Free growth, free counting joint with M. Kambites, N. Szakács & R. Webb (Manchester)

Carl-Fredrik Nyberg-Brodda

Research Fellow, KIAS (Seoul, South Korea) cfnb@kias.re.kr

> University of Warwick, June 20, 2024

The University of Manchester

Let $A = \{a, b, \dots\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

 $\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

 $\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations.

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$.

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$. Adding generators x^{-1} and Dyck relations $xx^{-1} = x^{-1}x = 1$, get group presentations $\mathsf{Gp}\langle A | u_i = v_i \ (i \in I) \rangle$.

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$. Adding generators x^{-1} and Dyck relations $xx^{-1} = x^{-1}x = 1$, get group presentations $\mathsf{Gp}\langle A | u_i = v_i \ (i \in I) \rangle$.

A monoid M is inverse if $\forall x \in M, \exists !x^{-1} \in M$ s.t. $xx^{-1}x = x, x^{-1}xx^{-1} = x^{-1}$.

2/14

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$. Adding generators x^{-1} and Dyck relations $xx^{-1} = x^{-1}x = 1$, get group presentations $\mathsf{Gp}\langle A | u_i = v_i \ (i \in I) \rangle$.

A monoid M is **inverse** if $\forall x \in M, \exists !x^{-1} \in M$ s.t. $xx^{-1}x = x, x^{-1}xx^{-1} = x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$ww^{-1}w = w, \quad uu^{-1} \cdot vv^{-1} = vv^{-1} \cdot uu^{-1} \quad (\forall u, v, w \in (A \cup A^{-1})^*)$$

we get inverse monoid presentations $Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$.

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$. Adding generators x^{-1} and Dyck relations $xx^{-1} = x^{-1}x = 1$, get group presentations $\mathsf{Gp}\langle A | u_i = v_i \ (i \in I) \rangle$.

A monoid M is **inverse** if $\forall x \in M, \exists !x^{-1} \in M$ s.t. $xx^{-1}x = x, x^{-1}xx^{-1} = x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$ww^{-1}w = w, \quad uu^{-1} \cdot vv^{-1} = vv^{-1} \cdot uu^{-1} \quad (\forall u, v, w \in (A \cup A^{-1})^*)$$

we get inverse monoid presentations $Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$. In particular we get free inverse monoids $FIM(A) = Inv\langle A \mid \emptyset \rangle$.

Let $A = \{a, b, ...\}$ be a finite set. The set of all finite words on A is denoted A^* , e.g.

$$\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$$

 A^* is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in Mon $\langle a, b | ab = ba \rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^i b^j = b^j a^i$. Adding generators x^{-1} and Dyck relations $xx^{-1} = x^{-1}x = 1$, get group presentations $\mathsf{Gp}\langle A | u_i = v_i \ (i \in I) \rangle$.

A monoid M is **inverse** if $\forall x \in M, \exists !x^{-1} \in M$ s.t. $xx^{-1}x = x, x^{-1}xx^{-1} = x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$ww^{-1}w = w, \quad uu^{-1} \cdot vv^{-1} = vv^{-1} \cdot uu^{-1} \quad (\forall u, v, w \in (A \cup A^{-1})^*)$$

we get inverse monoid presentations $Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$. In particular we get free inverse monoids $FIM(A) = Inv\langle A \mid \emptyset \rangle$.

Given $M = \langle A \mid u_1 = v_1, u_2 = v_2, \ldots \rangle$, natural to ask:

 $\label{eq:constraint} \begin{array}{l} \mbox{The Word Problem for } M\\ \mbox{Does there exist an algorithm which does the following:}\\ \mbox{Input} \ : \mbox{two words } u,v \in A^*.\\ \mbox{Output} \ : \mbox{ is } u=v \mbox{ in } M? \end{array}$

2. Munn tree MT(u) for $u \equiv a^2 a^{-3} abb^{-1} ab^{-1} bcaa^{-1} cc^{-1}$

Thue (1914): can we always solve the word problem in finitely presented monoids?

Thue (1914): can we always solve the word problem in finitely presented monoids?

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics.

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics. Turing (Ann. of Math. (2) **52**, 1950) extended the above to cancellative monoids.

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics. Turing (Ann. of Math. (2) **52**, 1950) extended the above to cancellative monoids.

Theorem (Novikov^a/Boone^b, 1955/1958)

^aProc. Steklov Inst. Math. 44, 1955
 ^bProc. Nat. Acad. Sciences, 44:10, 1958

There exist finitely presented groups with undecidable word problem.

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics. Turing (Ann. of Math. (2) **52**, 1950) extended the above to cancellative monoids.

Theorem (Novikov^a/Boone^b, 1955/1958)

^aProc. Steklov Inst. Math. 44, 1955
 ^bProc. Nat. Acad. Sciences, 44:10, 1958

There exist finitely presented groups with undecidable word problem.

Yamamura (1997) gave direct proofs of undecidability in inverse monoids.

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics. Turing (Ann. of Math. (2) **52**, 1950) extended the above to cancellative monoids.

Theorem (Novikov^a/Boone^b, 1955/1958)

^aProc. Steklov Inst. Math. 44, 1955
 ^bProc. Nat. Acad. Sciences, 44:10, 1958

There exist finitely presented groups with undecidable word problem.

Yamamura (1997) gave direct proofs of undecidability in inverse monoids. Let M be the monoid with five generators $\{a, b, c, d, e\}$ and 7 defining relations:

> ac = ca, ad = da, bc = cb, bd = db, eca = ce, edb = de, cca = ccae.

4/14

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov^a / Post^b 1947)

^aDokl. Akad. Nauk, 55:7, 1947 ^bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first "real" undecidable problem in mathematics. Turing (Ann. of Math. (2) **52**, 1950) extended the above to cancellative monoids.

Theorem (Novikov^a/Boone^b, 1955/1958)

^aProc. Steklov Inst. Math. 44, 1955
 ^bProc. Nat. Acad. Sciences, 44:10, 1958

There exist finitely presented groups with undecidable word problem.

Yamamura (1997) gave direct proofs of undecidability in inverse monoids. Let M be the monoid with five generators $\{a, b, c, d, e\}$ and 7 defining relations:

> ac = ca, ad = da, bc = cb, bd = db, eca = ce, edb = de, cca = ccae.

Then M has undecidable word problem (Tseytin, 1958), cf. N.-B. arXiv:2401.11757.

4. Growth of monoids

Let M be a monoid generated by a finite set X. The **ball** B(M,n) of radius n is the set of elements in M that can be written as a product of at most n elements from X.

Let M be a monoid generated by a finite set X. The **ball** B(M,n) of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_X : \mathbf{N} \to \mathbf{N}$ defined by $n \mapsto |B(M, n)|$.

Let M be a monoid generated by a finite set X. The **ball** B(M,n) of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_X : \mathbf{N} \to \mathbf{N}$ defined by $n \mapsto |B(M, n)|$. The (exponential) growth rate of M is

$$\gamma := \limsup_{n \to \infty} \gamma_X(n)^{\frac{1}{n}}.$$

If $\gamma > 1$, then M has exponential growth.

Let M be a monoid generated by a finite set X. The **ball** B(M,n) of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_X : \mathbf{N} \to \mathbf{N}$ defined by $n \mapsto |B(M, n)|$. The (exponential) growth rate of M is

$$\gamma := \limsup_{n \to \infty} \gamma_X(n)^{\frac{1}{n}}.$$

If $\gamma > 1$, then M has exponential growth. If $\exists C, d \in \mathbf{N}$ such that $\gamma(n) \leq (Cn)^d$ for all $n \in \mathbf{N}$, then M has polynomial growth. Otherwise intermediate growth.

Let M be a monoid generated by a finite set X. The **ball** B(M, n) of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_X : \mathbf{N} \to \mathbf{N}$ defined by $n \mapsto |B(M, n)|$. The (exponential) growth rate of M is

$$\gamma := \limsup_{n \to \infty} \gamma_X(n)^{\frac{1}{n}}.$$

If $\gamma > 1$, then M has exponential growth. If $\exists C, d \in \mathbf{N}$ such that $\gamma(n) \leq (Cn)^d$ for all $n \in \mathbf{N}$, then M has polynomial growth. Otherwise intermediate growth. Type of growth does not depend on generating set; but value of γ does.

5. Examples of growth

I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **I** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- **4** Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- **4** Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- **I** (Wolf 1968/Bass 1972) A *d*-step nilpotent group has degree *d* polynomial growth.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- I Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- **G** (Wolf 1968/Bass 1972) A *d*-step nilpotent group has degree *d* polynomial growth. (Gromov 1981) A f.g. group *G* has polynomial growth \iff *G* is virtually nilpotent.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- I Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
 Open problem if there exist finitely presented examples.

Examples.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- I Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
 Open problem if there exist finitely presented examples.
- Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity.

Examples.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- I Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- **G** (Wolf 1968/Bass 1972) A *d*-step nilpotent group has degree *d* polynomial growth. (Gromov 1981) A f.g. group *G* has polynomial growth \iff *G* is virtually nilpotent.
- Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
 Open problem if there exist finitely presented examples.
- (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity.
 (Shneerson 1995) The same is not true for f.g. semigroups.

Examples.

- I Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n) = 2^n$, and $\gamma = 2$ (exponential).
- **2** Free group of rank 2 has $\gamma(n) = 4 \cdot 3^{n-1}$ for n > 1, and $\gamma = 3$ (exponential).
- **B** \mathbf{N}^2 has $\gamma(n) = \binom{n}{2}$, so $\gamma(n) \sim n^2$ (polynomial, quadratic).
- I Bicyclic monoid $Mon(b, c \mid bc = 1)$ has quadratic growth.
- Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
 Open problem if there exist finitely presented examples.
- (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity.
 (Shneerson 1995) The same is not true for f.g. semigroups.

$$(\mathsf{Okninski 1993}) \operatorname{Sgp} \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle \text{ has intermediate growth. }$$

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Question

What is the (exponential) growth rate of FIM_r ?

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Question

What is the (exponential) growth rate of FIM_r ?

Exponential growth rate γ_r of FIM_r when r > 1:

 FG_r grows slower than FIM_r grows slower than FM_{2r}

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Question

What is the (exponential) growth rate of FIM_r ?

Exponential growth rate γ_r of FIM_r when r > 1:

FG_r	grows slower than	FIM_r	grows slower than	FM_{2r}
2r - 1	\leq	γ_r	\leq	2r

6. Growth of FIM_r

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Question

What is the (exponential) growth rate of FIM_r ?

Exponential growth rate γ_r of FIM_r when r > 1:

 FG_r grows slower than FIM_r grows slower than FM_{2r} $2r-1 \leq \gamma_r \leq 2r$

Theorem (Kambites, NB, Szakacs, Webb, 2024)

Let FIM_r be the free inverse monoid of rank r > 1. Let p = 2r - 1. Then γ_r , the exponential growth rate of FIM_r , is the largest real root of the polynomial equation

$$p^p x^{p-2} - (px-1)^{p-1} = 0.$$

In particular, γ_r is an algebraic number.

6. Growth of FIM_r

Not difficult (and folklore) that FIM_1 has cubic growth, i.e. $\sim n^3$.

Question

What is the (exponential) growth rate of FIM_r ?

Exponential growth rate γ_r of FIM_r when r > 1:

 FG_r grows slower than FIM_r grows slower than FM_{2r} $2r-1 \leq \gamma_r \leq 2r$

Theorem (Kambites, NB, Szakacs, Webb, 2024)

Let FIM_r be the free inverse monoid of rank r > 1. Let p = 2r - 1. Then γ_r , the exponential growth rate of FIM_r, is the largest real root of the polynomial equation

$$p^p x^{p-2} - (px-1)^{p-1} = 0.$$

In particular, γ_r is an algebraic number.

E.g. when r = 2, we have $\gamma_2 = \frac{11}{6} + \frac{\sqrt{13}}{2} \approx 3.6361...$ For large r we have $\gamma_r \to 2r$.

Proof.	

Let S(K) be the sphere of radius K in ${\rm FIM}_r,$ and let p=2r-1. We can then count Munn trees of a given length using Catalan–Fuss numbers.

Let S(K) be the sphere of radius K in ${\rm FIM}_r,$ and let p=2r-1. We can then count Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

$$\begin{split} |S(K)| &= \frac{p+1}{\frac{1}{2}Kp + p + 1} {\binom{\frac{1}{2}Kp + p + 1}{\frac{1}{2}K}} + \\ &+ \sum_{\substack{t+2k=K\\t\geq 1,\ k\geq 0}} (p+1)p^{t-1} \frac{2p + (t-1)(p-1)}{kp + 2p + (t-1)(p-1)} {\binom{kp + 2p + (t-1)(p-1)}{k}}, \end{split}$$

Let S(K) be the sphere of radius K in ${\rm FIM}_r,$ and let p=2r-1. We can then count Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

$$\begin{split} |S(K)| &= \frac{p+1}{\frac{1}{2}Kp + p + 1} {\binom{\frac{1}{2}Kp + p + 1}{\frac{1}{2}K}} + \\ &+ \sum_{\substack{t+2k=K\\t\geq 1,\ k\geq 0}} (p+1)p^{t-1} \frac{2p + (t-1)(p-1)}{kp + 2p + (t-1)(p-1)} {\binom{kp + 2p + (t-1)(p-1)}{k}}, \end{split}$$

and when K is odd, we have

$$|S(K)| = \sum_{\substack{t+2k=K\\t\geq 1,\ k\geq 0}} (p+1)p^{t-1} \frac{2p+(t-1)(p-1)}{kp+2p+(t-1)(p-1)} {kp+2p+(t-1)(p-1)\choose k}.$$

Let S(K) be the sphere of radius K in ${\rm FIM}_r,$ and let p=2r-1. We can then count Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

$$\begin{split} |S(K)| &= \frac{p+1}{\frac{1}{2}Kp + p + 1} {\binom{\frac{1}{2}Kp + p + 1}{\frac{1}{2}K}} + \\ &+ \sum_{\substack{t+2k=K\\t\geq 1,\ k\geq 0}} (p+1)p^{t-1} \frac{2p + (t-1)(p-1)}{kp + 2p + (t-1)(p-1)} {\binom{kp + 2p + (t-1)(p-1)}{k}}, \end{split}$$

and when K is odd, we have

$$|S(K)| = \sum_{\substack{t+2k=K\\t\geq 1,\ k\geq 0}} (p+1)p^{t-1} \frac{2p+(t-1)(p-1)}{kp+2p+(t-1)(p-1)} {kp+2p+(t-1)(p-1)\choose k}.$$

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as the largest root of

$$p^p x^{p-2} - (px-1)^{p-1} = 0.$$

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are rules, written $(u \to v) \in \mathcal{R}$.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* .

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of $Mon\langle A \mid \mathcal{R} \rangle$.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of $Mon\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is **terminating**.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{P}}^*$, the same as the congruence of $Mon\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are rules, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are rules, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

If \mathcal{R} is terminating and confluent, then it is **complete**.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

If \mathcal{R} is terminating and confluent, then it is **complete**. If $M = \text{Mon}\langle A | \mathcal{R} \rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a **finite complete rewriting system**.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

If \mathcal{R} is terminating and confluent, then it is **complete**. If $M = \text{Mon}\langle A | \mathcal{R} \rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a **finite complete rewriting system**.

1 Bicyclic monoid: $bc \rightarrow 1$.

Given an alphabet A, a **rewriting system** on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are **rules**, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

If \mathcal{R} is terminating and confluent, then it is **complete**. If $M = \text{Mon}\langle A | \mathcal{R} \rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a **finite complete rewriting system**.

- **1** Bicyclic monoid: $bc \rightarrow 1$.
- **2** $\mathbf{N} \times \mathbf{N}$: $ab \rightarrow ba$.

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^* \times A^*$. Elements of \mathcal{R} are rules, written $(u \to v) \in \mathcal{R}$. This induces relations $\to_{\mathcal{R}}$ and $\to_{\mathcal{R}}^*$ on A^* . We also get congruence $\leftrightarrow_{\mathcal{R}}^*$, the same as the congruence of Mon $\langle A \mid \mathcal{R} \rangle$.

If there is no infinite chain $u_1 \rightarrow_{\mathcal{R}} u_2 \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:

 $\forall u, v \in A^* \text{ with } u \rightarrow_{\mathcal{R}}^* w_1 \text{ and } v \rightarrow_{\mathcal{R}}^* w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \rightarrow_{\mathcal{R}}^* w_3$.

\mathcal{R} is locally confluent if:

 $\forall u, v \in A^* \text{ with } u \to_{\mathcal{R}} w_1 \text{ and } v \to_{\mathcal{R}} w_2$, then $\exists w_3 \in A^* \text{ such that } w_1, w_2 \to_{\mathcal{R}}^* w_3$.

(Newman 1942): Any terminating and locally confluent system is confluent.

If \mathcal{R} is terminating and confluent, then it is **complete**. If $M = Mon\langle A | \mathcal{R} \rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a **finite complete rewriting system**.

- **1** Bicyclic monoid: $bc \rightarrow 1$.
- **2** $\mathbf{N} \times \mathbf{N}$: $ab \rightarrow ba$.
- **3** Free groups: $xx^{-1} \rightarrow 1$, $x^{-1}x \rightarrow 1$.

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) ${\rm FP}_n\iff$ there is a projective resolution P_* of ${\bf Z}$

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) ZM-module in which all P_i $(i \leq n)$ are finitely generated.

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) ${\rm FP}_n\iff$ there is a projective resolution P_* of ${\bf Z}$

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) $\mathbb{Z}M$ -module in which all P_i $(i \leq n)$ are finitely generated. M is $\begin{cases} \text{finitely generated} \implies \operatorname{FP}_1 \\ \text{finitely presented} \implies \operatorname{FP}_2 \end{cases}$

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of \mathbf{Z}

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) $\mathbb{Z}M$ -module in which all P_i $(i \leq n)$ are finitely generated. M is $\begin{cases} \text{finitely generated} \implies \operatorname{FP}_1 \\ \text{finitely presented} \implies \operatorname{FP}_2 \end{cases}$ Gray & Steinberg (2021): FIM_r is not FP_2 .

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of **Z**

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) $\mathbb{Z}M$ -module in which all P_i $(i \leq n)$ are finitely generated. M is $\begin{cases} \text{finitely generated} \implies \text{FP}_1 \\ \text{finitely presented} \implies \text{FP}_2 \end{cases}$ Gray & Steinberg (2021): FIM_r is not FP_2 . Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation.

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of **Z**

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) **Z***M*-module in which all P_i $(i \le n)$ are finitely generated. *M* is $\begin{cases}
finitely generated \implies FP_1 \\
finitely presented \implies FP_2
\end{cases}$ Gray & Steinberg (2021): FIM_r is not FP₂. Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any **finite** monogenic inverse monoid is $\cong \ln \sqrt{x} \mid x^{p+k} = x^p$, order $k + \sum_{i=1}^{p} i^2$.

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of **Z**

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) **Z***M*-module in which all P_i $(i \le n)$ are finitely generated. *M* is $\begin{cases}
finitely generated \implies FP_1 \\
finitely presented \implies FP_2
\end{cases}$ Gray & Steinberg (2021): FIM_r is not FP₂. Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any **finite** monogenic inverse monoid is $\cong \ln \sqrt{x} \mid x^{p+k} = x^p$, order $k + \sum_{i=1}^{p} i^2$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.

8. Rewriting systems and FIM_r

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of **Z**

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) **Z***M*-module in which all P_i $(i \le n)$ are finitely generated. *M* is $\begin{cases}
finitely generated \implies FP_1 \\
finitely presented \implies FP_2
\end{cases}$ Gray & Steinberg (2021): FIM_r is not FP₂. Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any **finite** monogenic inverse monoid is $\cong \ln \sqrt{x} \mid x^{p+k} = x^p$, order $k + \sum_{i=1}^{p} i^2$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.

Kobayashi (1990): if M admits a finite complete rewriting system, then M is FP_{∞} .

8. Rewriting systems and FIM_r

Theorem (Schein, 1975^a)

^aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIM_r is not finitely presented for any $r \ge 1$.

M is (right) $FP_n \iff$ there is a projective resolution P_* of **Z**

 $\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$

as a (right) **Z***M*-module in which all P_i $(i \le n)$ are finitely generated. *M* is $\begin{cases}
\text{finitely generated} \implies \text{FP}_1 \\
\text{finitely presented} \implies \text{FP}_2
\end{cases}$ Gray & Steinberg (2021): FIM_r is not FP_2 . Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any finite monogenic inverse monoid is $\cong \ln \sqrt{x} \mid x^{p+k} = x^p$, order $k + \sum_{i=1}^p i^2$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.

Kobayashi (1990): if M admits a finite complete rewriting system, then M is FP_{∞} .

Corollary (NB, 2024)

The following properties are equivalent for monogenic inverse monoids: (1) being finitely presented; (2) FP_2 ; (3) FP_∞ ; (4) admitting a FCRS; (5) being non-free.

C.-F. Nyberg-Brodda (KIAS)

C.-F. Nyberg-Brodda (KIAS)

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \dots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \dots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \dots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \; (\forall w \in (A \cup A_*)^*), \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \dots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r. I Is F_r^* finitely presented?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r. **1** Is F_r^* finitely presented? **2** Is F_r^* FP₂?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

- **I** Is F_r^* finitely presented?
- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?

11/14

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^* \rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

- **1** Is F_r^* finitely presented?
- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?
- 4 What is the growth rate of F_r^* for r > 1?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r.

- **1** Is F_r^* finitely presented?
- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?
- 4 What is the growth rate of F_r^* for r > 1?
- 5 Are there "Munn trees" for solving the word problem?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r.

I Is F_r^* finitely presented?

No (Cho, 2024)

- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?
- 4 What is the growth rate of F_r^* for r > 1?
- 5 Are there "Munn trees" for solving the word problem?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^* \rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

- **I** Is F_r^* finitely presented? No (Cho, 2024)
- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?
- 4 What is the growth rate of F_r^* for r > 1?
- 5 Are there "Munn trees" for solving the word problem?

No (Cho, 2024) No (NB, 2024)

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^* \rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r.

- I Is F_r^* finitely presented? No (Cho, 2024)
- **2** Is F_r^* FP₂?
- **3** What is the growth rate of F_1^* ?
- 4 What is the growth rate of F_r^* for r > 1?
- 5 Are there "Munn trees" for solving the word problem?

No (NB, 2024) Next slide!

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \dots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the free regular *-monoid of rank r.

I is F_r^* finitely presented?	No (Cho, 2024)
2 Is F_r^* FP ₂ ?	No (NB, 2024)
B What is the growth rate of F_1^* ?	Next slide!
4 What is the growth rate of F_r^* for $r > 1$?	?
Are there "Munn trees" for solving the word problem?	?

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^* \rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

Is F_r^* finitely presented?No (Cho, 2024)Is F_r^* FP2?No (NB, 2024)Is What is the growth rate of F_1^* ?Next slide!Image: What is the growth rate of F_r^* for r > 1??Image: Are there "Munn trees" for solving the word problem??

```
Theorem (Polák, 2001<sup>a</sup>)
```

```
<sup>a</sup>J. Pure & Appl. Alg. 157 (2001), pp. 107-114
```

The presentation (\star) of F_r^* is complete.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

Is F_r^* finitely presented?No (Cho, 2024)Is F_r^* FP2?No (NB, 2024)Is What is the growth rate of F_1^* ?Next slide!Image: What is the growth rate of F_r^* for r > 1??Image: Are there "Munn trees" for solving the word problem??

Theorem (Polák, 2001^a)

```
<sup>a</sup>J. Pure & Appl. Alg. 157 (2001), pp. 107-114
```

The presentation (\star) of F_r^* is complete.

Using this presentation:

Theorem (NB, 2024)

We have $H_2(F_1^*, \mathbb{Z}) \cong \mathbb{Z}^{\infty}$. In particular, F_r^* is not FP_2 for any $r \geq 1$.

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \ (\forall w \in (A \cup A_*)^*\rangle, \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

Is F_r^* finitely presented?No (Cho, 2024)Is F_r^* FP2?No (NB, 2024)Is What is the growth rate of F_1^* ?Next slide!Image: What is the growth rate of F_r^* for r > 1??Image: Are there "Munn trees" for solving the word problem??

Theorem (Polák, 2001^a)

```
<sup>a</sup>J. Pure & Appl. Alg. 157 (2001), pp. 107-114
```

The presentation (\star) of F_r^* is complete.

Using this presentation:

Theorem (NB, 2024)

We have $H_2(F_1^*, \mathbb{Z}) \cong \mathbb{Z}^{\infty}$. In particular, F_r^* is not FP_2 for any $r \ge 1$.

Here $H_*(M, \mathbf{Z}) := \operatorname{Tor}_*^{\mathbf{Z}M}(\mathbf{Z}, \mathbf{Z})$ and $H^*(M, \mathbf{Z}) := \operatorname{Ext}_{\mathbf{Z}M}^*(\mathbf{Z}, \mathbf{Z}).$

In the Wagner congruence, we have $ww^{-1}w = w$ and $uu^{-1}vv^{-1} = vv^{-1}uu^{-1}$. What if we only use the first set of relations? Let $A_* = \{a^*, b^*, \ldots\}$, and

$$F_r^* := \mathsf{Mon}\langle A \cup A_* \mid ww^*w = w \; (\forall w \in (A \cup A_*)^*), \tag{(\star)}$$

where $(uv)^* := v^*u^*$. Then F_r^* is the *free regular* *-monoid of rank r.

Is F_r^* finitely presented?No (Cho, 2024)Is F_r^* FP2?No (NB, 2024)Is What is the growth rate of F_1^* ?Next slide!Image: What is the growth rate of F_r^* for r > 1??Image: Are there "Munn trees" for solving the word problem??

Theorem (Polák, 2001^a)

```
<sup>a</sup>J. Pure & Appl. Alg. 157 (2001), pp. 107-114
```

The presentation (\star) of F_r^* is complete.

Using this presentation:

Theorem (NB, 2024)

We have $H_2(F_1^*, \mathbb{Z}) \cong \mathbb{Z}^{\infty}$. In particular, F_r^* is not FP_2 for any $r \ge 1$.

Here $H_*(M, \mathbf{Z}) := \operatorname{Tor}_*^{\mathbf{Z}M}(\mathbf{Z}, \mathbf{Z})$ and $H^*(M, \mathbf{Z}) := \operatorname{Ext}_{\mathbf{Z}M}^*(\mathbf{Z}, \mathbf{Z})$. Note: some evidence that $H_2(\operatorname{FIM}_1, \mathbf{Z}) = 0$.

C.-F. Nyberg-Brodda (KIAS)

 $F_1^* \text{ defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N} \}.$

- $F_1^* \text{ defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:}$
 - $|B(F_1^*, n)| = \#\{\text{binary strings of length} \le n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \ge 1)\}$ $:= |X_n|$

$$\begin{split} F_1^* \text{ defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*, n)| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \\ &:= |X_n| \end{split}$$

Completely different context; let w^{rev} be the reverse of w, and

 $|Y_n| = \#\{\text{binary strings of length} \le n \text{ avoiding } ww^{\mathsf{rev}} w \ (\forall w)\}$

$$\begin{split} F_1^* \text{ defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*, n)| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \\ &:= |X_n| \end{split}$$

Completely different context; let w^{rev} be the reverse of w, and

 $|Y_n| = \#\{\text{binary strings of length} \le n \text{ avoiding } ww^{\mathsf{rev}} w \ (\forall w)\}$

Theorem (Currie & Rampersad, 2015^a)

^aJ. of Integer Seq. 18 (2015)

 Y_n has intermediate growth.

$$\begin{split} F_1^* \text{ defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*,n)| = \#\{\text{binary strings of length } \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \end{split}$$

$$:= |X_n| = \lim_{k \to \infty} |X_n^{(k)}| := \lim_{k \to \infty} \#\{ \text{same but } \forall 1 \le i \le k \}.$$

Completely different context; let w^{rev} be the reverse of w, and

 $|Y_n| = \#\{\text{binary strings of length} \le n \text{ avoiding } ww^{\mathsf{rev}} w \ (\forall w)\}$

Theorem (Currie & Rampersad, 2015^a)

^aJ. of Integer Seq. 18 (2015)

 Y_n has intermediate growth.

$$\begin{split} F_1^* & \text{defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*, n)| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \\ &:= |X_n| = \lim_{k \to \infty} |X_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same but } \forall 1 \leq i \leq k\}. \end{split}$$

Completely different context; let w^{rev} be the reverse of w, and

$$\begin{split} Y_n| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } ww^{\mathsf{rev}} w \; (\forall w) \\ &= \lim_{k \to \infty} |Y_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same, but } |w| \leq k\}. \end{split}$$

Theorem (Currie & Rampersad, 2015^a)

^aJ. of Integer Seq. 18 (2015)

 Y_n has intermediate growth.

$$\begin{split} F_1^* & \text{defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*, n)| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \\ &:= |X_n| = \lim_{k \to \infty} |X_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same but } \forall 1 \leq i \leq k\}. \end{split}$$

Completely different context; let w^{rev} be the reverse of w, and

$$\begin{split} Y_n| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } ww^{\mathsf{rev}} w \; (\forall w) \\ &= \lim_{k \to \infty} |Y_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same, but } |w| \leq k\}. \end{split}$$

Theorem (Currie & Rampersad, 2015^a)

^aJ. of Integer Seq. 18 (2015)

 Y_n has intermediate growth.

Proposition (NB, 2024)

For all $n, k \geq 1$, we have $|X_n^{(k)}| = |Y_n^{(k)}|$, and hence also $|X_n| = |Y_n|$.

$$\begin{split} F_1^* & \text{defined by rewriting system } \{a^i b^i a^i \to a^i, \quad b^i a^i b^i \to b^i \mid i \in \mathbf{N}\}. \text{ Thus:} \\ |B(F_1^*, n)| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } 0^i 1^i 0^i \text{ and } 1^i 0^i 1^i \ (\forall i \geq 1)\} \\ &:= |X_n| = \lim_{k \to \infty} |X_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same but } \forall 1 \leq i \leq k\}. \end{split}$$

Completely different context; let w^{rev} be the reverse of w, and

$$\begin{split} Y_n| &= \#\{\text{binary strings of length} \leq n \text{ avoiding } ww^{\mathsf{rev}} w \; (\forall w) \\ &= \lim_{k \to \infty} |Y_n^{(k)}| := \lim_{k \to \infty} \#\{\text{same, but } |w| \leq k\}. \end{split}$$

Theorem (Currie & Rampersad, 2015^a)

^aJ. of Integer Seq. 18 (2015)

 Y_n has intermediate growth.

Proposition (NB, 2024)

For all
$$n, k \ge 1$$
, we have $|X_n^{(k)}| = |Y_n^{(k)}|$, and hence also $|X_n| = |Y_n|$.

Corollary (NB, 2024)

The monogenic free *-semigroup F_1^* has intermediate growth.

C.-F. Nyberg-Brodda (KIAS)

11. Precise growth rates of $X_n^{(k)}$

Theorem (NB, 2024)

For all $n, k \ge 1$, $|X_n^{(k)}| = |Y_n^{(k)}| \sim \zeta_k^{-n}$, where ζ_k is real positive root of $x^{k+1} + x - 1$.

Theorem (NB, 2024) For all $n, k \ge 1$, $|X_n^{(k)}| = |Y_n^{(k)}| \sim \zeta_k^{-n}$, where ζ_k is real positive root of $x^{k+1} + x - 1$.

Since $\zeta_k \to 1_-$ as $k \to \infty$, X_n cannot have exponential growth.

Theorem (NB, 2024) For all $n, k \ge 1$, $|X_n^{(k)}| = |Y_n^{(k)}| \sim \zeta_k^{-n}$, where ζ_k is real positive root of $x^{k+1} + x - 1$.

Since $\zeta_k \to 1_-$ as $k \to \infty$, X_n cannot have exponential growth.

Corollary

 Y_n , and hence also F_1^* , has intermediate growth.

Theorem (NB, 2024)

For all $n, k \ge 1$, $|X_n^{(k)}| = |Y_n^{(k)}| \sim \zeta_k^{-n}$, where ζ_k is real positive root of $x^{k+1} + x - 1$.

Since $\zeta_k \to 1_-$ as $k \to \infty$, X_n cannot have exponential growth.

Corollary

 Y_n , and hence also F_1^* , has intermediate growth.

Some questions:

- **1** What is the growth rate of F_r^* ?
- **2** What are the finitely presented quotients of F_1^* ?
- Is the word problem decidable in any monogenic *-semigroup?
- 4 What is $H_n(FIM_r, \mathbf{Z})$ for $n \ge 2$?
- **5** What is $H_n(F_r^*, \mathbf{Z})$ for $n \geq 3$?

Thank you!