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Goal

In the last years there has been great interest in characterizing graph
properties via right-angled Artin groups.

In this talk we will give a general overview of this problem, and some
very recent results about the subject that mainly concern properties
related to planarity.

This is a long-term project with Delaram Kahrobaei and Thomas
Koberda.
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Outline

Right-angled Artin groups.

A bridge between Graph Theory and Algebra.

Algebraic characterization of graph properties.

The cohomology basis graph.

Minors and Colin de Verdière invariant.

Main results.

Prospective work.
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Right-angled Artin groups

Definition

Let Γ be a finite simple graph, V its vertex set and E its edge set. The
right-angled Artin group (RAAG) over Γ is the group:

A(Γ) = {V | [vi , vj ] = 1 if eij ∈ E}.

It can be proved that two graphs Γ and Γ′ are isomorphic as graphs if
and only if A(Γ) and A(Γ′) are isomorphic as groups.

The generators given by the vertices are usually called Artin generators,
or just vertices.

These groups are also called partially commutative groups, semifree
groups or graph groups in the literature.
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Examples of RAAG’s

When Γ is the complete graph in n vertices, A(Γ) is the free abelian
group in n generators.

At the other end, if Γ is the empty graph in n vertices, A(Γ) is the free
group in n generators.

If Γ is a graph with four vertices and two edges without common
vertices, A(Γ) is isomorphic to Z2 ∗ Z2.

The RAAG’s can be seen as an interpolation between free groups and
free abelian groups.
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Special subgroups

Special subgroup

Given a presentation of a RAAG A with Artin generators and relations,
every subset of the set of generators define a subgroup of A, called
special subgroup.

These subgroups are again RAAG’s.

The RAAG’s possess a very rich subgroup structure, as they can
contain for example surface groups, braid groups of graphs,
Bestvina-Brady groups... This is a hot research topic nowadays.
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Some features of the RAAG’s

They are infinite and torsion-free groups.

There is a good description of centralizers.

A generating set for the group of automorphisms is known.

They possess a normal form which is easily computed.
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Cohomology of RAAG’s

Example. Let us consider the RAAG

{x1, x2, x3, x4 | [x1, x2] = [x2, x3] = [x1, x3] = [x1, x4] = 1}

Then its integer (reduced) cohomology is given by:

H1(A(Γ),Z) = Zv1 ⊕ Zv2 ⊕ Zv3 ⊕ Zv4.
H2(A(Γ),Z) = Zv1v2 ⊕ Zv2v3 ⊕ Zv1v3 ⊕ Zv1v4.
H3(A(Γ),Z) = Zv1v2v3.
Hn(A(Γ),Z) = 0 otherwise.

For 1 ≤ i ≤ 4, vi is the dual of the image of xi in A(Γ)ab.
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Cohomology of RAAG’s

Let A(Γ) be a RAAG. Then H∗(A(Γ),Z) is generated, as a ring, for the
dual classes of the Artin generators, and we have

H∗(A(Γ),Z) = (
⊕

V ∗
0 ⊂V ∗

ΛZ(V
∗
0 ))/ ∼ .

In this expression:

V ∗ denote the set of dual classes of the Artin generators.

V ∗
0 is a subset of V ∗ such that the associated vertices generate a

complete subgraph of Γ.

ΛZ denotes exterior algebra.
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Cohomology of RAAG’s

In practice, this means that a subset of vertices of Γ generates a
complete graph (or equivalently, its Artin generators generate a free
abelian group) if and only if the product of their dual classes is
non-trivial in the corresponding cohomology group.

Moreover, this information describes the whole cohomology ring.

It is important to remark that, via universal coefficients, a similar result
can be obtained with coefficients in a field.
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The bridge

A graph Γ is identified by its vertices, edges and incidence relations.
Because of these, the graph properties use to be easily translated, via
the Artin generators, to the associated RAAG.

For example, if a graph is disconnected, it is immediately deduced from
the relations between the corresponding Artin generators that the
group A(Γ) breaks as a free product of non-trivial subgroups.
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The bridge

Conversely, if we do not select a priori an Artin presentations, the
reverse questions can be interesting and difficult.

In the previous example, the reverse question would be: given a RAAG
that breaks as a free product of non-trivial subgroups, is it true that
the associated graph is disconnected?

Observe that it is not required that the factors of the group are special
subgroups.
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The bridge

The main leitmotiv in this context is then the following:

Question

Which properties of the graph Γ can be characterized as intrinsic
properties of the group A(Γ)?

Here “intrinsic”means “not dependent on a concrete system of
generators”.
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The bridge

We should remark two important facts in this context, which are
related:

We cannot hope that all the algebraic structure of the group is
reflected in properties of the graph. For example, as said above,
the subgroup structure of the RAAG’s can be extremely complex.

Conversely, the richness of the algebraic structure of the groups
suggests that it should be possible to translate many properties of
the graph.
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Free product

We may start by giving the characterization of the previous example.

Proposition (Brady-Meier 2001)

A graph Γ is disconnected if and only if it decomposes as a free product
of non-trivial groups.
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Previous work

Now we present some graph properties that have been characterized
intrinsecally in terms of RAAG’s:

Being a join of two graphs (Servatius 1989).

Being a tree or a complete bipartite graph (Hermiller-Šunic 2005).

Having a square as a full subgraph (Kambites 2009).
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Our previous work

In previous joint work with Kahrobaei-Koberda in this subject, we have
characterized the following properties of the graphs:

Having nontrivial automorphisms.

Colorability.

Being a family of expanders.

Hamiltonicity.
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Hamiltonicity to start

The starting point of our research about planarity was the
characterization of hamiltonicity, that we next state. Although the next
developments are in general valid for any field, in this talk we will
assume that the cohomology is taken with coefficients in F2.

Hamiltonicity in cohomology

Let A(Γ) be a RAAG. We say that a basis {wi} of H1(A(Γ)) is
hamiltonian if for some ordering of the basis the cup products
w1w2,w2w3, . . .wn−1wn,wnw1 are non-trivial.
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Characterizing Hamiltonicity

Proposition

Let Γ be a graph and A(Γ) the corresponding RAAG. Then Γ is
hamiltonian if and only if every basis of H1(A(Γ)) is so.

In the same way it is defined the notion of hamiltonian path in the
cohomology, and the corresponding result is valid for hamiltonian paths.

The hamiltonicity of the cohomology raises the idea of a certain graph
structure in the cohomology, that depends on the basis.
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Basis cohomology graph

Definition

Let Γ be a graph, A(Γ) the corresponding RAAG, B = {w1, . . . ,wn} a
basis of H1(A(Γ)). Then the cohomology basis graph associated to B is
the graph ΓB such that:

The vertices of ΓB are given by the basis elements {wi}.
There is an edge between wi and wj if and only if the cup product
wiwj is nonzero.

When B = {wi} is the dual basis of the basis of H1(A(Γ)) induced by a
system of Artin generators of Γ, then ΓB = Γ. In this context we will
call Γ the defining graph and denote this basis {ei} instead of {wi}. .
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Example

Consider the graph Γ = P3 with vertices {e1, e2, e3} and edges (e1, e2)
and (e2, e3). Also consider the invertible matrix:

A =

1 1 0
1 1 1
0 1 1

 .

Abusing notation, let us call also e1, e2, e3 the basis defined by the
vertices in H1(A(Γ)), and B = {w1,w2,w3} the new basis defined via
the matrix A.

As w1w2 = e2e3, w1w3 = e1e2 + e2e3 and w2w3 = e1e2, all the possible
cup products of elements of B are non-trivial.

Hence, ΓB = K3, complete graph in three vertices.
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Basis cohomology graph

It is important to point out that given any basis of the first
cohomology group of a RAAG it is possible to decide which cup
products of the generators are non-trivial without appealing to the
duals of the Artin generators.

This is in particular the information needed to construct the
cohomology graph.

Moreover, given any presentation of the RAAG whose number of
generators is equal to the rank, it is possible to construct out of it the
cohomology graph associated to the duals of the generators.
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De Verdière invariant: preliminaries

Now the question is how to use this structure to extract graph
properties from the RAAG. Here a powerful invariant enters into the
picture.

The matrices

We represent a finite simple connected graph Γ by its vertex set
V = {1, . . . , n} and its edge set E . We consider symmetric real n × n
matrices M such that the following three conditions hold:

For all distinct indices 1 ≤ i , j ≤ n, we have Mij < 0 if {i , j} ∈ E ,
and Mij = 0 otherwise;

M has exactly one negative eigenvalue of multiplicity one;

There is no nonzero symmetric real n × n matrix X such that
MX = 0 and such that Xij = 0 whenever i = j or Mij ̸= 0.
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Colin de Verdière invariant

Now we can define the Colin de Verdière invariant of a graph, which
arises from spectral graph theory, and gives a vast generalization of
classical planarity criteria for graphs:

The invariant

The Colin de Verdière invariant µ(Γ) is the largest corank of any M
satisfying these conditions.

Recall that for a symmetric matrix m×m of rank r , the corank is equal
to m − r .

The definition is extended to non-connected nonempty graphs as the
maximum of the value of the invariant in the components. For empty
graphs it is assumed to be zero.
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Graph properties

The importance of the Colin de Verdière invariant comes in part from
the fact that it permits to characterize in the same way different
properties of graphs. Let us recall some of these properties:

Planarity

A graph is planar if its geometric realization can be embedded in the
plane.
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More graph properties

Outerplanarity

A graph is outerplanar if it can be embedded in the plane in such a way
that every vertex is adjacent to the unbounded component of the
complement.

Linklessly embeddability

A graph is linklessly embeddable in R3 if there is an embedding of the
graph in R3 such that no pair of cycles are linked after being embedded.

Observe that this property can be interpreted as a 3-dimensional
analogue of planarity.
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Graph properties via the invariant

The characterization of these properties (and others) via this invariant
is as follows:

Theorem

Let Γ be a finite simple graph such that µ(Γ) ≤ k. Then:

k = 0 if and only if Γ has no edges.

k = 1 if and only if Γ is a union of disjoint paths.

k = 2 if and only if Γ is outerplanar.

k = 3 if and only if Γ is planar.

k = 4 if and only if Γ is linklessly embeddable in the space.
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Graph minors

The key property of the Colin de Verdière invariant in our framework is
its good behavior with respect to minors. Let us first recall the
definition.

Minors

A graph Γ is an elementary minor of another graph Λ if it can be
obtained from Λ, deleting an edge, deleting a vertex or contracting an
edge.
Γ is said a minor of Λ if there exists a finite sequence of graphs
Γ0, Γ1, . . . , Γn such that Γ = Γ0, Λ = Γn and Γi is an elementary minor
of Γi+1 if 0 ≤ i ≤ n − 1.

Note that a subgraph is in particular a minor.

Minor monotonicity

If Γ is a minor of Γ′, then µ(Γ) ≤ µ(Γ′).
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The key result

The following is probably the most interesting result of this talk.
Combined with the previous material will permit to identify different
graph properties in terms of (cohomology of) groups.

Theorem

Let Γ be a graph, A(Γ) the associated RAAG, B any basis of H1(A(Γ)).
Then Γ ≤ ΓB.
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Remarks about the result

It is tempting to approach this result using inductive arguments, but
they seem not useful in this context, as the inclusion is highly not
canonical.

In general, assume that Γ1 < Γ2 is an inclusion of graphs of n vertices,
and B1 a cohomology basis. Let B2 be another cohomology basis
constructed out of B1 using the extra edges of Γ2. Then a concrete
inclusion Γ1 < ΓB1 does not extend in general to an inclusion Γ2 < ΓB2 .

It is also interesting to observe that the key result admits equivalent
formulations in other contexts, as Commutative Algebra and Graph
Theory, whose proofs seemed unknown so far.
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The main characterization

Armed with the previous results, we can establish the following
characterization.

Theorem

Let P one of the following graph properties:

Emptiness (having no edges).

Being a linear forest (union of disjoint paths).

Outerplanarity.

Planarity.

Linkless embeddability.

Then graph Γ has property P if and only if there exists a basis B of
H1(A(Γ)) such that ΓB has property P.
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Proof

The proof of this result is easy using the previous work. For every basis
B of H1(A(Γ)), ΓB has property P if and only if µ(ΓB) ≤ k for a
certain fixed k which depends on P.

Now (tautologically), if µ(Γ) ≤ k, then µ(ΓB) ≤ k for the basis B of
the duals of the special generators of the group A(Γ).

Conversely, if µ(ΓB) ≤ k for some basis B of H1(A(Γ)), the previous
result and the minor monotonicity of the Colin de Verdière invariant
imply that µ(Γ) ≤ k, and then Γ has property P.
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Comments to the characterization

This method also allows us to characterize planarity properties of the
complement of the graph, as well as its crossing number, in terms of
the cohomology basis graph.

Very recently, M. Gheorghiu has described a different characterization
of the (outer)planarity, using the notion of ear decomposition.

Using our method, it is possible to test effectively if the defining graph
possesses any of the previous properties, out of a presentation of the
associated RAAG.
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Example

Consider the group

G = ⟨x1, x2, x3, x4, x5, x6 | x1x2x5x4 = x2x5x4x1,

x3x2x5x4 = x2x5x4x3, x4x5 = x5x4, x2x5x4 = x6x2x4x5x
−1
6 ⟩.

This group is abstractly isomorphic to a right-angled Artin group on a
graph with six vertices.

If we consider the dual generators

{x∗1 , x∗2 , x∗3 , x∗4 , x∗5 , x∗6}

in H1(G ;F2), the only non-trivial products of two of these elements are
x∗2x

∗
i for every i ̸= 2, and x∗4x

∗
5 .

The cohomology basis graph is a star with one additional edge, which
is planar. Thus, the defining graph is also planar.
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Work in progress: self-complementarity

Definition

Let Γ be a finite simple graph of n vertices. Then Γ is said to be
self-complementary if it is isomorphic to its complement in the
complete graph Kn.
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Characterization of self-complementary

Proposition

Let Γ be a finite simple graph on n vertices with
(n
2

)
/2 edges. Then Γ is

self-complementary if and only if there exists a basis B of H1(A(Γ);F2)
such that ΓB is self-complementary.

We currently intend to get another characterization in terms of
subspaces of the cohomology algebra of the concrete graph.

This is joint work with D. Kahrobaei, T. Koberda and K. Li.
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Work in progress: existence of surjections

Proposition

Let Γ and Λ finite simple graphs. Then there exists a surjective
homomorphism A(Γ) ↠ A(Λ) if and only if there is a sequence

Γ = Γ0, Γ1, . . . , Γn = Λ

of finite simple graphs such that for all i , the graph Γi+1 is obtained
from the graph Γi by either adding an edge, or by deleting a vertex.

However, we can prove that a surjection A(Γ) ↠ A(Λ) cannot be
obtained in general, up to RAAG-isomorphism, by adding edges and
deleting vertices.

This is work in progress with D. Kahrobaei, T. Koberda, K.
Mallahi-Karai and C. Mart́ınez-Pérez.
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Sketch proof of the key result

Given a graph Γ of n vertices, two rows of a (n × n)−matrix A are said
Γ-null connected if every (2× 2)-minor contained in A and defined by
columns i and j of A is singular whenever the edge (i , j) belongs to Γ.

For example, if we consider the graph Γ of four vertices with edges
(v1, v2) and (v1, v3) and the matrix

A =


1 1 1 0
1 1 1 1
0 1 0 1
1 0 1 0

 ,

the rows 1 and 2 are Γ-null-connected.

Observe that if A is a change of basis matrix in H1(A(Γ)) from {ei} to
{wi}, the fact that the rows i and j are Γ-null-connected imply that
that wiwj = 0.
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Observe that if A is a change of basis matrix in H1(A(Γ)) from {ei} to
{wi}, the fact that the rows i and j are Γ-null-connected imply that
that wiwj = 0.
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Sketch proof of the key result

The proof of the key result (Γ ≤ ΓB for every B) is based on the
concepts of 1-block and 1-track.

Given a graph Γ of n vertices and an (n × n)-matrix A, a Γ-1-block is a
(k × k)-submatrix of A with k ≥ 2 and nonzero entries, whose
structure depends on the graph Γ.

It can be defined a Γ-1-track as a sequence of square submatrices
{A1, . . . ,Ar} of A that meet every column of A at least once, such that
every Ai is (1× 1) or a 1-block, and for i ̸= j Ai , Aj never belong to a
common minor in a 1-block.
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Sketch proof of the key result

The 1-tracks enjoy two crucial properties:

Every string (a1σ(1), . . . , a
n
σ(n)) belongs to just one 1-track.

If at least one of the matrices Ai is n× n for n ≥ 2, the number of
strings included in the 1-track is even.

Consider the graph Γ given by the edge (e2, e3). The colored entries
represent a 1-track respect to this graph:

A =


1 0 0 0
0 1 1 1
1 1 1 0
0 0 0 1

 ,

The string red-green and the string red-blue are “paired”, and
according to the Leibniz rule have no influence in the determinant of A.
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Sketch proof of the key result

Proposition

Suppose A is invertible. Then there exists a reordering of the rows of A
such that for all edges {i , j} of Γ, we have that the rows ai and aj are
not Γ–null-connected.

The proof is by contradiction. If such a reordering does not exist, then
it can be seen that every string is contained in a 1-track with at least a
2× 2 matrix, and now the previous properties and the Leibniz rule
imply that the determinant of A must be zero.

From this proposition it is clear that after perhaps a reordering of rows,
it is always possible to find a copy of the defining graph inside the
cohomology basis graph, for every basis of H1(A(Γ)).
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THANK YOU!!!
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