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1. Free monoids and presentations

Let A = {a, b, . . . } be a finite set. The set of all finite words on A is denoted A∗, e.g.

{a, b}∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . . }.

A∗ is the free monoid on A, and by adding relations, we get monoid presentations.
E.g. in Mon⟨a, b | ab = ba⟩ ∼= N×N, have aibj = bjai. Adding generators x−1 and
Dyck relations xx−1 = x−1x = 1, get group presentations Gp⟨A | ui = vi (i ∈ I)⟩.

A monoid M is inverse if ∀x ∈ M,∃!x−1 ∈ M s.t. xx−1x = x, x−1xx−1 = x−1.
Adding generators x−1 and Wagner relations:

ww−1w = w, uu−1 · vv−1 = vv−1 · uu−1 (∀u, v, w ∈ (A ∪A−1)∗)

we get inverse monoid presentations Inv⟨A | ui = vi (i ∈ I)⟩.
In particular we get free inverse monoids FIM(A) = Inv⟨A | ∅⟩.

Given M = ⟨A | u1 = v1, u2 = v2, . . .⟩, natural to ask:

The Word Problem for M
Does there exist an algorithm which does the following:

Input : two words u, v ∈ A∗.

Output : is u = v in M?
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2. Munn tree MT(u) for u ≡ a2a−3abb−1ab−1bcaa−1cc−1
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3. The word problem is hard

Thue (1914): can we always solve the word problem in finitely presented monoids?

Theorem (Markova / Postb 1947)

aDokl. Akad. Nauk, 55:7, 1947
bJ. Symb. Logic 12, 1947

No. There exist finitely presented monoids with undecidable word problem.

This was the first “real” undecidable problem in mathematics.
Turing (Ann. of Math. (2) 52, 1950) extended the above to cancellative monoids.

Theorem (Novikova/Booneb, 1955/1958)

aProc. Steklov Inst. Math. 44, 1955
bProc. Nat. Acad. Sciences, 44:10, 1958

There exist finitely presented groups with undecidable word problem.

Yamamura (1997) gave direct proofs of undecidability in inverse monoids.
Let M be the monoid with five generators {a, b, c, d, e} and 7 defining relations:

ac = ca, ad = da, bc = cb, bd = db,

eca = ce, edb = de, cca = ccae.

Then M has undecidable word problem (Tseytin, 1958), cf. N.-B. arXiv:2401.11757.
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4. Growth of monoids

Naïve attempt for word problem: compute growth of spheres in Cayley graph.
This growth is computable ⇐⇒ the word problem is decidable.

Let M be a monoid generated by a finite set X. The ball B(M,n) of radius n is the
set of elements in M that can be written as a product of at most n elements from X.

The growth function of M (wrt X) is γX : N → N defined by n 7→ |B(M,n)|.
The (exponential) growth rate of M is

γ := lim sup
n→∞

γX(n)
1
n .

If γ > 1, then M has exponential growth. If ∃C, d ∈ N such that γ(n) ≤ (Cn)d for
all n ∈ N, then M has polynomial growth. Otherwise intermediate growth.
Type of growth does not depend on generating set; but value of γ does.
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The (exponential) growth rate of M is

γ := lim sup
n→∞

γX(n)
1
n .

If γ > 1, then M has exponential growth. If ∃C, d ∈ N such that γ(n) ≤ (Cn)d for
all n ∈ N, then M has polynomial growth. Otherwise intermediate growth.
Type of growth does not depend on generating set; but value of γ does.
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5. Examples of growth

Examples.
1 Free monoid of rank 2 on {a, b} has γ(n) = 2n, and γ = 2 (exponential).

2 Free group of rank 2 has γ(n) = 4 · 3n−1 for n > 1, and γ = 3 (exponential).

3 N2 has γ(n) =
(n
2

)
, so γ(n) ∼ n2 (polynomial, quadratic).

4 Bicyclic monoid Mon⟨b, c | bc = 1⟩ has quadratic growth.

5 (Wolf 1968/Bass 1972) A d-step nilpotent group has degree d polynomial growth.
(Gromov 1981) A f.g. group G has polynomial growth ⇐⇒ G is virtually nilpotent.

6 (Grigorchuk 1984) There exist finitely generated groups of intermediate growth.
Open problem if there exist finitely presented examples.

7 (Grigorchuk 1987) Any f.g. canc. semigroup with pol. growth satisfies some identity.
(Shneerson 1995) The same is not true for f.g. semigroups.

8 (Okninski 1993) Sgp

〈(
1 1
0 1

)
,

(
1 0
1 0

)〉
has intermediate growth.
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6. Growth of FIMr

Not difficult (and folklore) that FIM1 has cubic growth, i.e. ∼ n3.

Question

What is the (exponential) growth rate of FIMr?

Exponential growth rate γr of FIMr when r > 1:

FGr grows slower than FIMr grows slower than FM2r

2r − 1 ≤ γr ≤ 2r

Theorem (Kambites, NB, Szakacs, Webb, 2024)

Let FIMr be the free inverse monoid of rank r > 1. Let p = 2r − 1. Then γr, the
exponential growth rate of FIMr, is the largest real root of the polynomial equation

ppxp−2 − (px− 1)p−1 = 0.

In particular, γr is an algebraic number.

E.g. when r = 2, we have γ2 = 11
6

+
√
13
2

≈ 3.6361.... For large r we have γr → 2r.
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Proof.

Let S(K) be the sphere of radius K in FIMr, and let p = 2r − 1. We can then count
Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

|S(K)| =
p+ 1

1
2
Kp+ p+ 1

( 1
2
Kp+ p+ 1

1
2
K

)
+

+
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
,

and when K is odd, we have

|S(K)| =
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
.

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as
the largest root of

ppxp−2 − (px− 1)p−1 = 0.

C.-F. Nyberg-Brodda (KIAS) 20 June 2024 8 / 14



Proof.

Let S(K) be the sphere of radius K in FIMr, and let p = 2r − 1. We can then count
Munn trees of a given length using Catalan–Fuss numbers.

If K is even, then

|S(K)| =
p+ 1

1
2
Kp+ p+ 1

( 1
2
Kp+ p+ 1

1
2
K

)
+

+
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
,

and when K is odd, we have

|S(K)| =
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
.

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as
the largest root of

ppxp−2 − (px− 1)p−1 = 0.

C.-F. Nyberg-Brodda (KIAS) 20 June 2024 8 / 14



Proof.

Let S(K) be the sphere of radius K in FIMr, and let p = 2r − 1. We can then count
Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

|S(K)| =
p+ 1

1
2
Kp+ p+ 1

( 1
2
Kp+ p+ 1

1
2
K

)
+

+
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
,

and when K is odd, we have

|S(K)| =
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
.

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as
the largest root of

ppxp−2 − (px− 1)p−1 = 0.

C.-F. Nyberg-Brodda (KIAS) 20 June 2024 8 / 14



Proof.

Let S(K) be the sphere of radius K in FIMr, and let p = 2r − 1. We can then count
Munn trees of a given length using Catalan–Fuss numbers. If K is even, then

|S(K)| =
p+ 1

1
2
Kp+ p+ 1

( 1
2
Kp+ p+ 1

1
2
K

)
+

+
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
,

and when K is odd, we have

|S(K)| =
∑

t+2k=K
t≥1, k≥0

(p+ 1)pt−1 2p+ (t− 1)(p− 1)

kp+ 2p+ (t− 1)(p− 1)

(kp+ 2p+ (t− 1)(p− 1)

k

)
.

Looks terrifying, but lends itself to asymptotic analysis; and find the growth rate as
the largest root of

ppxp−2 − (px− 1)p−1 = 0.
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7. Complete rewriting systems

Given an alphabet A, a rewriting system on A is R ⊆ A∗ ×A∗. Elements of R are
rules, written (u → v) ∈ R. This induces relations →R and →∗

R on A∗.
We also get congruence ↔∗

R, the same as the congruence of Mon⟨A | R⟩.

If there is no infinite chain u1 →R u2 →R · · · , then R is terminating.
R is confluent if:

∀u, v ∈ A∗ with u →∗
R w1 and v →∗

R w2, then ∃w3 ∈ A∗ such that w1, w2 →∗
R w3.

R is locally confluent if:

∀u, v ∈ A∗ with u →R w1 and v →R w2, then ∃w3 ∈ A∗ such that w1, w2 →∗
R w3.

(Newman 1942): Any terminating and locally confluent system is confluent.

If R is terminating and confluent, then it is complete. If M = Mon⟨A | R⟩ where R
is recursive and complete, then M has decidable word problem. We say that M
admits a finite complete rewriting system.

1 Bicyclic monoid: bc → 1.

2 N×N: ab → ba.

3 Free groups: xx−1 → 1, x−1x → 1.
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8. Rewriting systems and FIMr

Theorem (Schein, 1975a)

aActa Math. Acad. Sci. Hung. 26 (1975)

The free inverse monoid FIMr is not finitely presented for any r ≥ 1.

M is (right) FPn ⇐⇒ there is a projective resolution P∗ of Z

· · · → P2 → P1 → P0 → Z → 0

as a (right) ZM -module in which all Pi (i ≤ n) are finitely generated.

M is

{
finitely generated =⇒ FP1

finitely presented =⇒ FP2
Gray & Steinberg (2021): FIMr is not FP2.

Stephen (’87)/Cutting (’01): any monogenic inverse monoid is defined by one relation.
E.g. any finite monogenic inverse monoid is ∼= Inv⟨x | xp+k = xp⟩, order k+

∑p
i=1 i

2.

Theorem (NB, 2024)

Every non-free monogenic inverse monoid M admits a finite complete rewriting system.

Kobayashi (1990): if M admits a finite complete rewriting system, then M is FP∞.

Corollary (NB, 2024)

The following properties are equivalent for monogenic inverse monoids: (1) being finitely
presented; (2) FP2; (3) FP∞; (4) admitting a FCRS; (5) being non-free.
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9. Free regular ∗-monoids

In the Wagner congruence, we have ww−1w = w and uu−1vv−1 = vv−1uu−1.
What if we only use the first set of relations? Let A∗ = {a∗, b∗, . . . }, and

F ∗
r := Mon⟨A ∪A∗ | ww∗w = w (∀w ∈ (A ∪A∗)

∗⟩, (⋆)

where (uv)∗ := v∗u∗. Then F ∗
r is the free regular ∗-monoid of rank r.

1 Is F ∗
r finitely presented?

No (Cho, 2024)
2 Is F ∗

r FP2?

No (NB, 2024)

3 What is the growth rate of F ∗
1 ? Next slide!

4 What is the growth rate of F ∗
r for r > 1? ?

5 Are there “Munn trees” for solving the word problem? ?

Theorem (Polák, 2001a)

aJ. Pure & Appl. Alg. 157 (2001), pp. 107–114

The presentation (⋆) of F ∗
r is complete.

Using this presentation:

Theorem (NB, 2024)

We have H2(F ∗
1 ,Z)

∼= Z∞. In particular, F ∗
r is not FP2 for any r ≥ 1.

Here H∗(M,Z) := TorZM
∗ (Z,Z) and H∗(M,Z) := Ext∗ZM (Z,Z).

Note: some evidence that H2(FIM1,Z) = 0.
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10. Growth of F ∗
1

F ∗
1 defined by rewriting system {aibiai → ai, biaibi → bi | i ∈ N}. Thus:

|B(F ∗
1 , n)| = #{binary strings of length ≤ n avoiding 0i1i0i and 1i0i1i (∀i ≥ 1)}

:= |Xn| = lim
k→∞

|X(k)
n | := lim

k→∞
#{same but ∀1 ≤ i ≤ k}.

Completely different context; let wrev be the reverse of w, and

|Yn| = #{binary strings of length ≤ n avoiding wwrevw (∀w)}

= lim
k→∞

|Y (k)
n | := lim

k→∞
#{same, but |w| ≤ k}.

Theorem (Currie & Rampersad, 2015a)

aJ. of Integer Seq. 18 (2015)

Yn has intermediate growth.

Proposition (NB, 2024)

For all n, k ≥ 1, we have |X(k)
n | = |Y (k)

n |, and hence also |Xn| = |Yn|.

Corollary (NB, 2024)

The monogenic free ∗-semigroup F ∗
1 has intermediate growth.
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11. Precise growth rates of X(k)
n

X
(k)
n excludes finitely many words, so is a regular language and its growth rate is not

intermediate. Using Goulden-Jackson method, can approximate this well:

Theorem (NB, 2024)

For all n, k ≥ 1, |X(k)
n | = |Y (k)

n | ∼ ζ−n
k , where ζk is real positive root of xk+1+x−1.

Since ζk → 1− as k → ∞, Xn cannot have exponential growth.

Corollary

Yn, and hence also F ∗
1 , has intermediate growth.

Some questions:

1 What is the growth rate of F ∗
r ?

2 What are the finitely presented quotients of F ∗
1 ?

3 Is the word problem decidable in any monogenic ∗-semigroup?

4 What is Hn(FIMr,Z) for n ≥ 2?

5 What is Hn(F ∗
r ,Z) for n ≥ 3?
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Thank you!
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