subsurfaces R c S (up to isotopy) }
E(T(S,,1)) = { being disjoint (up to isotopy) }
If n > 2 then Aut I'(S,,,) is much larger than Mod(S,,,).

) Xa r
b

<!

X

Figure: Adjacency relation on T'(S)
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Ivanov Metaconjecture

Brendle-Margalit’s topological approach

Theorem (Brendle-Margalit *17)

Let R(S,) be a connected subgraph of T'(S,) such that no vertex is a hole or
a cork. There exists a constant c(V(R)) such that for every g > c(V(R)) :

Aut R(S,) = Mod(S,)

Figure: Corks and Holes
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Ivanov Metaconjecture

Brendle-Margalit’s topological approach

Applications to normal subgroups of the mapping class group.

Open Problem: Extend Brendle-Margalit's work to other classes of
complexes, which are popular in geometric group theory:

@ graphs on punctured surfaces;

@ graphs of (multi-)arcs;

@ graphs of (multi-)curves where the edge relation is not disjointness;
@ graphs of multi-regions.

Some progress: McLeay 18 , Aougab-Loving et. al '19
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Our model-theoretic approach

Our model-theoretic approach
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Our model-theoretic approach

Model theory machinery in a nutshell

@ a first-order structure M on a language £;
@ definable subsets of M, with a notion of “dimension” (the Morley rank);

@ interpretation for £-structures M ~ N:
if two structures M and N are bi-interpretable then

Aut(M) = Aut(N) ;

© Shelah’s classification theory provides invariants of interpretability:
Morley rank of definable sets, w-stability, etc...
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Our model-theoretic approach

Model theory machinery: the curve graph C(S)

The curve graph C(S) is actually a £-structure with £ = {£%} be the
language of "edge-adjacency".

In 1987 Ivanov actually proves that these sets are definable in Th(C(S)):
@ N ={yeV(C(S)) | vis a nonseparating curve };
@ S={yeV(C(S)) | vis aseparating curve };
© Z={(a,8)eV(C(8))|i(a,; 8) =1};
@ J={(a,8) € V(C(S))* | i(r, B) = 2 and Fill(cx, B) = So.4}-
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Our model-theoretic approach

A model-theoretical frame for lvanov’s metaconjecture

Meta-conjecture (lvanov '06)

Every object naturally associated to a surface S and having a sufficiently
rich structure has Mod(S) as its groups of automorphisms. Moreover, this
can be proved by a reduction to the theorem about Aut C(S).

Model-theoretic Reformulation // Exercise Every L-structure IC(S)
bi-interpretable with C(S) has Mod(S) as its group of automorphisms.
Moreover, this follows by a reduction to the theorem about Aut C(S).
Indeed, by bi-interpretability we have:

Aut K(S) = Aut C(S) ' Mod(S) .
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Our model-theoretic approach

Motivating questions in our work

Many other configurations of arcs and curves can be described with
first-order formulas, in particular many graphs X(S) have

Aut X(S) =2 Mod(S) .

@ Is X(S) interpretable/bi-interpretable with C(S) ?

w-stability is a natural obstruction to (bi-)interpretability.

@ Understand the stability type of C(S) (or X(S)): is C(S) w-stable ?
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Our model-theoretic approach

Our results: the first-order theory of C(S)

The Morley rank measures the “dimension” of definable sets of M:

MR : { definable sets in M} - {-1} uOrdu {0}

If every definable set X has MR(X) € {-1} u Ord then Th(M) is w-stable.

Theorem (D. — Koberda — de la Nuez Gonzalez)

Let S be a non-sporadic surface. Then Th(C(S)) is w-stable. If S has genus g
and n punctures, then we have:

MR(Th(C(S))) < ™™ .
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Our model-theoretic approach

Our results: w-stability and interpretability of geometric graphs

We define X(S) = (V(X(S)); E(X(S))) geometric if 3N > 0:
@ Each v e V(X(S)) is made by at most N curves or arcs;
@ Mod(S) acts on X(S) via its action on curves and arcs with

V(X(S))/Mod(S) finite and E(X(S))/Mod(S) finite .

Theorem (D. — Koberda — de la Nuez Gonzalez)
Every geometric graph X(S) is interpretable in C(S).

Corollary
Every geometric graph X(S) is w-stable.
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Our model-theoretic approach

Our results: w-stability and interpretability of geometric graphs

Geometric graphs include the following:

the Hatcher-Thurston graph;
the pants graph;

the marking graph;

the non-separating curve graph;
the separating curve graph;

the arc graph;

the flip graph;

the polygonalization graph;
the arc-and-curve graph;

the Schmutz -Schaller graph.

Valentina Disarlo The Model Theory of the Curve Graph



Our model-theoretic approach

Our results: w-stability and interpretability of geometric graphs
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Figure: A map of the model theory universe by Gabriel Conant
https://www.forkinganddividing.com/
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Our model-theoretic approach

Our results: a recipe for definable sets

(lvanov '87) T = {(a, B) € V(C(S))?* | i(a, B) = 1} is definable.

Corollary (D. - Koberda - de la Nuez Gonzalez)

Let X be a subset of V(C(S))*. IfX is invariant by the diagonal action of
Mod(S) on V* and its projection to Mod(S)/V* is finite or cofinite, then X is
definable in C(S).

In particular, the following set is definable in C(S):
T, = {(a,8) € V(C(S))* | i(a, B) = n}

where i(-,-) is the geometric intersection number between curves.
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Our model-theoretic approach

Our results: relative QE and non-definable sets of C(S)

Theorem (D. — Koberda — de la Nuez Gonzalez)
For all non-sporadic S the theory of C(S) has quantifier elimination relative to
the collection of ¥3-formulas.
Corollary
The following sets are not definable:
o the set X, ={(a,B) e V(C(S))?*| |ai(c, B)| = n} forn>1;
@ theset Y ={(a,B)eV(C(S))*|ai(a,B)=0 mod2}.
where ai(-,-) is the algebraic intersection number between curves.
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Our model-theoretic approach

Our results: a bridge between geometric topology and model theory

(Baudisch - Pizarro - Ziegler '18) Model theory of Right-Angled Buildings

@ Contribute to Shelah’s classification of theories with many examples
coming from geometry and topology;

@ Model-theoretical framework for Ivanov’s metaconjecture;
@ Future study the curve complex in analogy with other w-stable theories.
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of struct:

The model theory of the curve graph nk

Quantifier elimination

The model theory of the curve graph
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L-structures
De
The model theory of the curve graph SIS

limination

Relational £-structures

A relational language £ is a collection of relations symbols R* with an
associated arity £ > 1.

A first-order relational £-structure M consists of the following:
@ a set M called universe;

@ an interpretation of £, that is, a relation R%, c M* for each symbol
R® e L.
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L-structures
Defin:
The model theory of the curve graph Il

tifier elimination

Relational £-structures: examples

@ A graph G is a L-structure with language £ = {£?}:
e V(G) is the universe;
e E(G) c V(G)? is the set of edges
(&2 is interpreted by the edge relation).

@ A k-dimensional simplicial complex C is a £L-structure in the relational
language £ = {£2,... "}
@ V(C) is the universe;
o Yl cv(Cy*! isthe set of all j-simplices
(&’ corresponds to the simplex relation)
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L-structures
De
The model theory of the curve graph SIS

limination

First order theories: graphs

A L-sentence is a first-order formula with no free variables. A collection of
L-sentences is called a first-order theory.

@ "The graph G has no isolated vertices" : G = Vu3v (E(u,v)) .
@ "All edges have a common endpoint" : G = Iv(VYu E(u,v) v (u=v)) .
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The model theory of the curve graph

limination

Definable sets

Let M be a L-structure. A set X ¢ M" is definable in M if there exists a
first-order formula ¢(x1, . .., x,) such that

X={(m,...,m)eM" : Meo(my,...,my)}.

Example:

Y = {(x,y) € V(G)* | d(x,y) = 2} is definable via the formula:

P(x,y) = (x#y) A=E(x,y) A (32 (E(x,2) AE(2,Y))) -
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The model theory of the curve graph

limination

Definable sets: example

Q 2 ={(x,y,2) e V(G)* | (x,y,2) is 2-clique } is definable:

d(,,2) = (x#y) A(x#) A (Y #2) AE(X,Y) NE(x,2) AE(Y,2)

@ Lk(v) = {xe V(G) | x is adjacent to v} is definable over {v} by:

o(v,x) = (x#v) AE(v,x) .
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The model theory of the curve graph

antifier elimination

Definable sets: examples in C(S)

@ (lvanov ’'87) N = {v e V(C(S)) | v is a separating curve} is definable
Q (lvanov'87) Z = {(a, B) € V(C(S))? | i(er, B) = 1} is definable

Corollary (D. - Koberda - de la Nuez Gonzalez)

Let X be a subset of V(C(S))*. IfX is invariant by the diagonal action of
Mod(S) on V* and its projection to Mod(S)/V* is finite or cofinite, then X is
definable in C(S).

In particular, the following set is definable in C(S):

T, = {(o, B) € V(C(5))* | i, B) = n}

where i(-,-) is the geometric intersection number between curves.
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The model theory of the curve graph ank Cli G VETES

limination

Interpretable structures

We say that a £'-structure A is interpretable in an £-structure M if
@ there is a definable set X in M;
@ there is a definable equivalence relation R on X;
@ for each symbol £’ there is a definable R-invariant set on X
such that X/R is isomorphic to V.

Example: When R is the identity, we say that A/ is definable in M.
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The model theory of the curve graph Cli G VETES

limination

Interpretation (technical definition)

Given an L'-structure A/ and a £-structure M, an interpretation . : N ~ M
consists of:

@ Aninteger k > 0;

@ A definable subset X c M*;

@ A definable equivalence relation R on X;

@ A map F, : X - N which factors through a bijection
F,:X/R=N.

such that F,,' (Ex) € X" is definable in M for any relation symbol £ ¢ £’
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The model theory of the curve graph Cli G VETES

antifier elimination

Interpretable structures: examples

The nonseparating curve graph A/ (S) is definable in the curve graph C;(S).

@ (lvanov) X = { € V(Ci(S)) | v nonseparating } = V(N'(S)) definable;
@ language L£': the same as L.

The curve complex C(S) is definable in the curve graph C;(S).

@ X =V(Ci(S)) (same universe);
@ language £’ = {&%,...,%" ) for C(S): each £ is a "i-clique” in C;(S)
the k-cliques are definable in C;(S) by a first-order formula:

E\iy . ow) = Yuivy (vi=v) v ((vi £v) AE(, V) .

Valentina Disarlo The Model Theory of the Curve Graph



The model theory of the curve graph Cli G VETES

antifier elimination

Interpretable structures: examples

The pants graph P(S,,) is interpretable in the curve graph C(So,)-

O I
Wy

en) € V(C(8))*¥™ | (3g+n-3)—cliques } definable in C(S);
@ Definable equivalence relation R: permutation of the components;

o X:{(Cl,..

@ (lvanov) Definable R-invariant set corresponding to £(Pi, P>):

JaePr3BeP, (Pr~{a}) = (P2 {B})) A (a,8) €T
where 7 = {(a, 8) € V(C(8))? | i(a, ) = 2 and Fill(cv, B) = So.4}.
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of structures
rank
antifier elimination

The model theory of the curve graph

Interpretable structures: examples

We define X(S) = (V(X(S)); E(X(S))) geometric if 3N > 0:
@ Each v e V(X(S)) is made by at most N curves or arcs;
@ Mod(S) acts on X(S) via its action on curves and arcs such that

V(X(S))/Mod(S) finite and E(X(S))/Mod(S) finite .

Corollary (D. — Koberda — de la Nuez Gonzalez)
Every geometric graph X(S) is interpretable in C(S).
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The model theory of the curve graph Cli G VETES

antifier elimination

Interpretable structures: bi-interpretability

An interpretation p : N' ~ M induces a homomorphism

f: Aut(M) - Aut(N) .
We say that A and M are bi-interpretable if there are p: N ~ M and
n: M ~ N such that o ¢ and ¢ o i are definable.

@ The curve complex C(S) is bi-interpretable to the curve graph Ci(S).

Fact: If A and M are bi-interpretable, then Aut(N') = Aut(M).
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Interpre S
The model theory of th r raph
e model theory of the curve grap Morley rank
Quantifier elimination

Morley rank

Given a complete theory T, the Morley rank is a class function
MR : {formulasin T} - {-1} uOrdu {co} ,

defined recursively that serves as a notion of “dimension”. The Morley rank of
a theory T is defined as MR(x = x).

If M is a L-structure that models T, then the Morley rank also serves as a
measure of “dimension" for the definable sets of M:

MR : { definable sets in M} — {-1} uOrdu {0} .

(ACF) If K an algebraically closed field and V c K" is an algebraic set,
MR(V) = Krulldim(V).
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Defir

Interpreta s of structures
Morley rank

Quantifier elimination

The model theory of the curve graph

Morley rank: classification theory

(Shelah’s Classification Theory '70s) Theories on countable languages can
be classified according to the Morley rank of the first-order sentences.

If every definable set X has MR(X) ¢ {-1} uOrd then T is w-stable.

w-stable theories include so far:
@ algebraically closed fields;
@ algebraic groups over algebraically closed fields;
@ groups of finite Morley rank.

(Sela '06) The theory of free groups and torsion-free hyperbolic groups is
stable but not w-stable.
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pretations of structu
Morley rank
Quantifier elimination

The model theory of the curve graph

k: classification theory
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Figure: A map of the model theory universe by Gabriel Conant
https://www.forkinganddividing.com/
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i erpretations o
The model theory of the curve graph Morley rank
Quantifier elimination

Morley rank as an obstruction to interpretability

Theorem (D. - Koberda - de la Nuez Gonzalez)

Let S be a non-sporadic surface. Then Th(C(S)) is w-stable. If S has genus g
and n punctures, then we have:

MR(Th(C(S))) < ™™ .

If Th(M) is w-stable and A ~ M, then Th(N) is w-stable.

Corollary (D. - Koberda - de la Nuez Gonzalez)
Every geometric graph X(S) is w-stable.
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) erpreta s of structures
The model th f th r raph

e model theory of the curve grap Morley rank
Quantifier elimination

Morley rank as an obstruction to interpretability: C(S) + X(S)

Is C(S) interpretable in X(S) ?
The Morley rank of a theory is a natural obstruction to interpretability:

o If for every k > 1 we have MRy (xy(N) > MRy at) (MY) , then N 4 M.

Corollary (D. — Koberda — de la Nuez Gonzalez)

Let S be a surface with genus g with n punctures. Then the curve complex
C(S) is not interpretable in any the following graphs:

@ the pants graph P(S) (when3g+n>4);
@ the separating curve graph S(S) (wheng>2 andn<1);
@ the arc complex A(S) (wheng >2 andn=1).
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The model theory of the curve graph

Quantifier elimination

A first-order theory T has quantifier elimination if every formula ¢(x) is
equivalent modulo T to some quantifier-free formula v (x).

Example: Let ¢(a, b, c) be the formula 3x ax* + bx + ¢ = 0. We have:

CEe ¢(a,b,c) <> (a+0vb+0vc=0)
The fomula ¢ is not equivalent to a quantifier-free formula over Q.

Example: The theory of every algebraically closed field (ACF) has quantifier
elimination.

If T has quantifier elimination then every definable set in T is definable using
a formula without quantifiers.
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The model theory of the curve graph

Quantifier elimination

Relative Quantifier Elimination

We say that a theory T has quantifier elimination relative to the class of
v 3— formulas if any formula is equivalent modulo T to a Boolean
combination of v3-formulae.

Theorem (D. - Koberda - de la Nuez Gonzalez)

For all non-sporadic S the theory of C(S) has quantifier elimination relative to
the collection of ¥ 3-formulas.
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The model theory of the curve graph

Relative Quantifier Elimination: applications in C(S)

As a consequence of relative quantifier elimination for C(S), we have:

Corollary (D. - Koberda - de la Nuez Gonzalez)

Suppose S has positive genus and is not a torus with < 3 boundary
components. The following sets are not definable:

@ the set X, = {(a,B) e V(C(S))?| |ai(c, B)| = n} foreachn > 1;
@ theset Y ={(a,B) e V(C(S))*|ai(a, 8) =0 mod 2}.
where ai(-,-) is the algebraic intersection number between curves.
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The main theorem: sketch of the proof

Sketch of the proof

Theorem (D. - Koberda - de la Nuez Gonzalez)

Let S be a non-sporadic surface. Then Th(C(S)) is w-stable. If S has genus g
and has n punctures, then

MR(Th(C(S))) < w™™ .

In addition, Th(C(S)) has quantifier elimination with respect to ¥ 3-formulas.
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The main theorem: sketch of the proof

(Baudisch — Ziegler — Martin Pizarro ’18) Study of Right-Angled buildings

@ Define an auxiliary structure M(S) encoding the geometry of Mod(S);
@ Prove that the structures C(S) and M(S) are bi-interpretable; (*)

© Prove that the structure M(S) has the quantifier elimination property; (**)
© Compute the Morley rank of M(S) and prove that M(S) is w-stable.

© Use the interpretation of C(S) in M(S) to deduce the w-stability of C(S),
get upper bounds on the Morley Ranks, and relative QE.

(*) relies on strongly finite rigid exhaustions for C(S) (Aramayona-Leininger)
(**) relies on HHS structure of Mod(S) (Behrstock’s inequality)
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The main theorem: sketch of the proof

Proof of Theorem: Step 1

@ Define an auxiliary structure M(S) encoding the geometry of Mod(S):

@ universe: Mod(S) as a set

@ Two types of binary relations:
@ R, for g e Mod(S) with R (x,y) if and only if x~'y = g;
@ Rp for any region D ¢ S so that Rp(x,y) if and only if x~!y is supported on D.

Let W the collection of finite words in A = { subsurface D }pes U (Mod(S) \id).
If w=96,...0;is awordin W, we write

Ry:=Rs5 0...0Rs .
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The main theorem: sketch of the proof

Proof of Theorem: Step 2

@ The structures C(S) and M (S) are bi-interpretable.

A set x c C(S) is strongly rigid if any isomorphism between x and another
subgraph of C(S) extends to a unique automorphism of C(S).

(Aramayona — Leininger) There exists an exhaustion of the curve complex
C(S) by strongly finite rigid sets.
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The main theorem: sketch of the proof

Proof of Theorem: Step 3

© M(S) has the quantifier elimination property.
Back-and-forth Property == Quantifier Elimination

Back-and-forth property. Every isomorphism ¢ : A — B between a
substructure A c C(S) and a substructure B ¢ M(S) admits a “suitable
extension":

@ YaeC(S) 3b e M(S) such that ¢ extends to aniso. ¢:Au {a} - Bu {b}

@ Vb e M(S) Ja e C(S) such that ¢ extends to aniso. ¢: Au{a} - Bu{b}.
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The main theorem: sketch of the proof

Proof of Theorem: Step 3

@ M(S) has the quantifier elimination property.
HHS structure on Mod(S) = Back-and-Forth Property

HHS structure of Mod(S) (Berhstock — Hagen — Sisto):
@ Subsurface Projections 7p : C(S) — C(D) (Masur — Minsky);
@ Berhstock Inequality for projections p.
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The main theorem: sketch of the proof

Proof of Theorem: Step 4

Q@ MR(M(S)) = w***™3 therefore M(S) and C(S) are w-stable.
Since M(S) has QE, every definable set has a canonical form as a Boolean
combination of definable sets described by "simple" formulas:
Ry (a,x) and -R,,(a,x)
where the w’s are words with letters in A. We find:
RM(Ry(a,x)) = w*®
where k(S) = 3g + n - 3 is the length of the longest chain of subsurfaces:

gcDyc...cDy=S.
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Future questions

The main theorem: sketch of the proof

Conjectural picture for w-stability of other analogue graphs:

RAAGs Mod(S) handlebody groups #H, | Out(F,) || Aff(S,q)
buildings C(S) D(Vy) FFn SC(S,q)
X(S)

The key ingredients for in our proof are :

@ Analogies between C(S) and Right-Angled Buildings;

@ Good understanding of the coarse geometry of Mod(S);

@ Rigidity results for C(S) (finite strongly rigid exhaustion).
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The main theorem: sketch of the proof

THANKS!

na Disarlo The Model Theory of the Curve Graph
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