Reconfiguration of square-tiled surfaces

Clément Legrand-Duchesne

LaBRI, Bordeaux

October 19, 2023

Joint work with Vincent Delecroix.

Definition

• Square-tiled surface: gluing of N square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface

	Ν		S	
w	1	ΕE	2	w
	s		Ν	

Definition

- Square-tiled surface: gluing of N square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface
- Quadratic: adjacencies = {NS,EW, NN, SS, EE, WW}
- Abelian: only {NS,EW}

Abelian

	Ν		S	
v	1	E	⊑ 2	w
	s		N	

Quadratic

Definition

- Square-tiled surface: gluing of N square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface
- Quadratic: adjacencies = {NS,EW, NN, SS, EE, WW}
- Abelian: only {NS,EW}

Abelian

Quadratic

Encoding

Triplet of involutions without fix-point $\rho, \sigma, \tau \in \mathfrak{S}_{2n}$ that generate a transitive subgroup of \mathfrak{S}_{2n}

Encoding

Triplet of involutions without fix-point $\rho, \sigma, \tau \in \mathfrak{S}_{2n}$ that generate a transitive subgroup of \mathfrak{S}_{2n}

Abelien encoding

Triplet of permutations $\rho, \sigma, \tau \in \mathfrak{S}_n$ that generate a transitive subgroup of \mathfrak{S}_n

Stratum

Stratum

Euler's formula

- μ_i : # vertices of degree $i\pi$
- $\sum_i (i-2)\mu_i = 4g-4$
- Stratum: $[1^{\mu_1}, 2^{\mu_2}, ...]$

Stratum

Euler's formula

- μ_i : # vertices of degree $i\pi$
- $\sum_i (i-2)\mu_i = 4g-4$
- Stratum: $[1^{\mu_1}, 2^{\mu_2}, ...]$

Reconfiguration

- Configuration space Ω
- Elementay operation \leftrightarrow
- Equivalent configurations: \exists a sequence of operations leading from one to the other
- Reconfiguration graph: Vertices = configurations, edges = elementary operation

Reconfiguration

- Configuration space Ω
- Elementay operation \leftrightarrow
- Equivalent configurations: \exists a sequence of operations leading from one to the other
- Reconfiguration graph: Vertices = configurations, edges = elementary operation

Usual questions

- Are any configurations equivalent ?
- How many reconfiguration steps separate any two configurations ?
- Application to sampling: Does the corresponding Markov chain mix well ?

Random Walk P on the reconfiguration graph

- Irreducible: reconfiguration graph connected
- Aperiodic + Irreducible $\rightsquigarrow \exists !$ stationary distribution π
- + Symmetric $\rightsquigarrow \pi$ uniform

Random Walk P on the reconfiguration graph

- Irreducible: reconfiguration graph connected
- Aperiodic + Irreducible $\rightsquigarrow \exists !$ stationary distribution π
- + Symmetric $\rightsquigarrow \pi$ uniform

Mixing time

$$t_{mix}(\varepsilon) = \inf\{t: \max_{x \in \Omega} \|P^t(x, \cdot) - \pi\|_{TV} \le \varepsilon\}$$

where $\|\alpha - \beta\|_{TV} = \sup_{X \subset \Omega} |\alpha(X) - \beta(X)|$

Disarlo, Parlier 2014

Reconfiguration diameter of n-triangulations of genus g:

- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + \log(n))$

Disarlo, Parlier 2014

Reconfiguration diameter of *n*-triangulations of genus *g*:

- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + \log(n))$

Budzinski 2018

- For g = 0, $t_{mix} = \Omega(n^{5/4})$
- *t_{mix}* polynomial in *n* ?

Disarlo, Parlier 2014

Reconfiguration diameter of n-triangulations of genus g:

- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + \log(n))$

Budzinski 2018

- For g = 0, $t_{mix} = \Omega(n^{5/4})$
- *t_{mix}* polynomial in *n* ?

Not on quadrangulations !

Caraceni, Stauffer 20

• For
$$g = 0$$
, $t_{mix} = \Omega(n^{5/4})$

• $t_{mix} = O(n^{13/2})$

Caraceni, Stauffer 20

• For
$$g = 0$$
, $t_{mix} = \Omega(n^{5/4})$

• $t_{mix} = O(n^{13/2})$

Preserves genus but not square-tiled surfaces !

Elementary rotation

Preserves genus and square tiled-surface, but not Abelian/quadratic !

Shearing move

Shearing move

Shearing move

Shearing moves preserve the angle around the vertices !

Shearing move

Shearing moves preserve the angle around the vertices !

Two settings

- Slow shears: One shear at a time
- Fast shears: Any number of shears on the same cylinder count as one

Clément Legrand

- $\mu = [2^{mu_2}, 4g-2]$ or $[2^{\mu_2}, (2g)^2] \rightsquigarrow$ always abelian
- Quadrangulation fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere

- $\mu = [2^{mu_2}, 4g-2]$ or $[2^{\mu_2}, (2g)^2] \rightsquigarrow$ always abelian
- Quadrangulation fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere

- $\mu = [2^{mu_2}, 4g-2]$ or $[2^{\mu_2}, (2g)^2] \rightsquigarrow$ always abelian
- Quadrangulation fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere

- $\mu = [2^{mu_2}, 4g-2]$ or $[2^{\mu_2}, (2g)^2] \rightsquigarrow$ always abelian
- Quadrangulation fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere

Strata of tricolored planar graphs

Strata of tricolored planar graphs

4

Strata of tricolored planar graphs

Stratum

- μ_i : number of faces of degree 3i
- k: number of triangles
- Euler's formula : $(\sum_{i}(i-2)\mu_{i}) k = 4g 4 = -4$
- Hyperelliptic strata: $([1^{\mu_1}, 2^{\mu_2}, d^1], d+2-\mu_1)$

Shearing moves in tricolored planar graphs

Shearing moves in tricolored planar graphs

Image: Image:

Shearing moves in tricolored planar graphs

Shearing move

• swap colors + treadmill

• RG and GB in
$$O(1)$$
, RB in $O(n)$

Clément Legrand

Delecroix, L. 2023+

Reconfiguration diameter of unlabeled tricolored graphs:

- hyperelliptic strata: O(kn) slow shears, $\Theta(k)$ fast shears
- g = 0 and $\mu_1 = 0$: O(kn) slow shears, $\Theta(k)$ fast shears

Reach a "canonical" configuration

Get to a path-like configuration: One RG cylinder finishing with halfedges
Reconfiguration within path-likes

- 1. Take a RG path
- 2. The RB path at the end of it is a fusion-path
- 3. Collapse the cylinders with a GB shear.

Blue dual tree

Proposition

All path-like configurations corresponding to a blue dual tree are equivalent via O(n) RG shears

\sim	6 A. 1	
<u> </u>	iement i	Legrand

new Glue-cut operation preserving path-likes

Clément Legrand

No triangles

new Glue-cut operation preserving path-likes

Clément Legrand

No triangles

19 / 21

new Glue-cut operation preserving path-likes

	ement	earand
~		Legianu

*

C	6mont	orrand
\sim	ement	Legranu

- 1. Blue dual tree \rightarrow Blue dual path
- 2. Sort the vertices on the path

Rapid mixing in hyperelleptic case ?

- Among path-like configurations with the glue-cut operation ?
- In general

Connectivity in the general case

- Non planar \Rightarrow no dual tricolored planar graph
- Hyperelleptic case negligible, not in all strata

Rapid mixing in hyperelleptic case ?

- Among path-like configurations with the glue-cut operation ?
- In general

Connectivity in the general case

- Non planar \Rightarrow no dual tricolored planar graph
- Hyperelleptic case negligible, not in all strata

Thanks !