Free growth, free counting joint with M. Kambites, N. Szakács \& R. Webb (Manchester)

Carl-Fredrik Nyberg-Brodda

Research Fellow, KIAS (Seoul, South Korea)
cfnb@kias.re.kr

University of Warwick,
June 20, 2024

고등과학원
KOREA INSTITUTE FOR ADVANCED STUDY

MANCHESTER 1824

1. Free monoids and presentations

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\} .
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$. Adding generators x^{-1} and Dyck relations $x x^{-1}=x^{-1} x=1$, get group presentations $\operatorname{Gp}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\} .
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$. Adding generators x^{-1} and Dyck relations $x x^{-1}=x^{-1} x=1$, get group presentations $\operatorname{Gp}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

A monoid M is inverse if $\forall x \in M, \exists!x^{-1} \in M$ s.t. $x x^{-1} x=x, x^{-1} x x^{-1}=x^{-1}$.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\} .
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$. Adding generators x^{-1} and Dyck relations $x x^{-1}=x^{-1} x=1$, get group presentations $\operatorname{Gp}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

A monoid M is inverse if $\forall x \in M, \exists!x^{-1} \in M$ s.t. $x x^{-1} x=x, x^{-1} x x^{-1}=x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$
w w^{-1} w=w, \quad u u^{-1} \cdot v v^{-1}=v v^{-1} \cdot u u^{-1} \quad\left(\forall u, v, w \in\left(A \cup A^{-1}\right)^{*}\right)
$$

we get inverse monoid presentations $\operatorname{lnv}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\} .
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$. Adding generators x^{-1} and Dyck relations $x x^{-1}=x^{-1} x=1$, get group presentations $\operatorname{Gp}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

A monoid M is inverse if $\forall x \in M, \exists!x^{-1} \in M$ s.t. $x x^{-1} x=x, x^{-1} x x^{-1}=x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$
w w^{-1} w=w, \quad u u^{-1} \cdot v v^{-1}=v v^{-1} \cdot u u^{-1} \quad\left(\forall u, v, w \in\left(A \cup A^{-1}\right)^{*}\right)
$$

we get inverse monoid presentations $\operatorname{lnv}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.
In particular we get free inverse monoids $\operatorname{FIM}(A)=\operatorname{lnv}\langle A \mid \varnothing\rangle$.

1. Free monoids and presentations

Let $A=\{a, b, \ldots\}$ be a finite set. The set of all finite words on A is denoted A^{*}, e.g.

$$
\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\} .
$$

A^{*} is the free monoid on A, and by adding relations, we get monoid presentations. E.g. in $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \cong \mathbf{N} \times \mathbf{N}$, have $a^{i} b^{j}=b^{j} a^{i}$. Adding generators x^{-1} and Dyck relations $x x^{-1}=x^{-1} x=1$, get group presentations $\operatorname{Gp}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.

A monoid M is inverse if $\forall x \in M, \exists!x^{-1} \in M$ s.t. $x x^{-1} x=x, x^{-1} x x^{-1}=x^{-1}$. Adding generators x^{-1} and Wagner relations:

$$
w w^{-1} w=w, \quad u u^{-1} \cdot v v^{-1}=v v^{-1} \cdot u u^{-1} \quad\left(\forall u, v, w \in\left(A \cup A^{-1}\right)^{*}\right)
$$

we get inverse monoid presentations $\operatorname{lnv}\left\langle A \mid u_{i}=v_{i}(i \in I)\right\rangle$.
In particular we get free inverse monoids $\operatorname{FIM}(A)=\operatorname{lnv}\langle A \mid \varnothing\rangle$.
Given $M=\left\langle A \mid u_{1}=v_{1}, u_{2}=v_{2}, \ldots\right\rangle$, natural to ask:

The Word Problem for M

Does there exist an algorithm which does the following:
Input : two words $u, v \in A^{*}$.
Output : is $u=v$ in M ?

2. Munn tree $\operatorname{MT}(u)$ for $u \equiv a^{2} a^{-3} a b b^{-1} a b^{-1} b c a a^{-1} c c^{-1}$

3. The word problem is hard

3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
    a}\mathrm{ Dokl. Akad. Nauk, 55:7, 1947
    b J. Symb. Logic 12, }194
No.
```


3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
    a}\mathrm{ Dokl. Akad. Nauk, 55:7, 1947
    bJ. Symb. Logic 12, 1947
    No. There exist finitely presented monoids with undecidable word problem.
```


3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
    a}\mathrm{ Dokl. Akad. Nauk, 55:7, 1947
    bJ. Symb. Logic 12, 1947
No. There exist finitely presented monoids with undecidable word problem.
```

This was the first "real" undecidable problem in mathematics.

3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
    a}\mathrm{ Dokl. Akad. Nauk, 55:7, 1947
    bJ. Symb. Logic 12, 1947
No. There exist finitely presented monoids with undecidable word problem.
```

This was the first "real" undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.

3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
\({ }^{\text {a }}\) Dokl. Akad. Nauk, 55:7, 1947
b J. Symb. Logic 12, 1947
No. There exist finitely presented monoids with undecidable word problem.
```

This was the first "real" undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.


```
\({ }^{2}\) Proc. Steklov Inst. Math. 44, 1955
\({ }^{b}\) Proc. Nat. Acad. Sciences, 44:10, 1958
There exist finitely presented groups with undecidable word problem.
```


3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

```
Theorem (Markova / Post }\mp@subsup{}{}{b}\mathrm{ 1947)
    a}\mathrm{ Dokl. Akad. Nauk, 55:7, 1947
    bJ. Symb. Logic 12, 1947
    No. There exist finitely presented monoids with undecidable word problem.
```

This was the first "real" undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.


```
\({ }^{2}\) Proc. Steklov Inst. Math. 44, 1955
\({ }^{b}\) Proc. Nat. Acad. Sciences, 44:10, 1958
There exist finitely presented groups with undecidable word problem.
Yamamura (1997) gave direct proofs of undecidability in inverse monoids.
```


3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov ${ }^{a} /$ Post b 1947)

${ }^{\text {a }}$ Dokl. Akad. Nauk, 55:7, 1947
b J. Symb. Logic 12, 1947
No. There exist finitely presented monoids with undecidable word problem.
This was the first "real" undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.

Theorem (Novikova ${ }^{\text {}}$ (Boone ${ }^{b}$, 1955/1958)

${ }^{2}$ Proc. Steklov Inst. Math. 44, 1955
${ }^{b}$ Proc. Nat. Acad. Sciences, 44:10, 1958
There exist finitely presented groups with undecidable word problem.
Yamamura (1997) gave direct proofs of undecidability in inverse monoids.
Let M be the monoid with five generators $\{a, b, c, d, e\}$ and 7 defining relations:

$$
\begin{gathered}
a c=c a, \quad a d=d a, \quad b c=c b, \quad b d=d b \\
e c a=c e, \quad e d b=d e, \quad c c a=c c a e
\end{gathered}
$$

3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markov ${ }^{a} /$ Post b 1947)

${ }^{2}$ Dokl. Akad. Nauk, 55:7, 1947
b J. Symb. Logic 12, 1947
No. There exist finitely presented monoids with undecidable word problem.
This was the first "real" undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.

Theorem (Novikov ${ }^{3} /$ Boone b, 1955/1958)

${ }^{2}$ Proc. Steklov Inst. Math. 44, 1955
${ }^{\text {b }}$ Proc. Nat. Acad. Sciences, 44:10, 1958
There exist finitely presented groups with undecidable word problem.
Yamamura (1997) gave direct proofs of undecidability in inverse monoids.
Let M be the monoid with five generators $\{a, b, c, d, e\}$ and 7 defining relations:

$$
\begin{gathered}
a c=c a, \quad a d=d a, \quad b c=c b, \quad b d=d b \\
e c a=c e, \quad e d b=d e, \quad c c a=c c a e
\end{gathered}
$$

Then M has undecidable word problem (Tseytin, 1958), cf. N.-B. arXiv:2401.11757.

4. Growth of monoids

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball $B(M, n)$ of radius n is the set of elements in M that can be written as a product of at most n elements from X.

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball $B(M, n)$ of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of $M($ wrt $X)$ is $\gamma_{X}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $n \mapsto|B(M, n)|$.

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball $B(M, n)$ of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_{X}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $n \mapsto|B(M, n)|$. The (exponential) growth rate of M is

$$
\gamma:=\limsup _{n \rightarrow \infty} \gamma_{X}(n)^{\frac{1}{n}}
$$

If $\gamma>1$, then M has exponential growth.

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball $B(M, n)$ of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_{X}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $n \mapsto|B(M, n)|$. The (exponential) growth rate of M is

$$
\gamma:=\limsup _{n \rightarrow \infty} \gamma_{X}(n)^{\frac{1}{n}} .
$$

If $\gamma>1$, then M has exponential growth. If $\exists C, d \in \mathbf{N}$ such that $\gamma(n) \leq(C n)^{d}$ for all $n \in \mathbf{N}$, then M has polynomial growth. Otherwise intermediate growth.

4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph. This growth is computable \Longleftrightarrow the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball $B(M, n)$ of radius n is the set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is $\gamma_{X}: \mathbf{N} \rightarrow \mathbf{N}$ defined by $n \mapsto|B(M, n)|$. The (exponential) growth rate of M is

$$
\gamma:=\limsup _{n \rightarrow \infty} \gamma_{X}(n)^{\frac{1}{n}} .
$$

If $\gamma>1$, then M has exponential growth. If $\exists C, d \in \mathbf{N}$ such that $\gamma(n) \leq(C n)^{d}$ for all $n \in \mathbf{N}$, then M has polynomial growth. Otherwise intermediate growth.
Type of growth does not depend on generating set; but value of γ does.

5. Examples of growth

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
2. Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
】 Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid $\operatorname{Mon}\langle b, c \mid b c=1\rangle$ has quadratic growth.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
】 Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth. (Gromov 1981) A f.g. group G has polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth. (Gromov 1981) A f.g. group G has polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.
б (Grigorchuk 1984) There exist finitely generated groups of intermediate growth. Open problem if there exist finitely presented examples.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth. (Gromov 1981) A f.g. group G has polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.
б (Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
Open problem if there exist finitely presented examples.
7 (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth. (Gromov 1981) A f.g. group G has polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.
б (Grigorchuk 1984) There exist finitely generated groups of intermediate growth. Open problem if there exist finitely presented examples.
7 (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity. (Shneerson 1995) The same is not true for f.g. semigroups.

5. Examples of growth

Examples.

1 Free monoid of rank 2 on $\{a, b\}$ has $\gamma(n)=2^{n}$, and $\gamma=2$ (exponential).
$\boxed{2}$ Free group of rank 2 has $\gamma(n)=4 \cdot 3^{n-1}$ for $n>1$, and $\gamma=3$ (exponential).
$3 \mathbf{N}^{2}$ has $\gamma(n)=\binom{n}{2}$, so $\gamma(n) \sim n^{2}$ (polynomial, quadratic).
4 Bicyclic monoid Mon $\langle b, c \mid b c=1\rangle$ has quadratic growth.
5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth. (Gromov 1981) A f.g. group G has polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.
б (Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
Open problem if there exist finitely presented examples.
7 (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity. (Shneerson 1995) The same is not true for f.g. semigroups.
8 (Okninski 1993) $\operatorname{Sgp}\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right\rangle$ has intermediate growth.

6. Growth of FIM_{r}

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM_{1} has cubic growth, i.e. $\sim n^{3}$.

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM_{1} has cubic growth, i.e. $\sim n^{3}$.

Question

What is the (exponential) growth rate of FIM_{r} ?

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM_{1} has cubic growth, i.e. $\sim n^{3}$.

Question

What is the (exponential) growth rate of FIM_{r} ?
Exponential growth rate γ_{r} of FIM_{r} when $r>1$: FG_{r} grows slower than FIM_{r} grows slower than $\mathrm{FM}_{2 r}$

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM_{1} has cubic growth, i.e. $\sim n^{3}$.

Question

What is the (exponential) growth rate of FIM_{r} ?
Exponential growth rate γ_{r} of FIM_{r} when $r>1$:

FG_{r}	grows slower than	FIM_{r}	grows slower than	$\mathrm{FM}_{2 r}$
$2 r-1$	\leq	γ_{r}	\leq	$2 r$

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM_{1} has cubic growth, i.e. $\sim n^{3}$.

Question

What is the (exponential) growth rate of FIM_{r} ?
Exponential growth rate γ_{r} of FIM_{r} when $r>1$:

$$
\begin{array}{ccccc}
\mathrm{FG}_{r} & \text { grows slower than } & \mathrm{FIM}_{r} & \text { grows slower than } & \mathrm{FM}_{2 r} \\
2 r-1 & \leq & \gamma_{r} & \leq & 2 r
\end{array}
$$

Theorem (Kambites, NB, Szakacs, Webb, 2024)
Let FIM_{r} be the free inverse monoid of rank $r>1$. Let $p=2 r-1$. Then γ_{r}, the exponential growth rate of FIM_{r}, is the largest real root of the polynomial equation

$$
p^{p} x^{p-2}-(p x-1)^{p-1}=0 .
$$

In particular, γ_{r} is an algebraic number.

6. Growth of FIM_{r}

Not difficult (and folklore) that FIM $_{1}$ has cubic growth, i.e. $\sim n^{3}$.

Question

What is the (exponential) growth rate of FIM_{r} ?
Exponential growth rate γ_{r} of FIM_{r} when $r>1$:

$$
\begin{array}{ccccc}
\mathrm{FG}_{r} & \text { grows slower than } & \mathrm{FIM}_{r} & \text { grows slower than } & \mathrm{FM}_{2 r} \\
2 r-1 & \leq & \gamma_{r} & \leq & 2 r
\end{array}
$$

Theorem (Kambites, NB, Szakacs, Webb, 2024)
Let FIM_{r} be the free inverse monoid of rank $r>1$. Let $p=2 r-1$. Then γ_{r}, the exponential growth rate of FIM_{r}, is the largest real root of the polynomial equation

$$
p^{p} x^{p-2}-(p x-1)^{p-1}=0 .
$$

In particular, γ_{r} is an algebraic number.
E.g. when $r=2$, we have $\gamma_{2}=\frac{11}{6}+\frac{\sqrt{13}}{2} \approx 3.6361 \ldots$. For large r we have $\gamma_{r} \rightarrow 2 r$.

Proof.

Proof.

Let $S(K)$ be the sphere of radius K in FIM_{r}, and let $p=2 r-1$. We can then count Munn trees of a given length using Catalan-Fuss numbers.

Proof.

Let $S(K)$ be the sphere of radius K in FIM_{r}, and let $p=2 r-1$. We can then count Munn trees of a given length using Catalan-Fuss numbers. If K is even, then

$$
\begin{aligned}
|S(K)| & =\frac{p+1}{\frac{1}{2} K p+p+1}\binom{\frac{1}{2} K p+p+1}{\frac{1}{2} K}+ \\
& +\sum_{\substack{t+2 k=K \\
t \geq 1, k \geq 0}}(p+1) p^{t-1} \frac{2 p+(t-1)(p-1)}{k p+2 p+(t-1)(p-1)}\binom{k p+2 p+(t-1)(p-1)}{k}
\end{aligned}
$$

Proof.

Let $S(K)$ be the sphere of radius K in FIM_{r}, and let $p=2 r-1$. We can then count Munn trees of a given length using Catalan-Fuss numbers. If K is even, then

$$
\begin{aligned}
|S(K)| & =\frac{p+1}{\frac{1}{2} K p+p+1}\binom{\frac{1}{2} K p+p+1}{\frac{1}{2} K}+ \\
& +\sum_{\substack{t+2 k=K \\
t \geq 1, k \geq 0}}(p+1) p^{t-1} \frac{2 p+(t-1)(p-1)}{k p+2 p+(t-1)(p-1)}\binom{k p+2 p+(t-1)(p-1)}{k},
\end{aligned}
$$

and when K is odd, we have

$$
|S(K)|=\sum_{\substack{t+2 k=K \\ t \geq 1, k \geq 0}}(p+1) p^{t-1} \frac{2 p+(t-1)(p-1)}{k p+2 p+(t-1)(p-1)}\binom{k p+2 p+(t-1)(p-1)}{k}
$$

Proof.

Let $S(K)$ be the sphere of radius K in FIM_{r}, and let $p=2 r-1$. We can then count Munn trees of a given length using Catalan-Fuss numbers. If K is even, then

$$
\begin{aligned}
|S(K)| & =\frac{p+1}{\frac{1}{2} K p+p+1}\binom{\frac{1}{2} K p+p+1}{\frac{1}{2} K}+ \\
& +\sum_{\substack{t+2 k=K \\
t \geq 1, k \geq 0}}(p+1) p^{t-1} \frac{2 p+(t-1)(p-1)}{k p+2 p+(t-1)(p-1)}\binom{k p+2 p+(t-1)(p-1)}{k},
\end{aligned}
$$

and when K is odd, we have

$$
|S(K)|=\sum_{\substack{t+2 k=K \\ t \geq 1, k \geq 0}}(p+1) p^{t-1} \frac{2 p+(t-1)(p-1)}{k p+2 p+(t-1)(p-1)}\binom{k p+2 p+(t-1)(p-1)}{k}
$$

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as the largest root of

$$
p^{p} x^{p-2}-(p x-1)^{p-1}=0
$$

7. Complete rewriting systems

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$. \mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.
If \mathcal{R} is terminating and confluent, then it is complete.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.
If \mathcal{R} is terminating and confluent, then it is complete. If $M=\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a finite complete rewriting system.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.
If \mathcal{R} is terminating and confluent, then it is complete. If $M=\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a finite complete rewriting system.

I Bicyclic monoid: $b c \rightarrow 1$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.
If \mathcal{R} is terminating and confluent, then it is complete. If $M=\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a finite complete rewriting system.

I Bicyclic monoid: $b c \rightarrow 1$.
2 $\mathbf{N} \times \mathbf{N}: a b \rightarrow b a$.

7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is $\mathcal{R} \subseteq A^{*} \times A^{*}$. Elements of \mathcal{R} are rules, written $(u \rightarrow v) \in \mathcal{R}$. This induces relations $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}^{*}$ on A^{*}. We also get congruence $\leftrightarrow_{\mathcal{R}}^{*}$, the same as the congruence of $\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$.

If there is no infinite chain $u_{1} \rightarrow_{\mathcal{R}} u_{2} \rightarrow_{\mathcal{R}} \cdots$, then \mathcal{R} is terminating. \mathcal{R} is confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}}^{*} w_{1}$ and $v \rightarrow_{\mathcal{R}}^{*} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
\mathcal{R} is locally confluent if:
$\forall u, v \in A^{*}$ with $u \rightarrow_{\mathcal{R}} w_{1}$ and $v \rightarrow_{\mathcal{R}} w_{2}$, then $\exists w_{3} \in A^{*}$ such that $w_{1}, w_{2} \rightarrow_{\mathcal{R}}^{*} w_{3}$.
(Newman 1942): Any terminating and locally confluent system is confluent.
If \mathcal{R} is terminating and confluent, then it is complete. If $M=\operatorname{Mon}\langle A \mid \mathcal{R}\rangle$ where \mathcal{R} is recursive and complete, then M has decidable word problem. We say that M admits a finite complete rewriting system.

I Bicyclic monoid: $b c \rightarrow 1$.
($\mathbf{N} \times \mathbf{N}: a b \rightarrow b a$.
3 Free groups: $x x^{-1} \rightarrow 1, \quad x^{-1} x \rightarrow 1$.

8. Rewriting systems and FIM_{r}

8. Rewriting systems and FIM_{r}

```
Theorem (Schein, 1975a)
    a}\mathrm{ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM
```


8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{lll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{ll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$ Gray \& Steinberg (2021): FIM_{r} is not FP_{2}.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{l}\text { finitely generated } \\ \text { finitely presented }\end{array} \Longrightarrow \mathrm{FP}_{1} \quad\right.$ FP 2 (2021): FIM_{r} is not FP_{2}.
Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{ll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$ Gray \& Steinberg (2021): FIM_{r} is not FP_{2}.
Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any finite monogenic inverse monoid is $\cong \operatorname{lnv}\left\langle x \mid x^{p+k}=x^{p}\right\rangle$, order $k+\sum_{i=1}^{p} i^{2}$.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{ll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$ Gray \& Steinberg (2021): FIM_{r} is not FP_{2}.
Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any finite monogenic inverse monoid is $\cong \operatorname{lnv}\left\langle x \mid x^{p+k}=x^{p}\right\rangle$, order $k+\sum_{i=1}^{p} i^{2}$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{2}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{ll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$ Gray \& Steinberg (2021): FIM_{r} is not FP_{2}.
Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any finite monogenic inverse monoid is $\cong \operatorname{lnv}\left\langle x \mid x^{p+k}=x^{p}\right\rangle$, order $k+\sum_{i=1}^{p} i^{2}$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.
Kobayashi (1990): if M admits a finite complete rewriting system, then M is FP_{∞}.

8. Rewriting systems and FIM_{r}

Theorem (Schein, 1975²)

${ }^{a}$ Acta Math. Acad. Sci. Hung. 26 (1975)
The free inverse monoid FIM_{r} is not finitely presented for any $r \geq 1$.
M is (right) $\mathrm{FP}_{n} \Longleftrightarrow$ there is a projective resolution P_{*} of \mathbf{Z}

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbf{Z} \rightarrow 0
$$

as a (right) $\mathbf{Z} M$-module in which all $P_{i}(i \leq n)$ are finitely generated.
M is $\left\{\begin{array}{ll}\text { finitely generated } & \Longrightarrow \mathrm{FP}_{1} \\ \text { finitely presented } & \Longrightarrow \mathrm{FP}_{2}\end{array}\right.$ Gray \& Steinberg (2021): FIM_{r} is not FP_{2}.
Stephen ('87)/Cutting ('01): any monogenic inverse monoid is defined by one relation. E.g. any finite monogenic inverse monoid is $\cong \operatorname{lnv}\left\langle x \mid x^{p+k}=x^{p}\right\rangle$, order $k+\sum_{i=1}^{p} i^{2}$.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.
Kobayashi (1990): if M admits a finite complete rewriting system, then M is FP_{∞}.

Corollary (NB, 2024)

The following properties are equivalent for monogenic inverse monoids: (1) being finitely presented; (2) FP_{2}; (3) FP_{∞}; (4) admitting a FCRS ; (5) being non-free.

9. Free regular *-monoids

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
\begin{equation*}
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle, \tag{夫}
\end{equation*}
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
$\boxed{1}$ Is F_{r}^{*} finitely presented?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
\begin{equation*}
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle, \tag{夫}
\end{equation*}
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
11 Is F_{r}^{*} finitely presented?
[Is $F_{r}^{*} \mathrm{FP}_{2}$?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
\begin{equation*}
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle, \tag{夫}
\end{equation*}
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
11 Is F_{r}^{*} finitely presented?
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
3 What is the growth rate of F_{1}^{*} ?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
3 What is the growth rate of F_{1}^{*} ?
4 What is the growth rate of F_{r}^{*} for $r>1$?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
11 Is F_{r}^{*} finitely presented?
2 Is $F_{r}^{*} \mathrm{FP}_{2}$?
3 What is the growth rate of F_{1}^{*} ?
4 What is the growth rate of F_{r}^{*} for $r>1$?
5. Are there "Munn trees" for solving the word problem?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
\begin{equation*}
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle, \tag{夫}
\end{equation*}
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
11 Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
3 What is the growth rate of F_{1}^{*} ?
4 What is the growth rate of F_{r}^{*} for $r>1$?
5 Are there "Munn trees" for solving the word problem?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
4 What is the growth rate of F_{r}^{*} for $r>1$?
5. Are there "Munn trees" for solving the word problem?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5. Are there "Munn trees" for solving the word problem?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$. What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5. Are there "Munn trees" for solving the word problem?

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$.
What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5. Are there "Munn trees" for solving the word problem?

Theorem (Polák, 2001ª)

${ }^{\text {a }}$ J. Pure \& Appl. Alg. 157 (2001), pp. 107-114
The presentation (\star) of F_{r}^{*} is complete.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$.
What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5 Are there "Munn trees" for solving the word problem?

Theorem (Polák, 2001ª)

${ }^{2} \mathrm{~J}$. Pure \& Appl. Alg. 157 (2001), pp. 107-114
The presentation (\star) of F_{r}^{*} is complete.
Using this presentation:

Theorem (NB, 2024)

We have $H_{2}\left(F_{1}^{*}, \mathbf{Z}\right) \cong \mathbf{Z}^{\infty}$. In particular, F_{r}^{*} is not FP_{2} for any $r \geq 1$.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$.
What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
\begin{equation*}
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle, \tag{夫}
\end{equation*}
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5 Are there "Munn trees" for solving the word problem?

Theorem (Polák, 2001ª)

${ }^{2} \mathrm{~J}$. Pure \& Appl. Alg. 157 (2001), pp. 107-114
The presentation (\star) of F_{r}^{*} is complete.
Using this presentation:

Theorem (NB, 2024)

We have $H_{2}\left(F_{1}^{*}, \mathbf{Z}\right) \cong \mathbf{Z}^{\infty}$. In particular, F_{r}^{*} is not FP_{2} for any $r \geq 1$.
Here $H_{*}(M, \mathbf{Z}):=\operatorname{Tor}_{*}^{\mathbf{Z} M}(\mathbf{Z}, \mathbf{Z})$ and $H^{*}(M, \mathbf{Z}):=\operatorname{Ext}_{\mathbf{Z} M}^{*}(\mathbf{Z}, \mathbf{Z})$.

9. Free regular *-monoids

In the Wagner congruence, we have $w w^{-1} w=w$ and $u u^{-1} v v^{-1}=v v^{-1} u u^{-1}$.
What if we only use the first set of relations? Let $A_{*}=\left\{a^{*}, b^{*}, \ldots\right\}$, and

$$
F_{r}^{*}:=\operatorname{Mon}\left\langle A \cup A_{*}\right| w w^{*} w=w\left(\forall w \in\left(A \cup A_{*}\right)^{*}\right\rangle,
$$

where $(u v)^{*}:=v^{*} u^{*}$. Then F_{r}^{*} is the free regular *-monoid of rank r.
I Is F_{r}^{*} finitely presented?
No (Cho, 2024)
[Is $F_{r}^{*} \mathrm{FP}_{2}$?
No (NB, 2024)
3 What is the growth rate of F_{1}^{*} ?
Next slide!
4 What is the growth rate of F_{r}^{*} for $r>1$?
5 Are there "Munn trees" for solving the word problem?

Theorem (Polák, 2001ª)

${ }^{2} \mathrm{~J}$. Pure \& Appl. Alg. 157 (2001), pp. 107-114
The presentation (\star) of F_{r}^{*} is complete.
Using this presentation:

Theorem (NB, 2024)

We have $H_{2}\left(F_{1}^{*}, \mathbf{Z}\right) \cong \mathbf{Z}^{\infty}$. In particular, F_{r}^{*} is not FP_{2} for any $r \geq 1$.
Here $H_{*}(M, \mathbf{Z}):=\operatorname{Tor}_{*}^{\mathbf{Z} M}(\mathbf{Z}, \mathbf{Z})$ and $H^{*}(M, \mathbf{Z}):=\operatorname{Ext}_{\mathbf{Z} M}^{*}(\mathbf{Z}, \mathbf{Z})$.
Note: some evidence that $H_{2}\left(\mathrm{FIM}_{1}, \mathbf{Z}\right)=0$.

10. Growth of F_{1}^{*}

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$.

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|
\end{aligned}
$$

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|
\end{aligned}
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\left|Y_{n}\right|=\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\}
$$

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|
\end{aligned}
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\left|Y_{n}\right|=\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\}
$$

Theorem (Currie \& Rampersad, 2015³)

a J. of Integer Seq. 18 (2015)
Y_{n} has intermediate growth.

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus: $\left|B\left(F_{1}^{*}, n\right)\right|=\#\left\{\right.$ binary strings of length $\leq n$ avoiding $0^{i} 1^{i} 0^{i}$ and $\left.1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\}$

$$
:=\left|X_{n}\right|=\lim _{k \rightarrow \infty}\left|X_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same but } \forall 1 \leq i \leq k\} .
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\left|Y_{n}\right|=\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\}
$$

Theorem (Currie \& Rampersad, 2015ª)

${ }^{2}$ J. of Integer Seq. 18 (2015)
Y_{n} has intermediate growth.

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|=\lim _{k \rightarrow \infty}\left|X_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same but } \forall 1 \leq i \leq k\} .
\end{aligned}
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\begin{aligned}
\left|Y_{n}\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\} \\
& =\lim _{k \rightarrow \infty}\left|Y_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same, but }|w| \leq k\}
\end{aligned}
$$

Theorem (Currie \& Rampersad, 2015 ${ }^{\text {a }}$)

${ }^{2}$ J. of Integer Seq. 18 (2015)
Y_{n} has intermediate growth.

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|=\lim _{k \rightarrow \infty}\left|X_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same but } \forall 1 \leq i \leq k\}
\end{aligned}
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\begin{aligned}
\left|Y_{n}\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\} \\
& =\lim _{k \rightarrow \infty}\left|Y_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same, but }|w| \leq k\} .
\end{aligned}
$$

Theorem (Currie \& Rampersad, 2015 ${ }^{\text {a }}$)

${ }^{\text {a }}$ J. of Integer Seq. 18 (2015)
Y_{n} has intermediate growth.

Proposition (NB, 2024)

For all $n, k \geq 1$, we have $\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right|$, and hence also $\left|X_{n}\right|=\left|Y_{n}\right|$.

10. Growth of F_{1}^{*}

F_{1}^{*} defined by rewriting system $\left\{a^{i} b^{i} a^{i} \rightarrow a^{i}, \quad b^{i} a^{i} b^{i} \rightarrow b^{i} \mid i \in \mathbf{N}\right\}$. Thus:

$$
\begin{aligned}
\left|B\left(F_{1}^{*}, n\right)\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } 0^{i} 1^{i} 0^{i} \text { and } 1^{i} 0^{i} 1^{i}(\forall i \geq 1)\right\} \\
& :=\left|X_{n}\right|=\lim _{k \rightarrow \infty}\left|X_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same but } \forall 1 \leq i \leq k\} .
\end{aligned}
$$

Completely different context; let $w^{\text {rev }}$ be the reverse of w, and

$$
\begin{aligned}
\left|Y_{n}\right| & =\#\left\{\text { binary strings of length } \leq n \text { avoiding } w w^{\text {rev }} w(\forall w)\right\} \\
& =\lim _{k \rightarrow \infty}\left|Y_{n}^{(k)}\right|:=\lim _{k \rightarrow \infty} \#\{\text { same, but }|w| \leq k\}
\end{aligned}
$$

Theorem (Currie \& Rampersad, 2015 ${ }^{\text {a }}$)

${ }^{\text {a }}$ J. of Integer Seq. 18 (2015)
Y_{n} has intermediate growth.

Proposition (NB, 2024)

For all $n, k \geq 1$, we have $\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right|$, and hence also $\left|X_{n}\right|=\left|Y_{n}\right|$.

Corollary (NB, 2024)

The monogenic free *-semigroup F_{1}^{*} has intermediate growth.

11. Precise growth rates of $X_{n}^{(k)}$

11. Precise growth rates of $X_{n}^{(k)}$

$X_{n}^{(k)}$ excludes finitely many words, so is a regular language and its growth rate is not intermediate. Using Goulden-Jackson method, can approximate this well:

11. Precise growth rates of $X_{n}^{(k)}$

$X_{n}^{(k)}$ excludes finitely many words, so is a regular language and its growth rate is not intermediate. Using Goulden-Jackson method, can approximate this well:

Theorem (NB, 2024)

For all $n, k \geq 1,\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right| \sim \zeta_{k}^{-n}$, where ζ_{k} is real positive root of $x^{k+1}+x-1$.

11. Precise growth rates of $X_{n}^{(k)}$

$X_{n}^{(k)}$ excludes finitely many words, so is a regular language and its growth rate is not intermediate. Using Goulden-Jackson method, can approximate this well:

Theorem (NB, 2024)

For all $n, k \geq 1,\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right| \sim \zeta_{k}^{-n}$, where ζ_{k} is real positive root of $x^{k+1}+x-1$.
Since $\zeta_{k} \rightarrow 1_{-}$as $k \rightarrow \infty, X_{n}$ cannot have exponential growth.

11. Precise growth rates of $X_{n}^{(k)}$

$X_{n}^{(k)}$ excludes finitely many words, so is a regular language and its growth rate is not intermediate. Using Goulden-Jackson method, can approximate this well:

Theorem (NB, 2024)

For all $n, k \geq 1,\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right| \sim \zeta_{k}^{-n}$, where ζ_{k} is real positive root of $x^{k+1}+x-1$.
Since $\zeta_{k} \rightarrow 1_{-}$as $k \rightarrow \infty, X_{n}$ cannot have exponential growth.

Corollary

Y_{n}, and hence also F_{1}^{*}, has intermediate growth.

11. Precise growth rates of $X_{n}^{(k)}$

$X_{n}^{(k)}$ excludes finitely many words, so is a regular language and its growth rate is not intermediate. Using Goulden-Jackson method, can approximate this well:

Theorem (NB, 2024)

For all $n, k \geq 1,\left|X_{n}^{(k)}\right|=\left|Y_{n}^{(k)}\right| \sim \zeta_{k}^{-n}$, where ζ_{k} is real positive root of $x^{k+1}+x-1$.
Since $\zeta_{k} \rightarrow 1_{-}$as $k \rightarrow \infty, X_{n}$ cannot have exponential growth.

Corollary

Y_{n}, and hence also F_{1}^{*}, has intermediate growth.
Some questions:
1 What is the growth rate of F_{r}^{*} ?

- What are the finitely presented quotients of F_{1}^{*} ?

3 Is the word problem decidable in any monogenic $*$-semigroup?
4 What is $H_{n}\left(F I M_{r}, \mathbf{Z}\right)$ for $n \geq 2$?
5 What is $H_{n}\left(F_{r}^{*}, \mathbf{Z}\right)$ for $n \geq 3$?

Thank you!

