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How to see 3-manifolds
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Abstract. There have been great strides made over the past 20 years in the understanding of
three-dimensional topology, by translating topology into geometry. Even though a lot remains
to be done, we already have an excellent working understanding of 3-manifolds. Our spatial
imagination, aided by computers, is a critical tool, for the human mind is surprisingly well
equipped with a bit of training and suggestion, to ‘see’ the kinds of geometry that are needed
for 3-manifold topology.

This paper is not about the theory but instead about the phenomenology of 3-manifolds,
addressing the question ‘What are 3-manifolds like?’ rather than ‘What facts can currently be
proven about 3-manifolds?’

The best currently available experimental tool for exploring 3-manifolds is Jeff Weeks’
program SnapPea. Experiments with SnapPea suggest that there may be an overall structure for
the totality of 3-manifolds whose backbone is made of lattices contained inPSL(2,Q).

PACS number: 0240

1. Introduction

Training the imagination. Our mental facilities for geometry and vision are remarkable.
From an impersonal perspective, the act of walking through a crowd to meet up with
someone on the other side is truly astounding. It is a far greater achievement than any
merely intellectual achievement such as writing a PhD thesis in mathematics. Writing a
PhD thesis is a greatintellectual challenge, but the powerful intelligence needed to walk
through a crowd is something that pooled humanintellect has not come close to matching,
despite years of effort and massive investment in related technologies.

Of course, we are no more able to program computers to ‘do mathematics’ than we are
able to program them to walk down the street. Computers are powerful tools in mathematics,
particularly for the symbolic aspects of mathematics (including numerical computations).
It is ironic that the human use of symbols has often been touted as the unique human
characteristic that makes us special. But our minds are complex organs, composed of many
different cooperating modules. It is not the equations, symbols or logic that are hardest for
computers, but the seemingly ‘low-level’ foundations of perception that prove hardest to
match. ‘Imagination’, ‘intuition’ and ‘instinct’ are some of the words that are often used to
allude to some of these perceptual foundations.

Geometric imagination is a powerful tool for three-dimensional geometry and
topology—provided we teach it the foreign imagery it wants and needs to work with our
intellect instead of rebelling. Our spatial–geometric instincts are rather strong-headed, and
if we do not bring them along, they are bound to rebel.
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Hyperbolic manifolds. Hyperbolic geometry, also called Lobachevskian geometry or non-
Euclidean geometry, is the geometry of a complete Riemannian metric onR3 with constant
curvature−1. (A metric is completewhen you cannot get to the edge of space in a
finite distance, that is, a metric ball of any finite radius is compact.) Hyperbolic space is
symbolized asH3. This geometry is the crucial tool for seeing three-dimensional topology.
We will visit H3 a little later and look around.

Most 3-manifolds are hyperbolic

A manifold is hyperbolic when it has been given a metric that locally is identical toH3.
In other words, a small neighbourhood of any point matches hyperbolic space on the nose.
This is the same as a metric of constant sectional curvature−1. But a more revealing
description is that a hyperbolic 3-manifold comes fromH3 modulo a discrete group of
isometries, where all points equivalent under the group are identified to a single point of
the manifold. One can think of the group ‘rolling up’ space into a compact bundle, as if it
is a big floppy rug but much neater.

The geometry of our minds.Whether by design or accident, we have geometric modules
in our minds that are remarkably well suited for use inside hyperbolic space and inside
hyperbolic 3-manifolds. Three modules in particular—our sense of perspective, our sense
of scaling and our sense of symmetry—connect directly to what we see when we visit
a hyperbolic 3-manifold. Our minds must adjust their interpretations of these perceptual
modules, but our brains are plastic and can readily make the needed adjustments.

Geometry gives us an understanding of 3-manifolds that we topologists of 25 and more
years ago never imagined possible. This paper aims to present some of the basic geometric
vision that lets us see, know and understand 3-manifolds. Predominantly, this means to see,
know and understand hyperbolic 3-manifolds.

Disclaimer 1: other geometries.Not all 3-manifolds are hyperbolic. There are actually
eight different flavours of three-dimensional geometry, describing eight different classes
of 3-manifolds. Maybe the reason that for a long time nobody suspected that hyperbolic
3-manifolds are plentiful is that the simplest 3-manifolds are not hyperbolic, but typically
have one of the seven non-hyperbolic flavours of geometry. It is easy to deduce that a
manifold that has one of the seven non-hyperbolic flavours is topologically quite special.
It is natural to assume by analogy that hyperbolic manifolds are special. They are indeed
special, but they are plentiful.

We are lucky that most flavours are rare, because the geometry modules adapt much
better to Euclidean space and hyperbolic space than to any of the other geometries†.

A 3-manifold is geometric if it has a Riemannian metric for which any two points
have neighbourhoods that are identical. A metric satisfying this condition is alocally
homogeneousmetric. Any compact manifold with a locally homogeneous metric has other
locally homogeneous metrics: you can always scale the metric by a constant factor. The
total volume changes, so the new metric cannot be isometric with the old one. Some
locally homogeneous metrics can be modulated in additional ways, while remaining locally

† Spherical geometry (S3) is the runner-up, butS3 when naively rendered is quite disorienting to visit because
very distant objects look as big as very close objects. Our perception continues to rebel against this phenomenon
long after our intellect has accepted it. Real-time special effects with fog and focus would undoubtedly remedy
much of this difficulty.
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homogeneous. A locally homogeneous metric isisotropic if there is a local isometry taking
any given direction to any other direction, andanisotropic if there is some proper subset
of directions distinguishable by the local geometry. In dimension 3, the tangent space
to an anisotropic manifold has a line field constructible from the local geometry, and an
orthogonal field of 2-planes. These scale factors in the line and the plane can be modulated
independently. These variations are why we talk about ‘flavours’ of geometry rather than
about the exact shapes of metrics.

Only three of the eight flavours are isotropic: spherical geometry, Euclidean geometry
and hyperbolic geometry. It is a curious fact that all spherical 3-manifold (manifolds with
metrics of constant positive curvature+1) also possess anisotropic locally homogeneous
metrics. Euclidean 3-manifolds do not have anisotropic locally homogeneous metrics, but
they all have a line field that is globally parallel to itself. In a certain sense, hyperbolic
manifolds are the only ones that are genuinely anisotropic.

The anisotropic flavours of geometry, and 3-manifolds having those flavours, have the
form either of a product or a fibre bundle, combining one of the two-dimensional geometries
with one-dimensional geometry perhaps with one or another type of twisting.

Disclaimer 2: decomposable manifolds.Not all 3-manifolds are even geometric. There
are two topological processes for joining geometric 3-manifolds, to form new, ‘compound’,
3-manifolds that do not have geometric structures.

The first compounding process is theconnected sum, which means to remove balls from
two 3-manifolds, and join their bounding spheres together—in other words, connecting them
by a tunnel or wormhole whose cross section is the 2-sphereS2.

The second process involves joining 3-manifolds with a boundary, to obtain a new
manifold that may or may not have a boundary. A surface inside or on the boundary of
a 3-manifold isincompressibleif a curve on the surface cannot be the boundary of a disc
in the 3-manifold unless it is already the boundary of a disc on the surface. For example,
the surface of a doughnut in space is an example of acompressibletorus, because for
example a disc that cuts across the doughnut hole has a boundary that is a non-trivial curve
on the torus. Atorus sumof 3-manifolds is something that results from gluing together
two incompressible component tori that are components of the boundary. This creates a
second kind of tunnel or wormhole, whose cross section is a torus,T 2. Tunnels with cross
sections that are multi-holed tori with two or more holes have no special status, because
these surfaces do not interfere with geometric structures.

There is a complete topological theory of how to analyse 3-manifolds that have been
combined by these two processes: topological criteria to recognize and undo these two ways
of joining and to recover the original pieces. Undoing connected sums is called theprime
decompositionof a 3-manifold. The theory of the prime decomposition was analysed by
Kneser in the 1930s. Aprime 3-manifold is a manifold which cannot be expressed as a
connected sum except in a trivial way. Every compact 3-manifold is the connected sum of
finitely many prime pieces, and the prime pieces are determined up to homomorphism by
the 3-manifold.

The second decomposition process, undoing tunnels whose cross section is a torus,
is called thetorus decomposition, and was analysed in the 1970s, by Jaco, Shalen and
Johannson. The theory is analogous to the prime decomposition, but we will skip giving
the exact specifications, which are a little more involved.

Disclaimer 3: unproven. It has not been proved thatall 3-manifolds are composed of
geometric pieces. A number of years ago I proposed thegeometrization conjecture, that
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the primitive parts produced by the prime decomposition and torus decomposition of any
3-manifold are always geometric.

To prove the geometrization conjecture in full generality is a great challenge in topology.
One special case is the Poincaré conjecture, which has long been notorious as a tempting
lure surrounded by hidden traps.

If you are a consumer rather than developer of 3-manifold theory, the status of the
geometrization conjecture is probably fairly academic, because for most purposes you may
as well assume it is true of the manifolds you need to use. The conjecture is overwhelmingly
supported by the evidence we have seen to date. There is theoretical evidence, which has
established the existence of the geometric decomposition for several broad classes of 3-
manifolds. In addition, large numbers of particular examples have been tested. Mathematics
is full of surprises, so we can never be certain of the geometrization conjecture until and
unless it is proven. Nonetheless, the geometrization conjecture is a safe working hypothesis,
and if you need to actually know for a particular case, you should probably just compute
its structure anyway.

The words and the reality. The full description of the geometrization conjecture sounds
complicated, since it involves two different decomposition processes and the eight
geometries. Do not be fooled by this. The complexity of the verbal description is
mismatched with the actual complexity of 3-manifolds. The prime decomposition and
the torus decomposition may sound complex, but they are actually very orderly and
straightforward processes. Similarly, the geometric manifolds having any of the seven
non-hyperbolic flavours have been completely classified in an orderly and understandable
way.

The true complexity of the structure of 3-manifolds—at least if the geometrization
conjecture holds—is the structure of hyperbolic 3-manifolds.

The geometry of a hyperbolic 3-manifold is a topological invariant, according to the
Mostow rigidity theorem (extended to the non-compact lattices by Prasad). This fact allows
one to extract a great deal of topological information; it makes it quite easy to tell whether
or not two hyperbolic 3-manifolds are homeomorphic. The volume, in particular, gives an
interesting measure that describes in a certain way the three-dimensional complexity of the
manifold. Volumes seem to all be irrational. There are some rational relationships among
volumes of different manifolds, but most pairs of manifolds have volumes that do not seem
to be in any rational ratio. The set of all possible volumes is a countable, closed subset ofR.
Each volume that occurs does so for only a finite set of examples. The accumulation points
of volume are manifolds which have ‘cusps’—they are non-compact, with exponentially
shrinking tubes going out to infinity whose cross sections are tori. The phenomenon of this
convergence is part of the theory of continuous surgery on hyperbolic manifolds, which we
will be experiencing.

Appearance, reality and imagination.It is a wonderful dream to see the topology of the
universe some day. However, this paper is not about the topology of the physical universe,
but about topology in our minds. We will imagine bending space, but this has the effect of
bending the imagination. The purpose is not for science fiction diversions, but to develop
true vision meeting the precise standards demanded by three-dimensional geometry and
topology. Our instincts about appearance and reality are strong, so our minds need time
and exposure to adjust to new possibilities.

The scale in our imagination can make a big difference in our thinking. An effective
strategy is to think about 3-manifolds on the scales we might inhabit: perhaps the size of
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a house, the size of a stadium, or the size of a town. It is harder to attend as seriously
to objects the size you might hold in your hand. It is interesting to sit back and imagine
your surroundings—the streets and the land in the neighbourhood where you live—and then
think of the same degree of imagination about a teacup. At the opposite pole, very huge
objects—the size of the universe, or even of the earth—are so far removed from everyday
experience that our imagination on those scales tends to be abstract and distant.

Other resources. The rather unique video ‘Not Knot’ [Geo81] journeys through territory
that overlaps some of where we will go; it is worth seeking it out (A K Peters is the
current publisher). Clips and pointers to this and other relevant resources, including
some good downloadable software, can be found on the Geometry Center website
at www.geom.umn.edu. My bookThree-dimensional Geometry and Topology[Thu97]
develops the broad sweep of three-dimensional topology from the geometric perspective.
A 1982 review article [Thu82] summarized the geometric theory of 3-manifolds at that
time. Theory has advanced since then, the broad picture has not changed, but the basic
picture is close enough that it is still recommended as a summary of the geometric theory
of 3-manifolds. See also the online version [Thu79] of lecture notes from seminars I gave
in Princeton 1978–81. There is a large literature on the geometry of 3-manifolds that I
will not even attempt to review; MathSciNet (http://www.ams.org/mathscinet/) is a much
better window than anything I could write. I will only mention three of my own primary
contributions [Thu86, Thu98a, Thu98b].

2. Geometry from the inside

Imagine walking in a barren desert when you see the space in front of you begin to shift.
You are startled, and stop. You see a vertical, straight fracture where the left side does not
quite match the right: the images overlap ever so slightly. At first you think your vision
has gone bad, maybe you have become cross-eyed. However, when you turn your head and
move from side to side, the fracture does not turn or move with your head and eyes. When
you circle around at a wide distance, you see that the fracture is not fixed on the ground or
on the distance scenery, but is localized on a line going straight up into the sky.

Paper models. When you get back to camp, you can make a model to help explain what
you have seen. Cut a 350◦ sector of paper (i.e. a disc with a 10◦ angle removed) with edges
joined to form a blunt cone. This is the cone withcone angle350◦ or curvature10◦. You
can trace geodesics on this cone either by stretching pieces of string, by flattening portions
of it and drawing straight lines with a ruler or by using a folded strip of paper as a ruler
that is flexible enough to fit the surface. If you draw geodesics that emanate from a point
on the cone at an angle less than 10◦ and aimed to the left and right of the apex, they will
cross again behind the apex. This behaviour is identical with the behaviour of geodesics in
a certain distorted metric in the plane, as shown in figure 1.

In the same way, we can think of a distorted metric in space that is equivalent to the
metric we would get from a sector, of say 359◦ around our singular line. This affects what
you see, since light ‘bends’ to follow the geodesics in the metric; it is as if light near the
axis is slowed down.

Return to the axis. Overcome by curiosity, you return to gaze at the singular axis. The
singularity has progressed dramatically, and as you watch, the scenes along the two sides
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Figure 1. This figure shows paths of light near the apex of a cone. The metric of the cone
is represented as a distortion of the metric in the plane. The long, nearly straight curves are
geodesics, and the orthogonal trajectories can be thought of as wavefronts.

of the singular line scroll outward, squeezing into the surrounding panorama at your sides
and behind you. You are startled to see arms and shoulders growing outward from the axis,
then feet, a torso—and suddenly, there is your own head staring back! The image snaps
into perfect alignment, and the motion stops. In a daze, you slowly turn around to take
stock. Every single thing is repeated twice. For each boulder, there is an opposite boulder.
Each mountain has an opposite twin mountain. There are even twin suns in the sky, shining
from directions 180◦ apart, lighting up every shadow.

You realize that the singular line is a 180◦ cone axis (figure 2). Light ‘bends’ so much
that you see another image of yourself directly behind the axis—lines of sight that go just
to the right of the singular axis make a complete U-turn, heading almost straight back to
you, so that you see the left side of your face. Similarly, your line of sight just to the left
of the singular line, you see the right side of your face. With cone angleπ , the two halves
fit together seamlessly.

This is an example of anorbifold, which is a space locally modelled onEn/0, where
0 is a finite group of symmetries. HereEn symbolizes Euclidean space equipped with
its standard metric, and has a connotation somewhat different thanRn. Orbifolds are
generalizations of manifolds having the advantage that many phenomena are illustrated
with much simpler examples of orbifolds than of manifolds.

Now the cone angle starts decreasing even further. The images to the left and right
of the cone axis go out of sync once again (figure 3), but when the cone angle reaches
2π/3, they are again coordinated and match each other seamlessly. You are in the orbifold
E3/C3, whereC3 is the cyclic group with three elements (that is, the group of integers
modulo 3). As the cone angle continues to decrease, the images match when the cone angle
is 2π/4, 2π/5, . . . ,2π/n. Figure 4 shows the case of cone angle 2π/7.

The effect is reminiscent of two mirrors that meet at an edge, when the angle between
them is varied. A single mirror can be thought of as a model for the orbifoldE3/C2, where
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Figure 2. The behaviour of geodesics near the apex of a cone with cone angleπ . The geodesics
just to the left and right of the apex align perfectly. What you see is a perfect image of yourself.
Unlike your reflection in a mirror, this image has the same orientation that you do.

Figure 3. When there is a cone axis with angleπ − ε, you see an image of yourself on either
side of the cone axis that is doubly covered in a narrow zone in the middle.

C2 acts by reflection through the plane of the mirror. Two mirrors at an angleπ/n give a
model for the orbifoldE3/Dn, whereDn is the dihedral group of 2n elements, generated
by reflection in the two mirrors. SinceCn ⊂ Dn is a subgroup of index 2, the optics of a
cone angle of 2π/n can be visualized by ignoring every other image as seen in two mirrors
that meet at an angleπ/n (that is, ignore all images that have the opposite orientation from
you).

Reality and appearance.Despite Through the Looking Glass, there is a significant
distinction between the effects of a cone axis and the effects of mirrors. When you go with a
companion to visit a cone axis with cone angleπ/2, you see four images of your companion
and three of yourself, plus your identity image.The four images of your companion are all
equally real. You can walk in a straight line toward any of the images of your companion
and shake hands. You can turn around and head toward any other image and shake hands
again.

It is not quite the same if you try to shake hands with one of your own images, because
whenever you move toward your image, your image moves away. If you stubbornly keep
following anyway, you and your three images chase each other in an inward spiral until
you eventually are close enough to the cone axis that you can reach out with your left hand
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Figure 4. When a cone axis has cone angle 2π/7, you see six images of yourself coming from
geodesics that go±1, ±2 or ±3 turns around the axis before reaching you. The appearance
is the same as if you are part of a ring of septuplets. At the top is a snapshot of you near an
n-fold axis, taken by a friend standing on a boulder behind you. Since the images are in perfect
alignment, the cone axis is not visible.

and shake your right, forming a ring around the axis. You know that really there is only
one of you, but it will take some time for your brain to readjust its model of how the world
relates to seeing and touching.

The limit. With the right choice of normalization, the cone angle can keep shrinking all the
way to 0 without crushing or impossibly distorting the space around you. The trick is that as
the cone angle decreases, the cone axis recedes away from you further and further into the
distance. To normalize, watch the cylinder through you around the cylinder axis. Initially,
if the line of singularities is a distancer away from you, the cylinder has circumference
2πr. For cone angleα, if the cone axis moves to a distance 2πr/α, the circumference of
the cylinder in the cone manifold is still 2πr; the intrinsic geometry of this cylinder stays
the same, but the cylinder becomes less curved asα→ 0. In the limit, the cone axis moves
infinitely far away and vanishes and the two half-planes converge to parallel planes, and the
cylinder you are on flattens out and become planar. The resulting space is now a manifold,
E3/Z, which can be thought of as a different metric forR3−R. What you see is that every
object has an infinite repeating sequences of images lined up in a horizontal straight line,
It is reminiscent of a barber shop with two opposite and parallel mirrors, although different
because there is no obstacle to reaching an image of anything other than yourself.

Curvature can buffer from crushing.This choice of normalization protects you, but rather
unfortunately, most ofE3 is cataclysmically distorted. If you want to protect the rest of
space from experiencing unbounded distortion, the only way is to give up local Euclidean
geometry and allow space to become curved. With curvature, it is easy. To distortE2 in this
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way, just rest a cone on the plane with its point pointing up and round it off like a conical
mountain. As the cone angle deforms to 0, the surface develops a long tube, growing like
an asparagus sprout until it is asymptotically a cylinder.

These surfaces have a net negative curvature that exactly balances the curvature at the
cone point; in the limit, the total curvature is−2π . In three dimensions, the product of the
two-dimensional metrics with a line accomplishes a similar result. Whenever a cone angle
along a singular axis decreases, the axis develops an increasing concentration of positive
curvature, and it ‘wants’ to build a balancing cloud of negative curvature in planes transverse
to the axis.

The process will work with great fluidity once we turn to the hyperbolic space, whose
fabric is negatively curved.

A new cone axis appears.The space around us has transformed intoE3/Z, obtained by
periodically identifying all points inE3 by a translation along a horizontal axis. The
translation axis wraps around to form a closed geodesic loopC. Make sure you are standing
some distance away fromC. Now watch as space starts to develop a new cone singularity
alongC whose cone angle slowly decreases from 2π . The geometry of the changing metric
can be represented concretely by slicing along a ‘half-plane’ radiating fromC—that is,
the surface has the local geometry of a half-plane, but it actually wraps around to form a
half-infinite cylinder. After the singular metric is sliced along one of these planar cylinders,
it matches the metric of an almost 360◦ wedge in the non-singular metric ofE3/Z bounded
by two planar cylinders. The singular metric is reconstructed by gluing the two cylinders
back together.

The cone angle keeps on decreasing, while the geometry of space away from the
singular axis maintains its locally Euclidean nature. When the cone angle reachesπ , the
cone manifold becomes an orbifold. At this instant, all visual images of any object are
coordinated. You see two rows of images of yourself, rotated by 180◦ about the axis. Since
the axis is horizontal, the ‘other’ row is upside down.

Carrying on, whenever the cone angle is 2π/n, the images are again perfect: you
seen rows of images that are symmetric by ordern rotations aboutC, and repeating by
translations alongC. We make sure that the cone axis moves further and further away
as α → 0, so that there is a limit for cone angle 0, normalized in a way that keeps the
neighbouring rows of images so they are spaced a constant distance apart. The cylinder
of points a constant distance from the axis is actually wrapped around to form a torus. In
the limit, this torus flattens out and becomes planar. What one actually sees is a doubly
periodic set of images of any object, repeating by an action ofZ2 acting as a discrete group
of translations ofE2.

The Euclidean geometry ofE3 is like a harbour on the edge of a small island in the
middle of a vast hyperbolic ocean of hyperbolic manifolds. So far, we have taken a short
stroll along the edge of the harbour. There are many fascinating tourist attractions here on
the island—for instance, it is only a short trip from our hotel (T 2 × E1) to the top of the
mountain,S3 that looms over us—but time is limited and we have far to go, so we will be
wiser to work on preparations for going to sea.

3. Moving in two directions: continuous surgery

There are so many 3-manifolds that it is very easy to lose your bearings. It will help if we
upgrade our navigational capabilities to be able to modulate the geometry at singular axes
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in the ‘sideways’ directions, in addition to increasing and decreasing cone angles. Without
the new capability we would still be able to go wherever we like, just as even someone
who is stubborn about choice of airline could still fly the 90 miles from San Francisco to
Sacramento—by detouring thousands of miles through Chicago or Atlanta.

The new process is similar to what we have already encountered. Take a wedge of
space between two half-planes, and glue one to the other, but shift one side up slightly with
respect to the other. Optically, this creates a vertical displacement between images seen on
the two sides of the axis. If the original cone angle was 2π , for example, and you shift
the side to your right upward before identifying it with the left, then you see an image of
yourself through the axis, with the portion of the image to your right shifted down (see
figure 5).

Figure 5. This is the image seen when there an axis with cone angleπ slightly shifted parallel
to the vertical axis, with the side to your right joined to a slightly higher level on the right.
Your lines of sight to the right of the axis whip around and come back at a higher level, so the
topmost portion of your image is lower.

If we shift along an axis that is closed in a loop, as inE3/2Z, the same effect occurs,
but the detailed behaviour near the singular axis has a somewhat bizarre description. To
effect the shift, cut along a half-infinite cylinder whose boundary is the axis and reglue with
a vertical shift ofa. Every point on the axis itself is identified with the point on the axis
a distancea higher, so also with 2a higher, etc. Ifa is incommensurable with the length
L of the axis, then these identifications are dense along the axis, so the axis collapses to a
single point. But if we shift by a rational multiplea = (p/q)L of the length of the axis, the
axis now wraps around itselfq times. Each point on the resulting axis has a neighbourhood
formed fromq wedges of the original axis, so the cone angle is multiplied byq. If the
axis was non-singular before the shift, this results in a cone axis with a large cone angle
2πq, bigger than 2π . On the other hand, if we start with a 2π/q (orbifold) axis and shift
by a = (p/q)L, the new cone angle is 2π , and the axis becomes non-singular!

We can watch this process happening, starting with say with a sevenfold cone axis
E3/(Z× C7). Let us orient the axis vertically. You are part of a ring of septuplets circled
around the axis. Up above, you see another ring of images of yourself, and above them, yet
another. Now the geometry begins to shear along the axis. Your ring now spirals slightly
upward to your right, so the third septuplet to your right is slightly higher than the next
one around, the third to your left. Since these images come from light paths that actually
wrap several times around the axis before coming back to you, they shifted every time they
hit the vertical half-cylinder which has been sliced and reglued. the vertical misalignment
of images you see is a sevenfold amplification of the shift of the regluing. The shearing
increases; when it reachesL/7, your images align again in an infinite spiral, very similar to
a steep spiral staircase. The shearing continues. When the vertical shift reaches 2L/7, the
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Figure 6. Left: E3/Z has undergone a compound shifting along a circular axis, first developing
a 2π/5 cone angle, then shearing vertically by3

5 the length of the axis. The central axis is not

singular, but it is only1
5 as long as it used to be. You see multiple images of a single square

whose sides are joined to form a torus. Before space shifted, this square extended full height and
full circle around the original non-singular circular axis. Right: you have gone to investigate
another compound axis close up. It is reassuring to belong to a whole flock of like-minded
souls.

images go full circle after a vertical distance of 2L, and you see two intertwined spirals,
each twice as steep as the staircase before. The spirals are diametrically opposite. No
two people are on the same height, but they alternate between the two spirals. When
a = 3L/7, the images once again are all in alignment. You can make out three intertwined
right-handed spirals, but this visual organization is not as automatic; you can see it instead
as a parallelogram-grid of images wrapped around a cylinder. Perhaps you even see four
intertwined left-handed spirals.

Instead of cutting and regluing, we can think of this operation as deforming a metric
on a fixed manifold, while always retaining its locally Euclidean character. Focus on the
set of distancer from the cone axis; topologically this is a torus. Consider how we can
modify the three-dimensional metric (singular at the core), while maintaining a constant two-
dimensional intrinsic geometry on our chosen torus. The deformation in three dimensions
will be determined by how the torus is bent; the bending of the torus always matches a
cylinder. The bending is determined by specifying the two principal directions of curvature
and the two principal curvatures. One of these principal directions has curvature 0 and points
along the generating lines for the cylinder, so the geometry of bending is parametrized by
a single tangent vector to the torus, up to a sign. (Note that the bending at one point
determines the bending elsewhere along the torus: the principal directions are parallel in
the intrinsic geometry of the torus, and the principal curvature is constant.)

If we go inward toward the singular core in the family of parallel tori on the inside of
our given one, the metric on these tori changes by shrinking lengths in the curved direction
at a steady rate while maintaining length in the perpendicular direction. If these lines of
curvature close up, then ultimately the torus shrinks to a circle, which is a cone axis with
cone angle equal to the integral of principal curvature around the closed line of curvature.
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Otherwise, the torus shrinks to a point†.

Surgery coefficients. The convention is to describe surgery in terms of a choice of
generatorsµ and λ (a meridian and longitude) for the fundamental group of our chosen
torus. If we identify the torus withR2/Z2, we can identifyµ and λ with lattice vectors
in the plane. The bending is determined by a pair±(m, l) of real numbers, determined up
to a sign, such that the vectormµ + lλ points has total curvature 2π , i.e. if you go along
that path you will have bent around full circle. The parameters(m, l) are thecontinuous
surgery coefficientsor real surgery coefficientsfor the singular geometry.

In the important special case that(m, l) is a pair of relatively prime integers, the tori
shrink to a circle with cone angle 2π , so the geometry is in fact non-singular, and we have
a manifold. This case is called(m, l) Dehn surgery, or sometimesm/l rational surgery. If
(m, l) is a pair of integers with greatest common divisorn, the tori shrink to a cone axis with
cone anglen, so we have an orbifold. In either of these two cases, what one actually sees
is a regular array of images of any object, wrapped around in a cylindrical array: when the
continuous surgery coefficients are integral, the paths of geodesics match up continuously
on the two sides of the singular axis, so images align perfectly. In any other case, what
one would actually see would be a linear dislocation or discontinuity along the axis—this
is the same phenomenon as a branch cut in an analytic function. The connection is not
superficial: continuous surgery is closely related to families of analytic functions of one
complex variable that have singularities likeza, wherez is a complex variable anda is a
complex power.

4. Hyperbolic space

Our vision has made quick progress in learning to see repetition and symmetry as topology.
With only a little more training to recognize some common hyperbolic objects, and a little
adaptation to seeing scaling as distance, our eyes will be ready to lead us into hyperbolic
manifolds.

Hyperbolic perspective. Hyperbolic space has a succinct description as the projective
geometry of the interior of the unit ball inE3. Hyperbolic lines map to Euclidean straight
lines in the ball, and hyperbolic planes map to Euclidean planes; it is just that hyperbolic
distances are longer than Euclidean distances, very much larger near the edge of the ball,
which is actually at an infinite distance. The unit ball makes a good, compact ‘cheat sheet’
that is easy to carry in our heads for quick reference when we need it.

Isometries of the hyperbolic geometry are the same as projective automorphisms of the
ball, i.e. homeomorphisms of the ball that take planes to planes. A hyperbolic plane is
determined by its circle of intersection with the unit sphere. The angle between two planes
can be seen as the angle between these two circles.

In a dimension one lower, this means that constructions using only a straight edge use
only a straight edge in a plane where a single circle has been drawn translate into hyperbolic
geometry†.

† It is interesting that this family of metrics constitutes a geodesic in the hyperbolic metric on the Teichmüller
space for a torus. The 3-manifold metric has a cone axis if and only if the geodesic tends to a cusp in the modular
orbifold H2/PSL2(Z).
† The tangent to the circle at a given point is an important ingredient for many hyperbolic constructions. It is a
nice exercise to construct this tangent from a point on a circle using a straight edge alone. Of course if we could
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In other words, the projective geometry of hyperbolic space is a fragment of the
projective geometry of Euclidean space. Imagine yourself in the centre of a ball perhaps
100 m in radius. Objects have the same visual geometry whether interpreted as Euclidean
or hyperbolic space: hyperbolic straight lines appear straight. Even the stereoscopic effect
of parallax is correct: hyperbolic parallax makes everything look a bounded distance away
to Euclidean-adjusted eyes.

A hyperbolic plane appears to you as a visually round disc where a Euclidean plane slices
the ball. In hyperbolic perspective, figures on this plane are identical with the projective
model of the hyperbolic plane.

With computer geometry tools such as Geometer’s Sketch Pad, one can readily perform
these constructions and imagine them to be hyperbolic perspective drawings. As we move
control points, the projectively constructed figures move with them, and keys into our sense
of perspective, so we can imagine looking at a hyperbolic plane while flying over it in
hyperbolic space (figure 7).

Figure 7. This is a screen shot from Geometer’s Sketch Pad, showing the hyperbolic plane
as seen in perspective from hyperbolic 3-space, showing the first stages of the construction of
a tiling by congruent triangles. The construction starts with one circle and subsequently only
requires a ruler, although it is more convenient to have automatic construction of tangents to the
circle. The visual horizon of any plane in hyperbolic space is a circle like this. In hyperbolic
perspective distant parts of the plane near the horizon circle are greatly foreshortened, since you
have only a glancing view. In the program, moving corners of the centre triangle with a mouse
helps trigger your sense of perspective and motion; the effect is stronger when the circle is large
(or you put your eye closer to it) so that it more closely matches Euclidean perspective.

Hyperbolic space has lots of room.The big qualitative difference betweenE3 andH3 is
that in H3 the area of a sphere of radiusr grows incredibly faster: instead of scaling
quadratically as inE3, the area grows exponentially fast. One consequence is that figures
you see are closer than they appear, very much closer as their apparent size decreases.

not do it, we would dispense with the handicap and add it as a primitive operation.
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This phenomenology is well captured in another model forH3, the upper half-space model,
consisting of points in the half-spacez > 0 in R3, where the hyperbolic arc length ds is
given by the formula

ds2 = (1/z2
)(

dx2+ dy2+ dz2
)
.

What this says is that hyperbolic lengths scale in proportion to height above thexy-plane.
Any similarlity of E3 that preserves thexy-plane also preserves this metric. In upper half-
space, a geometric series of figures shrinking by factors of 2 toward the origin is a sequence
of equally spaced hyperbolic figures.

All vertical lines are geodesics in upper half-space; the other geodesics are semicircles
perpendicular to thexy-plane. The visual image of a figure in upper half-space, as seen by
an observer high above thexy-plane, is very close to the perpendicular projection of the
figure to thexy-plane. As an object moves downward, away from this observer, its visual
image shrinks by similarities.

Thus for nearby objects in hyperbolic space, our Euclidean sense of perspective is
a good guide to the geometry, while for distant objects, our sense of similarities can
be mentally re-interpreted to give a good sense of the geometry. You can get a good
feeling for this by using a hyperbolic-space viewer such as geomview (available free from
http://www.geom.umn.edu), which enables you to put objects here and there, rotate them,
translate them and fly around among them, all with the correct intrinsic hyperbolic geometry.
To Euclidean-adjusted eyes, the distant scenery appears flattened. When we move toward
distant objects, the appearance is very much like zooming a two-dimensional image. Large
objects resemble Euclidean views that are in exaggerated perspective, taken with wide-angle
lenses that are very close to their subject. However, this exaggerated perspective does not
diminish when the object moves away; it simply records the exponential growth of the
sphere of increasing radius, which corresponds to rapid shrinking of visual images with
distance.

Complex coordinates. It is convenient to think of thexy-plane as the complex planeC1,
because any orientation-preserving isometry of hyperbolic space extends to a meromorphic
map, a fractional linear transformationw 7−→ (aw + b)/(cw + d) wherew = x + iy.
Algebraically, the composition of fractional linear transformations is the same as matrix

multiplication of their arrays of coefficients
(
a b
c d

)
, thus giving an isomorphism with the

group PSL2(C). Because of this, everything in three-dimensional hyperbolic geometry
tends to have natural complex parameters. For example, a typical isometry ofH3 to itself
is a screw motion, translating a distanced along some axis and then rotating by an angle
θ . The complex numberd + iθ is thecomplextranslation length. Angles and length merge
into a unified concept that yield holomorphic formulae for the geometry of any figure that
varies freely inH3.

Banana cylinders. There are some specific surfaces that are important for understanding
continuous surgery in the hyperbolic realm. Any line inH3 is the axis of a family of
concentric cylinders of radiusR. In the upper half-space model, the cylinders about a
vertical line appear as vertical cones. For the other (semi-circle) geodesics, these surfaces
look something like bananas (figure 8), of varying thinness or fatness.

We can use the upper half-space to see how a banana-cylinder actually appears to a
hyperbolic observer; simply think of the observer as stationed high above thexy-plane.
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Figure 8. These bananas are actually hyperbolic cylinders concentric to a hyperbolic straight
line, as seen in the upper half-space model. The banana is a union of arcs of the family of
Euclidean circles that intersect thexy-plane at a fixed angle in a fixed pair of points.

A Euclidean cylinder of radiusr curves in one direction only: its principal curvatures
are 0 and 1/r. A hyperbolic cylinder of radiusr is shaped rather differently. In a cylindrical
coordinate system(θ, t), wheret measures arc length along the core axis andθ is the angle
around it, the element of arc length ds on the hyperbolic cylinder satisfies

ds2 = (sinh(r) dθ)2+ (cosh(r) dt)2.

As r grows large, the ratio of the scale factors sinh(r) and cosh(r) quickly converges
to 1. The principal curvatures are the logarithmic derivatives of these scale factors:
cosh(r)/ sinh(r) in the θ direction, and sinh(r)/ cosh(r) in the t direction. Beforer is
very large, both principal curvatures nearly equal 1, and the surface looks quite round even
though it has the local intrinsic geometry ofE2.

The limiting shape for a hyperbolic cylinder of radiusr → ∞, is a horosphere, with
all principal curvatures equal to 1. The horosphere is also the limiting shape for spheres
of radius tending to∞, as well as the limiting shape for a surface at constant distancer

from a plane. The reason these limiting shapes are all the same is that inH3, distant lines
and distant planes all look like tiny dots, so the surfaces of constant radius about them are
almost identical.

The intrinsic geometry of a horosphere is Euclidean, just like the intrinsic local geometry
of a cylinder. In the upper half-space rendition ofH3, most horospheres look like spheres
tangent toC, but there is a special case of horospheres tangent to∞ that look like horizontal
planes. In terms of hyperbolic geometry, these horizontal Euclidean planes are bent upward
(that is, geodesics tangent to one of these horospheres tend downward from it).

No matter how far you are away from a horosphere inH3, most of it is hidden: the
portion that is visible is a disc on the horosphere whose limiting radius as you go far away
is 1, so the amount of area you can see from the ‘outside’ of a horosphere is always less
thanπ . A similar effect is seen in the hyperbolic views of cylinders, as evident from the
cut-away views in figure 9.

In E3, just to create one singular cone axis while maintaining locally Euclidean geometry
requires a globally distributed distortion of space. InH3, cone axes can be arranged so that
the distortion they force damps out exponentially with increasing distance from the axis. To
construct a cone angleα along an axis, start with the map that adjusts angles and nothing
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Figure 9. Two hyperbolic cylinders seen from within hyperbolic space. Each cylinder has been
sliced into two pieces arranged one above the other so you can see inside. Left: a cylinder of
radius 0.65, tiled with a skew grid of congruent parallelograms. Visualize the hyperbolic line
that runs through the central axis of this banana. This line, like all hyperbolic geodesics, recedes
from you quite quickly at its two ends. The turning away is forced by the explosive growth of
the area of spheres of increasing radii about you. Staring at these pictures can help you sense
the huge amount of ‘stuff’ at increasing distances in hyperbolic space. Right: a cylinder of
radius 1.44, tiled with rectangles. In contrast to the analogous situation for Euclidean space,
wider hyperbolic cylinders do not have the same visual shape as smaller cylinders, but appear
rounder; this effect is exponentially rapid as a function of radius. When you are reasonably far
away (as in these pictures) the diameter of a hyperbolic cylinder can be estimated as the log
of ratio of the visual scaling factors from the front to the back, measured at the centre of the
figure. Compare with figure 6, an analogous figure inE3.

else, given in cylindrical coordinates by the formula

(θ, t, r) 7−→ ((2π/α)θ, t, r).

Now adjust the value ofr to get a new map that preserves the area element
cosh(r) sinh(r) dθ dt on cylinders. Asr increases, this converges to a motion of each
cylinder by a constant distance. Since the ratio of scales in the two directions is very nearly
1, this is very nearly an isometry. Transporting the new metric by the map creates a cone
axis by a distortion that decays exponentially away from the axis.

5. Embarking from T 3

The 3-torusT 3 has the simplest intrinsic description of any 3-manifold. It can be constructed
by identifying each face of a cube directly to the opposite face. When you are in this
geometric manifold, what you see is an array of multiple images, repeating in a regimented
pattern in every direction.
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Figure 10. This is a horosphere in hyperbolic space, shown upside down (that is, in the lower
half-space model). The tiles are congruent squares in the intrinsic geometry of the horosphere.
Horospheres have the limiting shape of a sphere of large radius, and also the limiting shape of
a cylinder of large radius.

This appearance is very special, and is not indicative of the qualitative appearance of a
typical 3-manifold. Another way to understand the regimented quality of the 3-torus is to
look at what happens when you move along a straight line within the 3-torus. It is unlikely
that your journey is periodic, returning to exactly how it started, but your journey is almost
periodic. With reasonably accurate initial data, you can predict where you will be for a
long time to come. You can think of this like a ripple spreading in a pond. The set of
possible places you could be after going a distancer has the local geometry of a sphere of
radiusr in E3, although in the torus wraps around and through itself. The sphere of radius
r has area 4πr2: its area grows only quadratically as a function ofr. Doubling r only
quadruples the number of trajectories that separate within that time by at least some given
small amountε.

We will now watch as the metric of the torus deforms. Imagine yourself inside a cube
(perhaps 20 m on a side) whose faces are identified to form a torus. A vertical line bisects
the face of the cube in front of you; in the torus, it closes up to form a closed geodesic
loop A, which also appears on the face of the cube behind you. A horizontal line bisects
the faces to your left and right; in the torus, they are identified to make a closed geodesic
circle. The floor and ceiling of the cube are bisected by a line running left to right, which
identify to a closed geodesic loopC.

Now the metric of space starts to distort near loopsA, B andC creating singularities
along them with cone angles slowly decreasing from 2π . Geodesics in the new metric
appear bent in the original Euclidean metric, bending toward the axes when they come near
so that they cross just behind. What you see is a discontinuity of visual images along axis,
with a double image for a narrow band (as in figures 1 and 3).

When we watched this happen earlier, we were in manifolds where the cone axes had
single images. That is no longer the case: in the 3-torus, multiple images of axesA, B and
C appeared, like three families of parallel lines inE3, translated in a pattern to interlace
rather than intersect. As the metric deforms, the optical effect of image doubling occurs
nearevery image of the axis. The effects are cumulative. We can understand the situation
by thinking about how ripples (wavefronts) spread in the new metric, as a function of time
t . Whenever the spreading ripple hits a singular axis, a thin wedge the space behind the
axis is traversed doubly, because geodesics can arrive there after going to either side of
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the axis. This effect is compounded recursively. Every small area of the spreading ripple
encounters singular axes and has portions that are doubled, at a small but regular rate. The
compounding of growth of the area of the spreading ripple means that in the new metric,
the area grows as an exponential function of time. In other words, the geodesic flow for
the new metric now has positive topological entropy.

Another way to understand what is happening is to think about what happens if you
trace a geodesic in the new metric but visualize it in the original flat metric that looksE3.
Every time the trajectory comes near an image of one of the singular axes, it is deflects a
little, in a way that a small change in the distance from an axis changes the angle, which
causes a large change in position after some time. This means that successive deflections
are poorly correlated with each other. After a large number of close encounters with axes,
the trajectory is completely unpredictable: on a large scale in the imageE3 image, the
trajectory looks like a random walk, or a trajectory of Brownian motion.

So far this discussion of exponential growth and unpredictability applies equally well
to many different geometries for the torus with singular cone axes as described. However,
the geometry of our 3-torus happens to be following a very special path that is far superior
to any other. As we look off in the distance, images of round objects appear round, except
where they are sliced by images of the singular axes. This feature of our geometry is very
special and rare; a generic, variably curved geometry would show local astigmatic effects,
oriented this way and that, and growing more pronounced the further we look. The shapes
of distant objects would be unrecognizable.

Our torus accomplishes this by using hyperbolic metrics, of constant negative curvature.
When the cone angles at the three axes decrease, they are ‘trying’ to create surrounding
clouds of negative curvature in their transverse directions. This negative curvature has
been homogenized and spread evenly around everywhere! Metrics of this quality can be
constructed from polyhedra in hyperbolic space that are combinatorially described as cubes
with six faces each divided into half, making 12 faces in all. Each of these seemingly
rectangular faces is actually a pentagon, when you take into account the extra vertex in
one of its sides. The pattern of subdivision is the same as for a regular dodecahedron with
regular pentagonal faces. It is not hard to construct a hyperbolic dodecahedron where the
six edges that identify to the three loopsA, B andC take a value 0< α/2 < π , and all
other angles areπ/2. The shapes of these hyperbolic polyhedra are determined by their
angles; when the faces are glued together, it gives a hyperbolic cone-metric for the torus.
Whena is very small, the polyhedron is very small, and its shape is nearly cubical. When
rescaled to constant diameter (longest edge length 20 m), these tori converge to our cubical
torus. Figure 11 show some examples of dodecahedra of this form.

The cone angles along axesA, B andC keep decreasing, until they eventually attain
the valueπ . At this moment, the metric can be constructed from a regular, right-angled
hyperbolic dodecahedron with all angles equal toπ/2. Suddenly, all the double images
align with each other so that every image is perfect. What we see is a pattern repeating in
hyperbolic space. Our right-angled dodecahedron is a fundamental domain, or basic tile;
we can fill upH3 with non-overlapping dodecahedra, matching up on their faces. We see
one image of ourself in each of these dodecahedral cells. The sizes of the images decreases
exponentially fast with distance, since there are exponentially many at a given distance.
Since the long-term behaviour of geodesics is random, distant images face every which
way, no matter in what direction we look.

The cone angles start to decrease again. As they decrease, the three axesA, B andC
also decrease in length. When the cone angles reachπ/3, all images are in alignment; then
they go out again. They come back in alignment for an infinite sequence of valuesπ/n, the
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Figure 11. Six hyperbolic dodecahedra with varying angles, seen in the projective model ofH3.
Each dodecahedron has a set of six edges which decrease, in successive frames, through values
π − ε, 2π/3, π/4, π/5, π/6 andπ/12, while the other 24 edges remain atπ/2. When opposite
pairs of like-coloured faces are glued, one obtainsT 3 with evolving cone angles at three edges.
Notice that for the last five dodecahedra an observer inH3 would never be able to see more than
three faces at a time without going inside the dodecahedron. A hyperbolic perspective drawing
facing the centre of the ball is the same as the Euclidean perspective drawing from the same
point, but for the correct Euclidean interpretation of the drawing you need to stand close to it,
while for the hyperbolic interpretation you stand far away. The first figure is just a sketch, while
the others are traced from output of SnapPea’s Dirichlet domain module.

axes growing shorter and shorter every time, and receding off into the distance from where
we are standing. There is a limit, when the cone angles go to 0. The limiting manifold
is homeomorphic toT 3 \ A ∪ B ∪ C. The limiting metric iscomplete, meaning that the
holes whereA, B andC have vanished are infinitely deep, and it is not possible to reach
the edge of the universe in a finite distance. These holes are surrounded by a family of
concentric tori, bent into the shape of horospheres. The intrinsic metric of each torus is flat.
If you proceed inward down the hole, the concentric tori all have the same shape, but they
shrink exponentially fast. It follows that the total volume for this metric is finite. If the
metric is scaled so that its curvature is−1 (that is, the hyperbolic radian is used as a unit
of distance), the metric is uniquely determined by the topology; in particular, its volume is
a topological invariant. Our current manifold has volume 7.327 724 753. . . .

The program SnapPea, when given the topological description of a manifold such as
this, can almost instantaneously compute its complete hyperbolic metric (which is unique),
computes numerical invariants such as its volume and displays various pictures. The most
convenient way to describe the topology is usually by specifying a Dehn surgery to produce
it from a link in S3. In this case,T 3 \ A ∪ B ∪ C is homeomorphic withS3 \ B, whereB
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Figure 12. Hyperbolic space tiled by right-angled dodecahedra. This is a true perspective
drawing insideT 3 when it has a hyperbolic metric with three singular axes of cone angleπ .
Compare with figure 11, frame 3. The fundamental domain (the dodecahedron) has many images,
which appear in distorted perspective to Euclidean-adjusted eyes. The prominent circle is the
horizon circle for one of the planar sheets of faces. Can you pick out any ‘bananas’, or rough
hyperbolic cylinders, made from strings of dodecahedra? This figure is a postscript snapshot from
geomview, a program available for common unix platforms from http://www.geom.umn.edu.
Click on the Not Knot Flythrough module (written by Charlie Gunn) and you will be conducted
on a flying tour through this scene (minus the solid dodecahedron). From the File menu open
data/geom/dodec; with patience you can translate and rotate dodec in one of the bays. Fancier
versions of scenes like this occur in the video NotKnot.

is a famous link of three components called the Borromean rings. These three interlocked
circles have the property that when any one is removed, the other two are unlinked.T 3 is
obtained fromS3 by doing(0, 1) surgery on the Borromean rings.

Perhaps the most informative picture in SnapPea is the cusp view. Acusp is the
jargon for a deep ‘hole’ in a hyperbolic manifold that is enclosed by a family of concentric
horospherical-shaped tori. SnapPea has sliders to choose one horospherical torus concentric
to each cusp, identifying which torus by the volume of the portion of the cusp it encloses.
For each cusp, a display can be produced of the view from deep within that cusp of the
images of all other horospherical tori, except for the one you are inside (otherwise it would
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block the view of everything). The cusp views can have quite distinctive qualitative features.
By studying and comparing them, you can ‘triangulate’, and see how the geometry of the
entire manifold fits together.

Figure 13. Axes A, B and C in T 3 have gone off to infinity as their cone angles went to
0. This is the view from deep inside cuspA, looking out, showing multiple images of three
horospherical tori that enclose axesA, B andC. We are inside the region enclosed by theA
torus, whose fundamental domain is indicated by the rectangle. Luckily, it is made of one-way
glass so we see out to the rest of space. This view is similar to the panorama wrapping around
the vertical pillarA in the front of the cube from which the original Euclidean geometry ofT 3

was formed. Large images of horizontal cylindersB on the left and right of the room appear at
mid-height. Large images of cylindersC on the floor and ceiling appear at the top and bottom
of the rectangle. In between these large images we can make out images of our own cuspA, at
the front and back of the room. The view from each cusp is the same. Imagine how it looks to
an observer stationed in another cusp, and match the visual geometry as she would see it to the
geometry you see. The sky above each horosphere has a closest layer of horospheres, arranged
in a diamond pattern just like what you see.

Continuous hyperbolic surgery works in quite a nice way. Hyperbolic manifolds with
singular axes are controlled by holomorphic parameters, one complex parameter for each
cusp that enables its singular behaviour to change in two real dimensions, in the cone
angle direction and in the shear direction. SnapPea implements continuous surgery in a
way that enables one to navigate quite readily among 3-manifolds, and to identify where
you are. For a hyperbolic manifold, a view such as in figure 13 is determined by the
geometry, plus the user-controlled parameters of how big the cusp neighbourhoods are.
The topology determines the geometry, by the rigidity theorem of Mostow and Prasad.
Therefore, it is mathematically a straightforward computation to decide whether or not two
hyperbolic manifolds are homeomorphic; SnapPea’s Isometry module answers a particular
instance of this question in short order. A human looking at the cusp-view pictures can also
usually tell at a glance whether or not two 3-manifolds are the same or different, although
there are some tricky special cases when manifolds are hard to compare accurately by eye,
involving 3-manifolds are built out of identical polyhedra that are glued together in different
ways.
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To make sense of the view inside a hyperbolic 3-manifold, it helps to keep the imagery
of hyperbolic cylinders (bananas) in the front of the mind.

Starting with a complete hyperbolic manifold of finite volume, all but a bounded
(compact) set of surgery coefficients yield a singular hyperbolic manifold, and in particular,
all but a finite number of Dehn fillings for each cusp give hyperbolic manifolds. Often
there are no exceptions; at most there are a handful. The volume of a manifold obtained
by Dehn filling is always less than the volume of the original. The set of all hyperbolic
3-manifolds with volume less than a constant can all be obtained by Dehn filling from a
finite set of manifolds with cusps.

The formula for the volume of a hyperbolic polyhedron involves the dilogarithm
function, which is a non-elementary but readily computed function. Much simpler than
the volume is the formula for the derivative of volume, as the polyhedron varies while
maintaining a combinatorial type. The formula, discovered by Schlafly, says that the
derivative of volume of a polyhedron is the sum over all its edges of the edge length
times the derivative of its exterior angle, i.e. as the edges get sharper, the volume gets
bigger. The same formula applies when polyhedra are glued together to form a hyperbolic
cone-manifold: the derivative of its hyperbolic volume is the sum, over all cone axes, of
the length of the derivative of the curvature concentrated at the axis (curvature is 2π minus
its cone angle). It is as if there is a secret tunnel to another world along each cone axis;
volume flows in or out of a segment of a cone axis in direct proportion to the change in its
cone angle.

Figure 14. The cusp view of a knot (inset) from SnapPea, with bananas. The cut-away form of
hyperbolic cylinders is plainly visible in the hollows where bananas were omitted: cf figure 9.
Each banana has many images of horospheres spiralling around it. All horospheres wrap up
to a single torus in the manifold, so the picture strongly suggests that the axis of the bananas
wrap into a fairly short geodesic. The knot diagram suggests a short geodesic looping around
the twisty area. spiralling fairly tightly (see figure 15).

The knot in the inset of figure 14 has two strands that twist three times around each
other. The twisting is reflected by the geometry of the complete hyperbolic structure for its
complement. If you have memorized the appearance of a cylinder inH3, you can plainly
make out the shape of a fairly fat cylinder in the cusp view of the knot. This strongly
suggests that there is a short geodesic. In fact, a loop encircling the two twisted strands
is homotopic to a closed geodesic. This can be calculated in SnapPea by drawing the
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Figure 15. Left: the Whitehead link consists of two circles, which separately are unknotted.
The link in figure 14 is obtained by(1, 3) Dehn filling of the shorter loop. This is the same as
slicing along a horizontal disc spanning this loop, twisting three times and gluing back. Right:
the cusp view of the Whitehead link, as seen from the cusp for the ‘long’ loop. The bananas have
turned into horospheres. SnapPea’s sliders for cusp volumes have been adjusted to maximize
the ‘big’ cusp and keep the other one small, for better comparison with figure 14. (It is not
obvious from these pictures, but the two strands are actually symmetric with each other.)

Figure 16. This is the cusp view of(11, 37) surgery on the small component of the Whitehead
link. There is a closed geodesic that is quite short (length is 0.000 989 647. . .) and far away, so
that the cylindrical neighbourhood is not easy to distinguish from a horosphere. This view bears
a striking resemblance to comparable cusp views for the complement of the Borromean rings.
A picture in figure 13 would be obtained by adjusting the objects that are drawn: shrinking
the single horosphere in the present picture, and drawing a hyperbolic cylinder of appropriate
diameter (a very bloated banana) around the short geodesic that is the core of the(11, 37) filling.
The nearly congruent geometry reflects the fact that the complement of the Borromean rings is
a twofold cover of the complement of the Whitehead link.

loop in question, forming the complement of the resulting link, filling the new component
using (1, 0) surgery (which means filling that component back the way it was). There
is a core geodesic view in SnapPea which now will tell you the length of the filled-in
core: it indeed reports a short hyperbolic length 0.1535. . . with a twist of 2.2071. . . rad.
In comparison, SnapPea’s length spectrum module reports a second shortest length of
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1.138 084 551 958 0791 for a closed geodesic—still a reasonably short hyperbolic length.
A famous theorem of Gordon and Luecke says that knots are equivalent if and only

if there is a homomorphism between their complements. However, the situation is quite
different for links with more than one component. Any time there is an unknotted component
to a link, you can find a disc that has that unknot as its boundary, intersecting other strands
in some collection of points. If you slice along the disc, twist one side of the cutn full
times, then glue the two cuts back together, you obtain a new link, usually different from
the old one since you have added some extra twists. But the complement of the new link
is homeomorphic to the old one, since apart from discontinuous behaviour at the boundary,
the new gluing map is the same as the old. Thus, when a new unknotted component is
added to our link, we can untwist it to make a simpler picture, known as the Whitehead
link (figure 15). The(11, 37) Dehn surgery on the second component of the Whitehead
link is shown in figure 16. The length of the core geodesic in that case is quite short, only
0.000 989 647, and the geometry is almost indistinguishable from that of the Whitehead link
except near the central part of the core.

6. The ocean of hyperbolic manifolds

The complement of the Borromean rings is a twofold cover of the complement of the
Whitehead link. This kind of relationship is not an isolated phenomenon. Further
exploration of 3-manifolds via continuous surgery reveals quite a lot of convergence, if
one aims toward bright beacons. it is as if there are just a few major shipping channels
marked by powerful beacons, but with large numbers of interesting destinations off to the
sides.

In SnapPea there is a module fordrilling out geodesics loops that are identified
geometrically. Given a hyperbolic manifold, the program will present a list of all loops
up to a specified combinatorial complexity (as determined by an internal representation
of the manifold), sorted in order of hyperbolic length. SnapPea can remove any of these
geodesics from the manifold, in essence deforming its cone angle to 0 so as to obtain a
complete hyperbolic structure for its complement.

Hyperbolic volume increases, by an amount that is typically in rough proportion to the
length of the geodesic you drill.

Here is one phenomenon that seems to always occur. This is a striking effect that others
(among them Jeff Weeks) have also noticed, but I do not know if it has found its way into
print:

Conjecture 6.1. When the shortest simple closed geodesics are repeatedly removed from
any complete hyperbolic 3-manifold of finite volume, eventually one obtains a manifold
whose shortest closed geodesic has length 2.122 55. . . with angle of twist±1.809 11. . . ,
and has self-replicating behaviour when removed.

This length is one that occurs in the complement of the Borromean rings; it is the
length of a loop that links around two of the rings where they cross, and comes from an
element ofSL2(C) whose trace is 2+ 2i. This length also occurs in the complement of the
Whitehead link. If you cut the Whitehead link open along a twice-punctured horizontal disc
with boundary the ‘small’ loop in figure 15, you obtain a fragment of a hyperbolic manifold
bounded by two twice-punctured discs. This particular fragment has identical geometry in
any manifold where it occurs. This module is aclasp, and is fairly common in 3-manifold
topology. If a short curve encircling the two arcs of the clasp is removed, the result has the
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Figure 17. One of the cusp views of a nine-cusped hyperbolic manifold of volume 44.0227.
The horosphere that walls off this cusp encloses a volume of 7.5; the next largest cusp volume
is 4.2. Features that look like hyperbolic cylinders are scattered around the image, as indicated
by the bananas sketched in at the bottom. Notice how the bananas together with the horoballs
seem to fit in a semi-regular pattern, as for the cusp view for the Borromean rings but with
dislocations where the grid turns 45◦. Patterns like this are common.

same topology as two clasps strung together, joined on twice-punctured discs. Like Hydra,
it only multiplies when it is zapped.

There are other patterns that occur under drilling. The Borromean rings is an instance of
a phenomenon called auniversal link: every possible 3-manifold can be obtained by Dehn
filling of some covering space of finite degree of the Borromean rings. To a surprising
degree, one can learn about covering spaces and certain relatives of covering spaces by
drilling geodesics based only on the patterns of their lengths. For the simplest manifolds
repeated drilling of the shortest geodesic soon arrives at the complement of ann-link chain,
in a traditional circular chain arrangement. The topology of such a chain depends on the
number of links and the amount of twist. The least-twisted chain of five links is particularly
important for the simpler hyperbolic manifolds. Its complement has volume 10.149. . . .
Its cusp view looks like figure 18, except that its volume is10

28 the size and the colouring
repeats on a shorter scale. This manifold has an amazing symmetry group of order 120
that performs all possible permutations of the cusps. Very many of the simpler hyperbolic
manifolds arrive at this topology/geometry after recursively drilling out shortest geodesics
until there are five cusps (see the discussion of the census of the simplest 3-manifolds whose
data are available within SnapPea [HW89]). When one more shortest geodesic is drilled
out, the manifold recrystallizes into a 6-cups manifold with the same cusp pattern as the
Borromean rings.

More regularities occur for larger examples. Repeatedly drilling out of relatively short
geodesics (butnot always the very shortest, since the shortest geodesics eventually start to
be confined to certain regions) always seems to start ‘crystallizing’ a 3-manifold, so that its
cusp neighbourhoods can be adjusted in size to pack together in regular crystalline patterns,
most commonly in a square-looking pattern as for the Borromean rings. There are several
other patterns that occur frequently, but less frequently, notably the equilateral pattern of
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Figure 18. Eight linked full tori (right) when inflated fillS3 so that each meets each other along
a single (curved) hexagon. The complement of the link is a hyperbolic manifold (above) of
volume 28.418. . . , having extraordinary 336-fold symmetry. The seven nearest cusps describe
a seven-colour map of the torus surrounding our own cusp. As seen from a neighbouring cusp,
we form part of a triangular grid along with a hexagon of common neighbours, as indicated by
the painted triangles. Beams join pairs of nearest neighbours. The closest images of ourselves
are in the fourth tier, quite distant for a manifold of this volume.

figure 18. There are often dislocations, where two different patterns meet or where the
crystalline grids are at different angles.

The patterns, constructed and viewed with SnapPea, are striking. The phenomena
are similar even for large manifolds of volume 100 or 200. It is often hard to formally
capture and describe patterns that we see plainly with our eyes, but these observations
suggest that there might be a comprehensible systematic organization for hyperbolic
crystallography. Possibly every compact hyperbolic 3-manifold can be thought of as a
‘crystallized’ arrangement of solid tori surrounding relatively short geodesics, fitting with
each other in a small repertoire of local arrangements similar to figures in this paper. Any
universal pattern of this nature would need to match certain manifolds in more than one
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way, but with luck the ambiguity would be manageable.
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