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0. Introduction

These are informal notes to accompany the course Manifolds MA3H5. They
run parallel to the course, but are not necessarily identical. Where there is any
difference, it is the material that is presented in lectures which will determine the
examinable content of the course.

Sources :

In preparing the course, I have made use of the lecture notes and exercise sheets
by David Mond, mentioned below, as well as hand-written notes by G. R. Allan
(University of Cambridge).

Other notes :

The “Lecture Notes for MA455 Manifolds” by David Mond, Warwick, 2008, are
available here:
http://homepages.warwick.ac.uk/∼masbm/Manifolds/manifolds.ps

They date from a time when “Manifolds” was a 4th-year module, but there is
quite a bit of overlap with our course. Most of what we do will be covered by these
notes (though maybe somewhat differently), and they contain lots more examples
and pictures. We won’t however be doing much on “transversality”, which was a
substantial part of the fourth-year course. Conversely, we plan to say a bit about
vector bundles, which were not covered in the earlier course.

Books :

L. W. Tu, “An Introduction to Manifolds”, Universitext Springer-Verlag (2010).
QA613.T8.

J. M. Lee, “Introduction to Smooth Manifolds”, Graduate Texts in Mathematics,
Springer (2013). QA613.L3.
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F. Warner, “Foundations of differentiable manifolds and Lie groups”, Graduate
Texts in Mathematics, Springer (2010). QA614.3.W2.

W. Boothby, “An introduction to differentiable manifolds and Riemannian geom-
etry”, Academic Press (2003). QA614.3.B6.

Web pages :

The course has an official web page:
http://www2.warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/year3/ma3h5/
and an unofficial one:
http://homepages.warwick.ac.uk/∼masgak/manifolds/course.html
(which can be found via the link on my homepage).

Summary :

This course is about the theory of smooth manifolds, that is those equipped
with a differentiable structure. We will begin by discussing manifolds in euclidean
space, Rn, and will move on to an account of smooth manifolds in a more abstract
setting. We aim to cover topics such as differential forms and integration on man-
ifolds. We will briefly mention riemannian manifolds and Lie groups, which form
a major component of certain fourth-year courses.

Content :

1. Background material.
2. What is a manifold?
3. Definition of a manifold in euclidean space.
4. Immersions and submersions.
5. Tangents, normals, orientations.
6. Abstract manifolds.
7. Vector bundles.
8. Extending smooth functions.
9. Manifolds with boundary.
10. Differential forms and integration.
11. Exterior derivatives and Stokes’s Theorem.

1. Background material

In this section, we summarise a few facts we will be using. These should have
been covered in the prerequisite 2nd year units.
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Linear algebra

Unless otherwise stated, all vector spaces will be assumed real (defined over R)
and finite-dimensional.

We assume basic notions: bases, dimension, subspaces, linear maps, multilinear
maps etc.

Given vector spaces, E,F , we write E ≤ F to mean that E is a subspace of F .
Note that dimE ≤ dimF .

Given two vector spaces, E,F , the direct product E×F is also a vector space,
with addition and scalar multiplication defined pointwise. In fact, E and F are
often respectively identified with the subspaces E × {0} and {0} × F , of E × F .
Note that dim(E × F ) = dimE + dimF .

We say that a vector space V is a direct sum of subspaces, E and F , if each
element of V can be written uniquely in the form x + y with x ∈ E and y ∈ F .
(That is, E,F are complementary subspaces of V .) In this case, one often writes
V = E ⊕ F . Note that the map [(x, y) 7→ x + y] : E × F −→ E ⊕ F is an
isomorphism.

In the context of vector spaces, the terms “direct product” and “direct sum”
are often regarded as synonymous. Here we will generally use the former notation
and terminology for the domain of bilinear maps. We use the latter notation when
we want to think a vectors space together with two complementary subspaces.

We write L(E,F ) for the vector space of all linear maps from E to F . Choosing
bases for E and F , we can identify L(E,F ) with the space of m × n matrices,
where m = dimE, n = dimF . Note that dimL(E,F ) = mn.

Write E∗ = L(E,R) for the dual space to E. Given x ∈ E and f ∈ E∗ write
〈x, f〉 = f(x). (This is a bilinear form on E × E∗.) Given a basis e1, . . . , em, for
E, there is a dual basis f1, . . . , fn such that 〈ei, fj〉 = δij, where δij = 1 if i = j
and 0 if i 6= j. Note that there is a natural injective linear map, α, from E to
E∗∗ given by 〈f, α(x)〉 = 〈x, f〉 for all f ∈ E∗. Since dimE∗∗ = dimE∗ = dimE,
it follows that α is bijective, so we can naturally identify E with E∗∗ (hence
the term “dual”). (Note this is not true in general for infinite dimensional vector
spaces.) Of course, E and E∗ are also isomorphic as vector spaces, since they have
the same dimension. However, there is no natural isomorphism — it involves an
arbitrary choice. Whereas, the isomorphism between E and E∗∗ is canonical: the
map described above did not involve any arbitrary choices. Elements of the dual
space are sometimes referred to as linear functionals.

If E and F are vector spaces, then a multilinear map T : Ep −→ F is symmetric
if for all xi ∈ Ei, T (xπ(1), . . . , xπ(p)) = T (x1, . . . , xp) for any permutation π of the
arguments. It is alternating if p ≥ 1 and T (xπ(1), . . . , xπ(p)) = sig(π)T (x1, . . . , xp)
where sig(π) ∈ {−1, 1} is the signature of π. If F = R, we refer to symmetric and
alternating forms.
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Note that the dot product on E = Rn is an example of symmetric bilinear form.
Given V ⊆ Rn, we write V ⊥ = {y ∈ Rn | (∀x ∈ V )(x.y = 0)} for the orthogonal
subspace. Note that V ⊥⊥ = V and that Rn ∼= V ⊕ V ⊥.

More generally, an inner product on V is a symmetric bilinear form, [(x, y) 7→
〈x, y〉] such that 〈x, x〉 > 0 for all x 6= 0.

We will have more to say about alternating forms in Section 9.
By the standard basis of Rn, we mean {e1, e2, . . . , en}, where e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0) etc.
On the few occasions we talk about infinite dimensional vector spaces, they

will not be assumed to have any additional structure. (In particular, they are
not considered to be topological vector spaces, which you may have encountered
elsewhere).

Metric and topological spaces.

We will assume basic facts about metric and topological spaces: open and
closed sets, connectedness, open covers, compactness, local compactness, contin-
uous maps, homeomorphisms, proper maps, second countable spaces.

We recall that a continuous proper injective map from a compact space to
hausdorff space is a homeomorphism onto its range. From this, one can see also
that a continuous proper map from a locally compact space to a hausdorff space
is a homeomorphism onto its range.

Given a metric space (X, d), x ∈ X and r ≥ 0, we will write N(x; r) = {y ∈
X | d(x, y) < r} and B(x; r) = {y ∈ X | d(x, y) ≤ r} respectively for the open
and closed r-balls about x.

Differentiation

We say that a map f : Rm −→ Rn is smooth if it has derivatives of all orders.
If x ∈ Rm, the derivative of f at x is a linear map dxf : Rm −→ Rn. It is

represented by the m×n “jacobian” matrix (∂fi/∂xj)ij of partial derivatives. We
will denote the jacobian by Jf (x).

Theorem 1.1. If dxf has rank m, then f is locally injective at p. (That is, there
is an open set, U ⊆ Rn with p ∈ U such that f |U is injective.)

(Clearly, the hypotheses imply that m ≤ n.)

Theorem 1.2. (Inverse function theorem) If dxf : Rn −→ Rn has rank n (i.e.
is invertible) then there are open subsets U, V ⊆ Rn with p ∈ U such that f |U is
bijective, and (f |U)−1 : V −→ U is also smooth.

A diffeomorphism between two open sets, U, V ⊆ Rn is a smooth bijection
f : U −→ V , whose inverse, f−1 : V −→ U is also smooth.
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A proof of Theorem 1.2 can be found in MA225. With some work, Theorem
1.1 can be deduced from Theorem 1.2.

We will also need some basic facts about integration in Rm. Let f : Rm −→ R
be a smooth function. (In fact, any continuous function would do for the present
discussion.) The support of f , denoted supp f , is the closure of {x ∈ Rm | f(x) 6=
0}. We say that f is compactly supported if supp f is compact. In this case, we
can define the integral

∫
Rm f(x) dx. If φ : U −→ V is an orientation-preserving

diffeomorphism between open sets, U, V ⊆ Rm, with supp f ⊆ V , then f ◦ φ is
also compactly supported, and

∫
Rm f ◦ φ(x) dx =

∫
Rm f(x)Jφ(x) dx.

2. What is a manifold?

We first discuss informally what we mean by a manifold, and give some examples
of things which are and are not manifolds. We will give formal definitions in
Section 3. One can then retrospectively verify the statements made here.

Basically an “m-manifold” (or “manifold of dimension m”) is something which
looks locally like m-dimensional space Rm. That is, one has a local system of
real coordinates — one for each of the m dimensions. This course will be almost
entirely about “smooth manifolds”, where they come with some differentiable
structure. (Though one can also talk more generally about “topological mani-
folds”, where there is no such structure a-priori.)

For the first few Sections (3 to 5) we will deal only with manifolds which are
subsets of Rn for some n, though we later deal with manifolds defined in a more
abstract way (Section 6 onwards).

Here are some examples, and non-examples, which will motivate the formal
definition we give in Section 3:

(E1) Rn is an n-manifold. So is any non-empty open subset of Rn. Note that,
we do not in general assume that a manifold is connected. It may be debatable
whether or not the empty set is a manifold, though we will adopt the convention
that manifolds are non-empty.

(E2) We allow n = 0, so a point is a 0-manifold. Indeed any non-empty finite
subset of any Rn is a 0-manifold.

(E3) Any m-dimensional (vector) subspace of Rn is an m-manifold. Note that
necessarily m ≤ n. In fact (we will see) any manifold in Rn has dimension at
most n.

(E4) The unit circle, S1 = {(x1, x2) ∈ R2 | x21 + x22 = 1} is a 1-manifold. We have
nice smooth “local coordinates” θ 7→ (cos θ, sin θ), where θ ∈ R, which means that
it locally “looks like” R = R1.
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(E5) The unit sphere, S2 = {(x1, x2, x3) ∈ R2 | x21 + x22 + x23 = 1} is a 2-manifold.
(A 2-manifold is often called a “surface”.)

There are many ways to put local coordinates on S2, One is stereographic pro-
jection. Let pN = (0, 0, 1) and pS = (0, 0,−1) be the “north” and “south poles”.
Define φN : S2 \ {pN} −→ R3 by the formula:

φN(x1, x2, x3) =

(
x1

1− x3
,

x2
1− x3

)
.

This is stereographic projection from the north pole to the equatorial plane, i.e.
R2 is identified with R2 × {0} ⊆ R3. Similarly, define φS : S2 \ {pS} −→ R2 by:

φS(x1, x2, x3) =

(
x1

1 + x3
,

x2
1 + x3

)
.

Together these two maps give local smooth coordinates on the whole of S2.
There are lots of other ways of doing this. It’s what cartography is all about,

and you can read about the many different types of projections used in atlases.

(E6) The torus Ta,b in R3 is a 2-manifold. Let a > b > 0. Let Ca = {(x1, x2, 0) ∈
R3 | x21 + x22 = a}. (This is a 1-manifold in R3.) Let Ta,b be the set of points
euclidean distance b, from Ca. In other words, Ta,b can be defined as the set of
(x1, x2, x3) ∈ R3 satisfying:(

x1 −
ax1√
x21 + x22

)2

+

(
x2 −

ax2√
x21 + x22

)2

+ x23 = b2.

Note that Ta,b has local coordinates (θ, φ) 7→ ((a+b cosφ) cos θ, (a+b cosφ) sin θ, b sinφ).
As such it is a 2-manifold.

Note that we can alter a and b (subject to a > b > 0). We get different tori in
R2. But they all look similar intrinsically. It’s not hard to see that they are all
homeomorphic (exercise). In fact, we will see that they all have essentially the
same smooth structure (i.e. they are “diffeomorphic”). This will be explained in
Section 3.

Of course, these homeomorphisms do not respect distance. The metric is not
intrinsically part of the structure of a manifold. It is an additional structure,
which may, or may not, be relevant, depending on what one wants to use mani-
folds for.

(E7) Let T = {(x1, x2, x3, x4) ∈ R4 | x21 +x22 = x23 +x24 = 1}. This is a 2-manifold.
In fact, it is also a “torus”: it is “diffeomorphic” to Ta,b in example (E6). We
can think of it as a direct product of two circles, S1 × S1 ⊆ R2 × R2 ≡ R4 from
example (E3). (In general, direct products of manifolds are manifolds.) Although
we can embed the torus in R3 (that is, describe it as a subset of R3), it seems to
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be happier in R4.

(E8) Given n ∈ Z, let Bn = {(cos θ, sin θ, r cos(nθ/2), r sin(nθ/2)) | θ, r ∈ R}.
Then Bn ⊆ R4 is a 2-manifold. Note that the projection [(x1, x2, x3, x4) 7→
(x1, x2)] maps Bn onto a circle in R2. The preimage of any point in Bn is a
straight line in R4. As we go once around this circle, this line spins around n/2
times. So, for example, B0 is a cylinder, and B1 is “Möbius band”.

(E9) Now for some non-examples. The union of the coordinate axesX = {(x1, x2) ∈
R2 | x1 = 0 or x2 = 0} is not a manifold (of any dimension). Things go wrong
at the origin (0, 0). Even though it is in some sense “1-dimensional” it does not
have local coordinates there.

However, X \ {(0, 0)} is a (disconnected) 1-manifold.

(E10) Similarly, the cone C = {(x1, x2, x3) ∈ R3 | x21 + x22 − x23 = 0} is not a
manifold: it again goes awry at the origin.

However, C \ {(0, 0, 0)} is a 2-manifold.

(E11) Of course, we don’t really have to search so hard for non-examples. If you
pick some “random” subset of Rn, then it is unlikely to be a manifold.

(E12) What about the square: Q = ({−1, 1}× [−1, 1])∪ ([−1, 1]×{−1, 1}) ⊆ R2?
This is homeomorphic to S1: by radial projection from the origin (exercise).
It is a topological 1-manifold, but not a smooth manifold (so not a “manifold”

for us). One cannot put smooth local coordinates near the corners.

(E13) Things get worse, or more interesting: the Koch snowflake curve in R2 is
also homeomorphic to S1, hence also a topological 1-manifold, but does not have
smooth coordinates anywhere.

(E14) Alexander’s horned sphere in R3: homeomorphic to S2, but not smooth.

3. Definition of a manifold in euclidean space

Our aim in this section is to give a formal definition of a manifold, M , as a
subset of Rn. In this context, Rn is referred to as the “ambient space”. It is worth
taking note of when the ambient space features in the discussions of the next few
sections (3 to 5) — many of the arguments make little or no reference to it. For
many purposes, it can be dispensed with altogether, as we will see in Section 6.

We begin by generalising the notions of smooth maps and diffeomorphisms to
arbitrary subsets of Rn. Note that these are already defined for open subsets.
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Definition. Let X ⊆ Rm. A map f : X −→ Rn is smooth if, for all x ∈ X,
there is an open set, U 3 x, in Rm and a smooth map (in the original sense),
F : U −→ Rn such that F |(U ∩X) = f |(U ∩X). We also speak of f as a smooth
map from X to f(X) ⊆ Rn. If X ⊆ Rm and Y ⊆ Rn, then a diffeomorphism
between X and Y is a smooth map from X to Y which has a smooth inverse.

It is easily checked that, if X is open, then this notion coincides with the
original, so there will be no ambiguity. The following is also an easy exercise
(given that it holds in the original sense).

Lemma 3.1. The composition of smooth maps is smooth.

Clearly smooth maps are continuous, and diffeomorphims are also homeomor-
phisms.

Examples.

(1) In the case of stereographic projection of S2 described in Example (E5) in
Section 2, the maps φN and φS are both smooth: one can use the same formulae
to extend them to smooth maps defined on R3 \ {pN} and R3 \ {pS} respectively.
In fact, they are both diffeomorphisms to R2: one can check the inverse maps are
smooth by writing down explicit formulae for them (exercise).

(2) There is a diffeomorphism from the torus T ⊆ R4 defined by Example (E7), and
Ta,b ⊆ R3 as defined in Example (E6). One can check that the map (x1, x2, x3, x4) 7→
((a+ bx3)x1, (a+ bx3)x2, bx4) from T to Ta,b is a diffeomorphism: it extends to a
smooth map defined on R4 by the same formula. There is also a smooth inverse
which can be extended to an open set contain Ta,b (exercise: write down a formula
for this).

Definition. Let M ⊆ Rn. A smooth chart on M consists a subset U ⊆M , open
in M , an open set, V ⊆ Rm and a diffeomorphism φ : U −→ V .
A smooth atlas for M is a collection of charts whose union covers M .
We say that M is a smooth manifold of dimension m (or a smooth m-manifold)
if it admits a smooth atlas with charts mapping to Rm. (In other words we can
find a smooth chart defined on a neighbourhood of any point of M .)

Note that we don’t in general assume U, V to be connected (though they will
be in the examples described below).

It is easily seen that m ≤ n. (See also the discussion of tangent spaces below:
Lemma 3.3). Also (exercise) the dimension, m, is determined by M .

Remark: The notation Mm is sometimes used to denote an m-manifold — to
remind us that it has dimension m. Of course, this is not the direct product
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M × · · · × M . For example, we have already used S2 to denote the 2-sphere,
which is quite standard notation.

One can go through the examples described in Section 2, and verify that they
are indeed smooth manifolds.

For example:

(1) In Example (E5), S2 is a manifold: there is an atlas consisting of just two
charts: φN : S2 \ {pN} −→ R2 and φS : S2 \ {pS} −→ R2.

(2) Indeed one can define stereographic projection of the n-sphere, Sn = {x ∈
Rn+1 | ||x|| = 1} by the same geometric construction. It is given by similar for-
mulae. Again we have two charts from the complements of the north and south
poles (the points with final cordinate equal to 1 and −1). This shows that Sn

is an n-manifold. This gives one way of seeing that S1 ⊆ R2 is indeed a 1-manifold.

(3) If M ⊆ Rp and N ⊆ Rq are respectively an m-manifold and an n-manifold,
then M × N ⊆ Rp+q is an (m + n)-manifold (exercise). In particular, T ⊆ R4

(Example (E7)) is a 2-manifold.

(4) If U ⊆ Rm is open and f : U −→ Rn is smooth, then the graph of f , that is
M = {(x, f(x)) | x ∈ U} ⊆ Rm+n is an m-manifold. There is an atlas consisting
a single chart which is projection to U .

(5) We can identify the set, M(n,R), of all n × n real matrices with Rn2
, just

taking the entries as coordinates. The set, GL(n,R), be set of invertible n × n
matrices is then an open subset of Rn2

(since the determinant map is continu-
ous). Note that GL(n,R) is a group under multiplication of matrices. Moreover,
the inversion map [A 7→ A−1] : GL(n,R) −→ GL(n,R) and the product map
[(A,B) 7→ AB] : GL(n,R) × GL(n,R) −→ GL(n,R) are both smooth. With
this structure GL(n,R) is an example of a “Lie group”, about which we will say
more later. A similar example is the group of upper triangular matrices with 1s
on the diagonal (an open subset of R(n2−n)/2). Another, is the group of invertible

complex matrices, GL(n,C), identified as an open subset of Cn2 ≡ R2n2
. We will

see more later.

Exercise : If M ⊆ Rn is an m-manifold, and N ⊆ M is open in M , then N is
also an m-manifold.

Definition. We say two manifolds are diffeomorphic if there is a diffeomorphism
between them.

One sees easily that this is an equivalence relation on the class of manifolds.
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Examples :

(1) For example, the torus T ⊆ R4 and Ta,b ⊆ R3 are diffeomorphic, as we stated
informally in Section 2.

(2) In example (E9) of Section 2, the manifolds Bn and Bm are diffeomorphic if
m− n is even. (The converse is also true, as we will see later.)

Exercise :
Note that the definition of diffeomorphic could also be applied to any subsets
of euclidean space (though it is rarely applied in this generality). Suppose that
M ⊆ Rp and N ⊆ Rq are diffeomorphic, then M is an m-manifold if and only if
N is an m-manifold.
Together with earlier remarks, this implies that the torus, Ta,b ⊆ R3, is a 2-
manifold in R3. Exercise: give an explicit description of an atlas.

Remark : We can define the notion of a topological manifold similarly by using
a “topological atlas” consisting of “topological charts”. A “topological chart” can
be defined by replacing the word “diffeomorphism” by “homeomorphism”, so that
there is no reference at all to differentiation.

We saw some examples of topological manifolds in Section 2 ((E12)–(E14)). In
fact, each of those topological manifolds was homeomorphic to a smooth manifold
(circle or sphere in those cases). It turns out that if n ≤ 3, then any topological
n-manifold is homeomorphic to a smooth manifold, but this is not in general
true if n ≥ 4. Furthermore, if two smooth manifolds of dimension n ≤ 3 are
homeomorphic, they are also diffeomorphic. Again, this fails in higher dimensions.
We will say a bit more about this in Section 6.

In the meantime, all our manifolds will be assumed smooth, and so we generally
omit the adjective “smooth”, as this is implicitly understood.)

Suppose that φα : Uα −→ Vα and φβ : Uβ −→ Vβ are charts. (We will often use
α, β as indices for charts in an atlas.) We get a map

φβ ◦ φ−1α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ).

This is necessarily a diffeomorphism. A map of this sort is called a transition map.
(Note that Uα ∩ Uβ might be empty, but the empty map is a diffeomorphism, so
we are happy.)

As an example, consider again S2 with the stereographic projections. In this
case, we have a transition map R2 \ {(0, 0)} −→ R2 \ {(0, 0)} which one can check



MANIFOLDS MA3H5 11

is inversion in the unit circle: that is, it is given by the formula:

(x1, x2) 7→
(

x1
x21 + x22

,
x2

x21 + x22

)
which is clearly a diffeomorphism. (Here, the transition map is the same as its
inverse, though that is special to this case.)

Recall that if f : U −→ Rn is a smooth map defined on an open set U ⊆ Rm,
and x ∈ U , we have the derivative dxf : Rm −→ Rn, which is a linear map. Under
composition, this obeys the “chain rule”: dx(g ◦ f) = df(x)g ◦ dxf .

If I ⊆ R is an open interval, we define a smooth path to be a map γ : I −→ Rn.
We say that that γ is a smooth path in X ⊆ Rn if γ(I) ⊆ X. If t ∈ I, we write
γ′(t) = (dtγ)(1). This is the usual “tangent vector” to γ. In fact, we are now
ready to define tangents more generally.

Definition. Let M ⊆ Rn be an m-manifold, and let x ∈ M . The tangent space
TxM , of M at x is the space da(φ

−1)(Rm), where φ : U −→ Rm is a chart defined
on an open neighbourhood, U , of x in M , and a = φ(x).

Certainly such a chart exists, by hypothesis. Also, since da(φ
−1) is a linear

map, TxM is a subspace of Rm. However, we need to check that it doesn’t depend
on the choice of the chart φ.

For this, we will use the following equivalent, more intuitive, formulation of
tangent space.

Lemma 3.2. TxM is the set of vectors, v ∈ Rn, of the form v = γ′(0) for some
smooth path γ : I −→M with 0 ∈ I and with x = γ(0).

Here, TxM is interpreted, for the moment, as being defined with respect to a
given chart, φ, we have chosen.

Proof. Suppose v = γ′(0) has this form. Restricting the domain, we can assume
that γ(I) ⊆ U . Let σ = φ ◦ γ : I −→ Rm. This is curve in V ⊆ Rm. By the chain
rule, we get v = γ′(0) = (φ−1 ◦ σ)′(0) = da(φ

−1)(σ′(0)) ∈ TxM .
Conversely, if v ∈ TxM . Write v = da(φ

−1)(w) where w ∈ Rm. Let σ : I −→ V
be a curve with σ(0) = a = φ(x) and with σ′(0) = w (e.g. [t 7→ a + tw]).
Let γ = φ−1 ◦ σ : I −→ U ⊆ M . Now v = da(φ

−1)(w) = da(φ
−1)(σ′(0)) =

(φ−1 ◦ σ)′(0) = γ′(0). �

Note that this formulation makes no reference to charts, and so we see ret-
rospectively, that it is independent of φ. Hence, our original definition did not
depend on φ.

(Of course, we could instead have defined the tangent space using curves in M .
But then, it would not be immediately clear that it has to be a subspace of Rn.)

In fact we have:

Lemma 3.3. dimTxM = m.
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Proof. Let Φ be any smooth extension of φ in a neighbourhood of x in Rm. Then
Φ ◦ φ−1 is the identity on a neighbourhood of a in Rm. Thus, dxΦ ◦ da(φ−1) is
the identity map on Rm. It follows that da(φ

−1) is injective, so its image has
dimension m. �

Note, in particular, that if M ⊆ Rn, then m ≤ n.

Examples

(1) The tangent space of any vector subspace of Rn is the space itself. In partic-
ular, Tx(Rn) = Rn for all x ∈ Rn.

(2) The tangent space to x ∈ Sn ⊆ Rn+1 is {y ∈ Rn+1 | x.y = 0}.

(3) Suppose that M = f−1(0), where f : Rn −→ R is smooth. Suppose that M
is a manifold, and that x ∈ M . Suppose that dxf : Rn −→ R has rank 1. Then
TxM = ker dxf .

Suppose now that f : M −→ N is a smooth map between manifolds, M ⊆ Rp

and N ⊆ Rq. We aim to define a linear map dxf : TxM −→ Tf(x)N .
One way to do this would be to choose a smooth extension, F , of f in a

neighbourhood of x in Rp, and set dxf = dxF |TxM . Alternatively, given v ∈
TxM , choose any smooth curve γ in M with γ(0) = v, γ′(0) = v, and then set
dxf(v) = (f ◦ γ)′(0). Of course, both involve making a choice.

In fact, these two definitions coincide, since dxF (γ′(0)) = (F ◦ γ)′(0) = (f ◦
γ)′(0). It follows retrospectively that the definition is independent of the choice
of extension F (in the first formulation) and also independent of the choice of γ
(in the second formulation). In other words, we have a well defined map.

Definition. The derivative of f at x is the linear map, dxf : TxM −→ Tf(x)N
defined above.

Example.

If V ⊆ Rp and W ⊆ Rq are vector subspaces and L : V −→ W is a linear map,
then dxL = L for all x ∈ V .

The following chain rule is now a simple exercise given the usual chain rule in
Rn:

Lemma 3.4. If M , N , P are smooth manifolds, and f : M −→ N and g : N −→
P are smooth maps, then dx(g ◦ f) = df(x)g ◦ dxf .

Note that we can now view a chart φ : U −→ Rm as a diffeomorphism between
manifolds U ⊆ M and V ⊆ Rm. If x ∈ U , then TxU = TxM and we get a deriv-
ative map dxφ : TxM −→ Tx(Rm) = Rm, as we have just defined for manifolds.
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This is just the inverse of the map dφ(x)(φ
−1) used in defining TxM in the first

place. In particular, dxφ is an isomorphism from TxM to Rm. The above is just
a matter of formally checking the definitions.

Germs.

The following, somewhat formal, discussion will be relevant to defining the
tangent space to an abstract manifold is Section 6.

One can think of a tangent vector as giving a means of differentiating smooth
functions on M . This can be expressed as follows.

Let C∞(M) be the set of all smooth functions, f : M −→ R. Note that this is
naturally an (infinite dimensional) vector space over R with addition and scalar
multiplication defined pointwise in the obvious way.

Given x ∈ M , write C∞x (M) for the set of “local” smooth functions at x, i.e.
smooth functions, f : U −→ R, defined on some open set U containing x. In
other words, C∞x (M) is the union of all C∞(U) as U ranges over all open sets
containing x. (We think of U as being “small”, since we can always restrict any
such function to an even smaller open set.)

Unfortunately, C∞x (M) is not a vector space: it does not make sense to add
two functions defined on different domains. To fix this, we define a relation, ∼,
on C∞x (M) by deeming f : U −→ R to be related to g : V −→ R if there is an
open set, W ⊆ U ∩ V , with x ∈ W , such that f |W = g|W . It is readily checked
that ∼ is an equivalence relation on C∞x (M). We write Gx(M) = C∞x (M)/∼.

Definition. A (smooth) germ at x is an element of Gx(M).

We can think of a germ as a smooth function defined on an arbitrarily small
neighbourhood of x. We can add two germs: just take representatives in C∞x (M),
and add them on the intersection of their domains. It is easily checked that this
is well defined. We can also define scalar multiplication by a fixed real number in
the obvious way. This gives Gx(M) the structure of a vector space, which is what
we were aiming for.

Exercise : Write these definitions more formally, and check that Gx(M) is indeed
a vector space with respect to these operations.

Note that any smooth function on M determines a germ at any x ∈ M . We
will see later (see Corollary 8.3) that every germ at x arises in this way (from a
smooth function defined on all of M), but we don’t need to worry about that for
now.

Now, given any v ∈ TxM and any f ∈ Gx(M), choose any smooth curve
γ : I −→ M with γ(0) = x and γ′(0) = v. Write v.f = (f ◦ γ)′(0). More
precisely, take a representative f : U −→ R, of the germ in C∞x (M), and take the
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derivative in sense already defined. We have seen that this is well defined inde-
pendently of the choice of γ. It is also independent of the choice of representative
of the germ. The map [f 7→ v.f ] is a linear functional on Gx(M) (that is, a linear
map from Gx(M) to R, in other words, an element of the dual space). Note that
it also satisfies the product (or “Leibniz”) rule:

(L): If f, g ∈ Gx(M), then v.(fg) = f(x)(v.g) + g(x)(v.f).

Here, of course, f(x) and g(x) are just real numbers.
(One can check that this is equivalent to the usual product rule for Rm, on

taking co-ordinates.)
We will see later that this gives a way of making sense of tangents in “abstract

manifolds” in Section 6.

Notation : The following informal notation is often used to denote tangent
vectors to a manifold. Suppose that U −→ V ⊆ Rm is a chart of M . Given x ∈ U ,
we have an isomorphism, dxφ : TxM −→ Rm. Let e1, . . . , em be the standard basis

of m. We can denote the tangent vector (dxφ)−1ei, by ∂
∂xi

∣∣∣
x
∈ TxM , or simply by

∂
∂xi

, when the point x ∈ M is understood. Thus, a general tangent vector at x

is a linear combination,
∑

i λi
∂
∂xi

, where λi ∈ R. In this notation, the map φ is

implicitly understood. Note that ∂
∂xi

can be thought of as differentiating functions

in the xi coordinate direction. That is, if f : U −→ R is a smooth (locally defined)
function, then

∂

∂xi
.f =

∂(f ◦ φ−1)
∂xi

in the usual sense. This is often abbreviated to ∂f
∂xi

, suppressing mention of φ. In
other words, although we are really in M , we are pretending we are in Rm.

If we have an atlas, {φα : Uα −→ Vα}α∈A for M , then the notation, ∂
∂xαi

is

often used for the vector ∂
∂xi

, with respect to the chart, φα (that is, formally
∂
∂xαi

= (dxφ)−1ei). In this notation, if x ∈ Uα ∩ Uβ, then we have

∂

∂xαi
=

m∑
j=1

∂xβj
∂xαi

∂

∂xβj
.

In the expression
∂xβj
∂xαj

, xβj denotes the j’th coordinate of the image under φβ, which

we can think of as a function on U .
More formally,

∂xβj
∂xαi

=
∂

∂xi
(φβ ◦ φ−1α ).
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In other words

(
∂xβj
∂xαi

)
ji

is the jacobian of the transition function, φβ◦φ−1α evaluated

at φβ(x). This can be seen as an expression of the chain rule. Applied to a smooth
function, f , on M we get the usual formula

∂f

∂xαi
=
∑
j

∂xβj
∂xαi

∂f

∂xβj
.

Example : The map, [(r, θ) 7→ (r cos θ, r sin θ)] : (0,∞) × (0, 2π) −→ R2 is a
diffeomorphism from (0,∞) × (0, 2π) to an open subset, U ⊆ R. The inverse,
ψ : U −→ R2 is a chart. The coordinate functions are r, θ (“polar coordinates).
In the above notation (suppressing mention of ψ), we have vectors ∂

∂r
and ∂

∂θ
on

U , given by
∂

∂r
= (cos θ)

∂

∂x
+ (sin θ)

∂

∂y

and
∂

∂θ
= (−r sin θ)

∂

∂x
+ (r cos θ)

∂

∂y
.

We finish this section with an observation which will be useful later.
Note that it is an almost immediate consequence of the definition that any man-

ifold is locally path connected. That is, every point, x, of M has a neighbourhood
W , such that if y ∈ M there is a path in W from x to y, (i.e. a continuous map
γ : [0, 1] −→ W , with γ(0) = x and γ(1) = y). (Let φ : U −→ V be a chart with
x ∈ U . Choose any r > 0 so that N(φx; r) ⊆ V , and set W = φ−1(N(φx; r) ⊆ U .)
From this we get:

Lemma 3.5. Any connected manifold is path connected.

Proof. Fix any x ∈ M and let P ⊆ M be the set of points connected to x by a
path in M . Check that P is both open and closed, so P = M . �

In fact, one can show that any to points of M can be connected by a smooth
path. This follows by a similar argument, however there is a technical point. We
need to know that if we concatenate two smooth paths, we can smooth them
out near the join to make a single smooth path. We leave this as a somewhat
technical exercise for those interested. (One way is to use “bump functions” which
we discuss in Section 8.)

4. Immersions and submersions

We begin with a formulation of the Inverse Function Theorem which works for
manifolds. This amounts mostly to reinterpreting what we already knew in terms
of our new definitions.
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Let M ⊆ Rp and N ⊆ Rq be manifolds. Suppose f : M −→ N is smooth, and
x ∈ M . Write y = f(x). Let φ1 : U1 −→ V1 and φ2 : U2 −→ V2 be charts in M
and N respectively, with x ∈ U1 and y ∈ U2. After replacing U1 with U1 ∩ f−1U2

and restricting φ1 to the new domain, we can assume that fU1 ⊆ U2. We now
have a map

ψ = φ2 ◦ f ◦ φ−11 : V1 −→ V2.

Let a = φ1x. By the chain rule, we get daψ = P ◦ dxf ◦Q−1, where Q = dxφ1

and P = dyφ2 are both linear isomorphisms. In other words, daψ and dxf are
similar, so in particular have the same rank.

Suppose, for the moment, that dimM = dimN = n and that dxf has rank
n: that is, it is invertible. The same is true of daψ, and so by the usual Inverse
Function Theorem (as given in Section 1), there are open sets V ′1 ⊆ V1 and V ′2 ⊆ V2
with a ∈ V ′1 , such so that ψ|V ′1 is a diffeomorphism onto V ′2 . Now let U ′1 = φ−11 V ′1
and U ′2 = φ−12 V ′2 . We see that f |U ′1 : U ′1 −→ U ′2 is a diffeomorphism.

Replacing U1 and U2 by these smaller open sets, we have now shown:

Theorem 4.1. Suppose M,N are n-manifolds, and that f : M −→ N is smooth.
Suppose x ∈M and that dxf is invertible. Then there are open sets U1 ⊆M and
U2 ⊆ N with x ∈ U1 such that f |U1 is a diffeomorphism to U2.

Note that we can assume that U1 and U2 are the domains of charts φ1 : U1 −→
V1 and φ2 : U2 −→ V2. We have seen that ψ : V1 −→ V2 is a diffeomorphism, and
it follows that ψ ◦ φ1 : U1 −→ V2 is also a chart. Replacing φ1 by this new chart,
we get the following addendum to Theorem 4.1.

Theorem 4.2. With the same hypotheses as Theorem 4.1, we can find charts
φ1 : U1 −→ V ⊆ Rn and φ2 : U2 −→ V ⊆ Rn around x and f(x) respectively, such
that φ1 = φ2 ◦ f .

In other words, with respect to suitable local coordinates, f corresponds to the
identity on Rn.

Example. The map [t 7→ (cos t, sin t)] : R −→ S1, or indeed any covering space
(for people who know about covering spaces).

We want to generalise the above to the case where M and N have different
dimensions.

First we need some linear algebra.
Let V,W be vector spaces, and set m = dimV , n = dimW .

Definition. We say that a linear map, L : V −→ W , has maximal rank if
rankL = min{m,n}.

There are two cases. If m ≤ n, then L is injective, and if m ≥ n, then L is
surjective. (Of course, these cases overlap if n = m and L is invertible.)



MANIFOLDS MA3H5 17

The simplest examples are respectively the standard immersion, ι, of Rm in Rn,
given by

ι(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

and the standard submersion, σ, of Rm to Rn given by

σ(x1, . . . , xm) = (x1, . . . , xn).

(We will explain the terms “immersion” and “submersion” later.) While these
two cases are qualitatively quite different, we will deal with them in parallel, since
many of the results have similar formulations.

The following is a simple exercise in linear algebra:

Lemma 4.3. Let L : V −→ W be a linear map of maximal rank. Then there are
invertible linear maps P : V −→ Rm and Q : W −→ Rn such that Q ◦ L ◦ P−1 is
a standard immersion or submersion.

One can prove this using bases. Alternatively, it can be reinterpreted as a state-
ment about matrices, which can be proven using either column or row operations.
From the latter point of view, the two cases can be viewed as the same result —
swapping rows and columns.

We want a variation on this for smooth maps. We state it first for Rm and Rn,
which can be viewed as an elaboration on the Inverse Function Theorem. We will
user 0p to denote the origin in Rp.

Proposition 4.4. Suppose that U ⊆ Rm is open and that f : U −→ Rn is
a smooth map. Suppose that c ∈ U and that dcf has maximal rank (that is,
min{m,n}). Then there are open sets U1, V1 ⊆ Rm and U2, V2 ⊆ Rn, with c ∈
U1 ⊆ U , and f(U1) ⊆ U2, together with diffeomorphisms, θ1 : U1 −→ V1 and
θ2 : U2 −→ V2, such that θ1c = 0m, and θ2 ◦ f ◦ θ−11 : V1 −→ V2 is the restriction
of the standard immersion or submersion of Rm to Rn.

Of course, this is really two results depending on whether m ≤ n or m ≥ n.
They intersect in the case where m = n, where Proposition 4.4 just becomes
a formulation the Inverse Function Theorem. We will deal with the two cases
separately. (In fact, we will see that θ1 or θ2 can be taken to be a linear map in
the respective cases.)

To simplify the argument, we note that there is no loss in assuming that dcf is
just the standard immersion or submersion. This follows since by Lemma 4.3, we
can find linear isomorphisms, P,Q of Rn and Rn respectively, so that P ◦dcf ◦Q−1
is standard. Using the chain rule, we can then just replace f by P ◦f ◦Q−1. After
postcomposing by a translation of Rm, we can also assume that c = 0m and
f(c) = 0n.

Proof. We split into the two cases:
(1) m ≤ n. Identify Rn ≡ Rm × Rn−m. Define a map F : U × Rn−m −→ Rn

by F (x) = f(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn)). Note that d0nF is now the
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identity on Rn. Therefore, by the Inverse Function Theorem, there are open sets,
U2, V2 ⊆ Rm both containing the origin, and a diffeomorphism θ2 : U2 −→ V2,
which is the inverse of F |V2. Let U1 = U ∩ V2. Now if y ∈ U1, we have θ2(f(y)) =
θ2(f(y) + 0n) = θ2(F (y, 0n−m)) = (y, 0n−m)). The result now follows by setting θ1
to be the identity restricted to U1.
(2) m ≥ n. Identify Rm ≡ Rn × Rm−n. Define a map G : U −→ Rm by
G(x) = (f(x), π(x)), where π(x1, . . . , xn) = (xn+1, . . . , xm). Note that d0G is the
identity on Rm. By the Inverse Function Theorem, we have open sets U1, V1 ⊆ Rm,
both containing 0, such that G|U1 : U1 −→ U2 is a diffeomorphism. We now set
θ1 = G|U1, U2 = fU1, and θ2 to be the identity on U2. �

We can translate this back into a statement about manifolds:

Theorem 4.5. Suppose that M,N are manifolds, and that f : M −→ N is
smooth. Suppose that c ∈ M , and that dcf has maximal rank. Then there are
charts, φ1 : U1 −→ V1 and φ2 : U2 −→ V2 around c and f(c) respectively, with
φ1x = 0, such that φ2 ◦ f ◦ φ−11 |V1 : V1 −→ V2 is the restriction of a standard
immersion or submersion.

This uses Proposition 4.4 in the same way that Theorem 4.2 used the Inverse
Function Theorem. The argument is essentially the same, so we leave it as an
exercise.

Definition. We say that a map f : M −→ N is an immersion if for all x ∈ M ,
dxf is injective. We say that it is a submersion if for all x ∈M , dxf is surjective.

Clearly, these imply, respectively, that dimM ≤ dimN , and dimM ≥ dimN .
Note that the composition of immersions is an immersion and a composition of
submersions is a submersion.

Note that an immediate consequence of Theorem 4.5 is that an immersion is
locally injective: that is, for all x ∈M , there is an open set, U , containing x such
that f |U is injective. Similarly, a submersion is open, that is fU is open for any
open U ⊆M .

Examples. Lots of familiar curves in the plane, such as the lemniscate (“figure
of eight”), are examples of immersions. Provided they don’t have cusps — such
as the cuspidal cubic.

The familiar picture of the Klein bottle drawn in 3-space is an example of a
2-manifold immersed in R3. The “Boy surface” in an immersion of the projective
plane into R3.

Definition. A smooth map, f : M −→ N between manifolds is an embedding if
it is a diffeomorphsim onto its range. We refer to the range, f(M), of such a map
as a submanifold of N .
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Clearly any embedding is an injective immersion, though the converse need not
be true. A counterexample is the injective map of [0, 1) to the plane whose image
is a “figure of six”.

Note that if M ⊆ Rp is a manifold in Rp (according to our original definition
of such), then M is a submanifold of Rp, according to the definition we have just
given.

Recall that a map (between topological spaces) is proper if the preimage of any
compact set is compact.

Lemma 4.6. Any proper injective immersion is an embedding.

Proof. This is an immediate consequence of the fact (mentioned in Section 1, that
a continuous proper injective map between locally compact spaces is a homeo-
morphism onto its range. �

We refer to the image of a proper embedding as a proper submanifold.
Note this is the same as being closed in Rp (Exercise).

Exercise : Suppose that N,N ′ are manifolds, and that M ⊆ N and M ′ ⊆ N ′

are submanifolds. Suppose that f : N −→ N ′ is smooth, with f(M) ⊆M ′. Then
f |M : M −→ M ′ is smooth (with respect to the intrinsic smooth structures). If
f is a diffeomorphism, and f(M) = M ′, then f |M ′ is a diffeomorphism from M
to M ′.

Definition. Let f : M −→ N be a smooth map between manifolds. We say that
x ∈ M is a regular point if dxf is surjective, and a critical point otherwise. A
point y ∈ N is a regular value if each point of f−1(y) is a regular point, otherwise
it is a critical value.

In other words, a critical value is the image of a critical point. Note that any
point of N \ f(M) has empty preimage, and is therefore a regular value.

Theorem 4.7. If f : M −→ N is smooth, and y ∈ f(M) ⊆ N is a regular value,
then f−1(y) is a proper submanifold of M of dimension m− n.

Since f is continuous, f−1(y), is closed, so it is a proper submanifold.
The fact that we insist that manifolds are non-empty, explains why we disallow

y ∈M \ f(N), in this statement. Note that we can assume that dimM ≤ dimN
(otherwise, there is no regular point, and the statement becomes vacuous).

Proof. Let x ∈ f−1(y). Choose charts as given by Theorem 4.5. Then f−1(y)∩U1

is the set of points in U1 with first m coordinates all equal to 0. Let π : Rn −→
Rm−n be the projection to the final m− n coordinates. Let U = f−1(y)∩U1, and
set φ = π ◦ φ1 : U −→ Rm−n. The x ∈ U , and φ : U −→ Rm−n is a chart for
f−1(y). �

We also note:
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Lemma 4.8. With the hypotheses of Theorem 4.7, we have Tx(f
−1(y)) = ker dxf .

Proof. By Lemma 3.2 any tangent vector in Tx(f
−1(y)) has the form γ′(0) for a

smooth curve, γ : I −→ f−1(y), where γ(0) = x. Now, f ◦ γ is constant, so
dxf(γ′(0)) = (f ◦ γ)′(0) = 0, so γ′(0) ∈ ker dxf . This shows that Tx(f

−1(y)) ⊆
ker dxf . But dimTx(f

−1(y)) = m − n = dim(ker dxf), so Tx(f
−1(y)) = ker dxf .

�

Examples

(1) Define f : R3 −→ R by f(x1, x2, x3) = x21 + x22 + x23. The only critical point
is (0, 0, 0), so the only critical value is 0. Also, f−1(t) is non-empty precisely if
t ≥ 0. Thus, f−1(t) is a manifold if t > 0 (the sphere of radius

√
t).

(2) Similarly, Define f : R3 −→ R by f(x1, x2, x3) = x21 + x22 − x23. Again, the
only critcal point is (0, 0, 0), so the only critical value is 0. In this case, f−1(t) is
always non-empty. Thus, f−1(t) is a manifold if t 6= 0: it is a hyperboloid. Note
that f−1(0) is a cone — not a manifold.

(3) Let Ta,b ⊆ R3 be the torus, described in Example (6). Define f : Ta,b −→ R
by f(x1, x2, x3) = x1. In this case, f−1(t) is a manifold for t ∈ (−a− b,−a+ b) ∪
(−a+ b, a− b) ∪ (a− b, a+ b).

(4) We noted in Section 3 that GL(n,R) is an n2-manifold, with the group op-
erations smooth. From this, we can derive other similar examples. For example,
consider the map ∆ : GL(n,R) −→ R, given by ∆(A) = detA. Considered

as a map from Rn2
to R, it is smooth (in fact, polynomial). We claim that if

t 6= 0, then t is a regular value. For suppose ∆(A) = t 6= 0. Consider the path
γ : R −→ GL(n,R) given by γ(u) = (1 + u)A. Now ∆ ◦ γ(u) = (1 + u)nt, so we
get dγ(0)∆(γ′(0)) = (∆ ◦ γ)′(0) = nt 6= 0, and so dA∆ has rank 1. It follows that
∆−1(t) is a manifold. Let SL(n,R) = ∆−1(1) = {A ∈ GL(n,R) | detA = 1}.
This is a group. Moreover (using an earlier exercise) the group operations are
smooth (since they are restrictions of the smooth group operations on GL(n,R)).

A similar argument shows that O(n,R) = {A ∈ GL(n,R) | ATA = I} is a
manifold, with smooth group operations.

(5) Some “real world” examples arise from mechanical linkages. These have been
used by engineers since ancient times. One can think of a linkage as a collection of
rods connected at pivots, where they are allowed to flex. In mathematical terms,
one can think of the pivots as a set of n points in the plane (for a planar linkage),
and so described by a point in R2n. The rods determine a number of constraints,
such as the fact that certain pivots lie on a straight line, or that the distances
between them is fixed. There are given by smooth equations, that is a map from
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R2n to some Rd. The configuration of the linkage is then constrained to lie in the
preimage of a point. If this is a regular point (as one would expect generically, or
as one might hope, if the linkage is to function smoothly), then this is a manifold.

(6) Analogous situations arise in many contexts in physics, where one has a num-
ber of invariants in a system. For example, we may have a set of particles, or
planets or whatever, whizzing around in space. The state of the system at a given
moment may describe a finite number of coordinates of position and velocity, say.
The energy of the system is constant, so they are constrained to live in some
subset of the coordinate space — typically a manifold.

5. Tangents, normals, orientations

Let M ⊆ Rn be an m-manifold.

Definition. The tangent bundle, TM , to M is defined by:

TM = {(x, v) ∈M × Rn | v ∈ TxM}.

We write p : TM −→ M for the projection, p(x, v) = x. Thus, p−1x =
{x} × TxM , which we can identify with TxM .

Proposition 5.1. TM is a manifold of dimension 2m, and p : TM −→ M is a
submersion.

Proof. Let φ : U −→ V be a chart. Define a map ψ : p−1U −→ V × Rm

by ψ(x, v) = (φx, dxφ(v)). This is smooth, and has smooth inverse defined by
[(y, w) 7→ (φ−1(y), dyφ

−1(w))]. We see that the collection of such maps form an
atlas for TM .

Now p = φ−1◦σ◦ψ, where σ : V ×R −→ V is projection to the first coordinate.
Thus, p is a composition of submersions, hence a submersion. �

Examples TS1 is a cylinder. The map [(x1, x2, t) 7→ (x1, x2,−tx2, tx1) gives a
diffeomorphism from S1 × R ⊆ R3 to TS1 ⊆ R2 × R2 ≡ R4.

Suppose f : M −→ N is a smooth map between manifolds. We get an induced
map, f∗ : TM −→ TN defined by f∗(v) = dxf(v) ∈ TφxM where x = pv.

Exercise : f∗ : TM −→ TN is smooth.

The following is a special case of a more general definition we give later, in
Section 7.

Definition. A section of TM is a smooth map, s : M −→ TM such that p ◦ s is
the identity on M .
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Note that a section, s, is necessarily an immersion. In fact, a proper embedding
of M in TM .

In other words, we are assigning to each x ∈M a tangent vector, s(x) ∈ TxM ,
in a smooth manner. In more familiar terms, s is just a smooth “vector field”, on
M .

Definition. A frame field on M is a family, of m smooth vector fields, v1, . . . , vm,
such that v1(x), . . . , vm(x) forms a basis for TxM for all x ∈M .

Note that a frame field need not always exist on all of M . (Will see an example
in Section 7.)

However, one can always find frame field locally. In fact, suppose φ : U −→ Rm

is a chart for M . Let e1, . . . , em be the standard basis for Rm (or indeed any fixed
basis). If x ∈ U , set vi(x) = (dxφ)−1ei. Then v1, . . . , vn is a frame field on U
(which we can think of an open submanifold of M).

Notation : Again, the notation ∂
∂xi

is often used informally for vi(x) defined

locally. In this context, we can think of ∂
∂xi

as denoting a vector field on U ⊆M .

If λi : U −→ R are smooth functions, then [x 7→
∑m

i=1 λi(x)vi(x)] is also a vector
field, often informally denoted as

∑
i λi

∂
∂xi

.

We say that a smooth frame field is orthonormal if (vi(x))i is a orthonormal
basis with respect to the dot product induced by the embedding of TxM in Rn.
That is, vi(x).vj(x) = δij where δij = 0 if i 6= j and δij = 1 if i = j.

We note:

Lemma 5.2. If M admits a (global) frame field, then it admits a global orthonor-
mal frame field.

Proof. Recall the Gram-Schmidt process for producing an orthonormal basis from
a given basis. Start with any frame field vi(x). Set v′1(x) = v1(x). Then set

v′2(x) = v2(x)− v1(x).v2(x)

v1(x).v1(x)
v1(x).

Then set

v′3(x) = v3(x)− v1(x).v3(x)

v1(x).v1(x)
v1(x)− v2(x).v3(x)

v2(x).v2(x)
v2(x),

etc. Finally, set

wi(x) = v′i(x)/||v′i(x)||.
Then (wi(x))i is orthonormal.

It suffices to observe that all the above operations are smooth (they are given by
nice simple formulae). Therefore the resulting maps [x 7→ wi(x)] are smooth. �
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In particular, we see that there is always a locally defined orthonormal frame
field for a manifold embedded in euclidean space.

We now move on to consider normal vectors.
Recall that (TxM)⊥ is the orthogonal complement to TxM in Rn; that is the

space of “normal vectors” to M at x, with respect to the dot product on Rn.

Definition. The normal bundle to M in Rn is defined by:

ν(M,Rn) = {(x, v) ∈M × Rn | v ∈ (TxM)⊥}.
We write p : ν(M,Rn) −→M for the projection map.

Proposition 5.3. ν(M,Rn) is an n-manifold, and p : ν(M,Rn) −→ M is a
submersion.

(Here, we should think of the dimension, n, as n = m + (n − m). Note that
m of the coordinates come from M , and the remaining n − m from the normal
space.)

Proof. Let x0 ∈ M . Let φ : U −→ Rm be a chart, with x0 ∈ U , and let
v1(x), . . . , vm(x), be a frame field defined on U (as discussed above). In partcu-
lar, v1(x0), . . . , vm(x0) is a basis for Tx0(M) ⊆ Rm, and we extend this arbirarily
to a basis v1(x0) . . . , vm(x0), vm+1, . . . , vn of Rn. By continuity, we see easily that
v1(x) . . . , vm(x), vm+1, . . . , vn is a basis of Rn for all x in some open neighbourhood,
say U ′, of x in U ⊆ M . Now for x ∈ U ′ set vi(x) = vi for i ∈ {m + 1, . . . , n}.
We apply the Gram-Schmidt process to this to give us an orthonormal frame,
w1(x), . . . , wn(x), for Rn, which varies smoothly in x. (This is just an exten-
sion of the construction used in proving Lemma 5.2.) Now wi(x) ∈ TxM for
i ≤ m, and wi(x) ∈ (TxM)⊥ for i > m. Set ei(x) = wm+i(x) for i > m. Then
e1(x), . . . , en−m(x) is an orthonormal basis for (TxM)⊥. (We will no longer need
w1(x), . . . , wm(x).)

We now define a map ψ : p−1U ′ −→ V ×Rn−m by setting ψ(x, v) = (φ(x), λ(x)),
where λ(x) = (v.e1(x), . . . , v.en−m(x)) ∈ Rn−m. This is a smooth map, and
has smooth inverse given by (y, λ) 7→ (φ−1y,

∑n−m
i=1 λi(x)ei(x)), where λ(x) =

(λ1(x), . . . , λn−m(x)).
We finally note that p is a submersion for a similar reason as for the tangent

bundle. �

Examples. ν(Sm,Rm+1) is diffeomorphic to Sm × R.

We can define a section of ν(M,Rn) as a smooth map, κ : M −→ ν(M,Rm)
with p ◦κ the identity on M . Such a section is commonly called a normal field to
M in Rn.

We now consider orientations on a manifold. We begin with some general linear
algebra.



24 BRIAN H. BOWDITCH

Let V be a vector space of dimension m > 0. Let I(V ) be the set of linear
isomorphisms from V to Rm. Given ρ, σ ∈ I(V ), we get a linear automorphism,
σ ◦ρ−1 : Rm −→ Rm. Note that det(σ ◦ρ−1) 6= 0. We write σ ∼ ρ if det(σ ◦ρ−1) >
0. This is easily seen to define an equivalence relation on I(V ), and we write
Or(V ) = I(V )/∼. Thus |Or(V )| = 2. In the case where dimV = 0, we set
Or(V ) = {−1,+1}.

Definition. An orientation on V is an element of Or(V ). An oriented vector
space is a (finite dimensional) vector space equipped with an orientation.

This can be thought of, perhaps more intuitively, in terms of bases. Let V be
an oriented vector space of positive dimension. Note that a basis, v1, . . . , vm, of V
determines an element of I(V ) sending the basis to the standard basis of Rm. We
refer to (vi)i as positively oriented if this map lies in the class of the orientation,
and negatively oriented otherwise.

Note that Rm itself comes with a natural “standard” orientation, namely the
class of the identity map. In other words, the standard basis is deemed to be
positively oriented.

If V,W are oriented vector spaces of the same dimension, we say that a linear
isomorphism L : V −→ W , is orientation preserving if it sends some (hence any)
positively oriented basis to a positively oriented basis. Otherwise, it is orientation
reversing. (Of course, this can also be expressed directly in terms of the orientation
classes of isomorphism to Rm.)

Note that an automorphism, L, of Rm with the standard orientation is orien-
tation preserving if detL > 0, and orientation reversing if detL < 0.

Suppose that V,W are vector spaces and E = V ⊕W . Then orientations on V
and W determine an orientation on E. For example, choose positively oriented
bases for V and W . Their union is a basis for E, which we deem to be positively
oriented in E. Exercise: Check this is well defined, independently of the bases we
choose. Conversely, an orientation on V and an orientation on E determine an
orientation on W .

We can now define an orientation on an m-manifold, M , in Rn when m > 0.

Definition. An orientation on M is an assignment of an orientation to each
tangent space TxM such that there is an atlas of charts, φα : Uα −→ Rm, indexed
by some setA, such that for all α ∈ A and all x ∈ Uα, the map dxφα : TxM −→ Rm

orientation preserving (i.e. in the orientation class of the orientation of TxM).

We refer to M as an oriented manifold.

Definition. We say that M is orientable if it admits an orientation.

Given an orientation on M we have an opposite orientation obtained by a re-
versing the orientation on each tangent space. To see that this is indeed or orien-
tation, take the atlas, and postcompose every chart with an orientation reversing
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linear automorphism of Rm (e.g. [(x1, . . . , xm) 7→ (−x1, . . . , xm)]), to give another
smooth atlas with all orientations reversed.

Not every manifold is orientable (as we will see). However, every manifold is
“locally orientable” in the sense that every point is contained in an open set, U ,
which is orientable. In fact, if φ : U −→ V is chart, then we just use the maps
dxφ : TxM −→ Rm to define the orientation on the tangent space TxU = TxM at
x.

It is easily seen that orientability is invariant under diffeomorphism.

Examples :

(1): Clearly Rn is orientable.

(2): Sn ⊆ Rn+1 is orientable. If we take the atlas given by stereographic pro-
jections from the north and south poles, then the transition function reverses
orientation. (Recall that it is inversion in an (n− 1)-sphere.) To fix this, we just
postcompose one of the charts with any orientation reversing diffeomorphism of
Rn, so as to give an oriented atlas.

(3): The direct product of any two orientable manifolds is orientable. (So for
example, the torus is orientable. So is the cylinder S1 × R.)

(4) The Möbius band is not orientable. (In particular, it is not diffeomorphic to
the cylinder.)

We have noted that if M is orientable, then it has at least two orientations. It
might have many, since orientations on different connected components of M are
independent of each other. However, if M is connected, it has precisely two.

To see this we begin with the following observation.

Lemma 5.4. Suppose that we have two orientations on M . Let A ⊆ M be the
set of x ∈ M such that the two orientations agree on TxM . Then A is open and
closed in M .

Proof. Let x ∈ M . Let φα : Uα −→ Rm and φβ : Uβ −→ Rm be charts for the
respective orientations, with x ∈ Uα ∩Uβ. For each y ∈ Uα ∩Uβ, we have a linear
automorphism (dyφβ) ◦ (dyφα)−1 : Rm −→ Rm. Let ∆(y) = det((dyφβ ◦ (dyφα)−1).
Then ∆(y) 6= 0, and ∆ : Uα ∩ Uβ −→ Rm is smooth, so in particular continuous.
Therefore, if x ∈ A, then ∆(x) = 1, so ∆(y) = 1 for all y in a neighbourhood of
x, so y ∈ A. This shows that A is open. Similarly, if ∆ = −1, then ∆(y) = −1
on a neighbourhood of x, and so A is also closed. �

Lemma 5.5. A connected orientable manifold has precisely two orientations.
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Proof. Choose any x0 ∈ M . After reversing one of the orientations if necessary,
we can assume that they both agree on Tx0M . So, in Lemma 5.4 A 6= ∅, and so
A = M . �

Suppose that M ⊆ Rn is a smooth manifold. Given x ∈ M , then Rn ∼=
TxRn = TxM ⊕ (TxM)⊥. Now Rn comes with a standard orientation. Thus, as
discussed before, an orientation on TxM determines an orientation on (TxM)⊥

and conversely.
Consider the case when n = m + 1. Then (TxM)⊥ ∼= R, and so an orientation

on TxM , hence on (TxM)⊥ gives us a unique κ(x) ∈ (TxM)⊥ with ||κ(x)|| = 1 and
with {κ(x)} a positive basis for (TxM)⊥. We can think of κ(x) as the “outward”
unit normal vector. If M is oriented, then κ(x) is defined everywhere. Also, the
map [x 7→ κ(x)] is smooth (Exercise: see the proof of Proposition 5.3.) Thus,
κ(x) is a normal field.

Conversely, if κ is a (global) nowhere vanishing normal field on M , then κ gives
rise to an orientation on TxM for all x. From this, it is not hard to construct an
orientable atlas.

From this one can deduce:

Theorem 5.6. Let M ⊆ Rm+1 be an m-manifold. The following are equivalent:
(1) M is orientable.
(2) M admits a nowhere-vanishing normal field.
(3) M admits a unit normal field.

Definition. Suppose thatM andN are oriented manifolds, and that f : M −→ N
is a diffeomorphism. We say that f preserves orientation if dxf : TxM −→ Tf(x)N
respects the given orientations for all x ∈M . We say that it reverses orientation
if it reverses orientation for all x ∈M .

Exercises :

(1) If M,N are connected and oriented, then every diffeomorphism either pre-
serves or reverses orientation.

(2) Let f : Sn −→ Sn be the antipodal map on the n-sphere Sn ⊆ Rn+1. (That
is, f(x) = −x.) Show that f is orientation preserving if n is odd, and orientation
reversing if n is even.

6. Abstract manifolds

Up until now, all our manifolds have come with embeddings into some euclidean
space, Rn: the “ambient space”. They had to, because that formed part of our
definition of a “manifold”. However, many of the constructions only really make
essential reference to an atlas of charts. For example, one can talk about smooth
functions, immersions and submersions of one manifold in another, etc, just using
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the atlas. Our definition of tangent space made reference to the embedding in
euclidean space, though it seems that appropriately formulated, a “tangent vec-
tor” should in some sense live in the manifold itself, so we should be able to talk
about a vector field “on a manifold” without worrying about the ambient space.
The same should apply to orientability. The key point here is that these notions
are respected by diffeomorphisms of one manifold to another.

Of course, a few of our constructions, such the normal bundle, do make essential
reference to the ambient space. Similarly, the notion of an “orthonormal frame”
uses the ambient space in order to make sense of the dot product. These will not
in general be respected by diffeomorphism — they are not properties of general
abstract manifolds.

In this section, we will start all over again, defining a manifold intrinsically in
terms of an atlas. We can develop the theory quite quickly, since much of it is
essentially just repetition of what we have already done for manifolds with the old
definition. The trickiest bit will be to define what we mean by a “tangent space”
in this context.

One reason for going to all this trouble is that many manifolds are easy to
describe in the abstract (see for example the “quotient spaces” below), but it
would be quite complicated and unnatural to describe them as subsets of euclidean
space.

We move on to a more formal definition.

Recall that a topological space is second countable if it has a countable base of
open sets.

Definition. A topological m-manifold is a non-empty second countable hausdorff
topological space for which every point has an open neighbourhood which is home-
omorphic to an open subset of Rm.

Definition. Let M be a topological space. A topological chart for M is a home-
omorphism, φ : U −→ V , where U ⊆M , is open, and where V ⊆ Rm is open.
An topological atlas for M is a collection, {φα : Uα −→ Vα}α∈A, of charts, indexed
by some set, A, such that M =

⋃
α∈A Uα.

In other words, a topological manifold is a non-empty separable hausdorff topo-
logical space which admits an atlas.

Remark : The “second countable” assumption turns out to be necessary to
develop the theory beyond a certain point (as we will see). Without this there are
curious examples, even in dimension 1 (read about the “long line” if you are inter-
ested). Even in 2 dimensions describing such examples systematically becomes a
pretty hopeless project. Moreover, there are few contexts in which such examples
arise naturally. If one assumes non-empty hausdorff, and the existence of an atlas,
then it turns out that being second countable is equivalent to a range of other
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hypotheses: for example “separable” (that is, having a countable dense subset)
or “metrisable” (that is, admitting a metric which induces the original topology),
or indeed at least thirty others. One we will refer to later is “paracompact”. We
will say more about that in Section 8. We won’t be using this assumption for the
moment.

Let M be a topological manifold, with atlas {φα}α∈A. If α, β ∈ A, we have a
transition map φβ ◦ φ−1α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ).

Definition. An atlas is smooth if the transition map φβ ◦ φ−1α is smooth for all
α, β ∈ A.

(Of course, this clause is trivially satisfied whenever α = β, and is vacuously
satisfied whenever Uα ∩ Uβ = ∅.)

Examples.

(1) Every smooth m-manifold in Rn, by the definition in Section 3 gives such an
example. By hypothesis it has a (smooth) atlas, and the transition maps for such
an atlas are necessarily smooth, as we have observed. It is also automatically
second countable.

(2) The real projective space. Define an equivalence relation, ∼, on Rn+1 \ {0} by
writing x ∼ y if there is some λ ∈ R \ {0} with y = λx. Note that this restricts to
the antipodal equivalence relation on Sn ⊆ Rn+1. One can check (exercise) that
the inclusion Sn/∼ −→ (Rn+1 \ {0})/∼ is a homeomorphism. We denote this by
P n (sometimes RP n) “(real) projective n space”.

If n = 2, this is the projective plane. It is homeomorphic to a manifold in R6

(see exercise sheet). One can generalise this to show that P n is a manifold (in
some higher dimensional euclidean space, RN). However, this a rather compli-
cated way of describing it. One can show that it is an abstract manifold much
more simply (see the exercise sheets).

(3) Let Γ be a group acting by isometries on Rn. We say that an open set U ⊆ Rn

is wandering if gU ∩ U = ∅ for all g ∈ Γ \ {1}. We say that Γ is a deck group
if, given x ∈ Rn, there is a wandering open set U ⊆ Rn containing x. (This
is the same as acting “freely and properly discontinuously” in terminology from
other courses.) In this case, the quotient space, M = Rn/Γ is hausdorff, and we
write p : Rn −→ M for the quotient map. In fact, for any wandering open set
U , the map p|U : U −→ pU is a homeomorphism. We can define an atlas on M
by taking the collection of maps (p|U)−1 : pU −→ U ⊆ Rm, as U ranges over
all wandering sets. It can be checked (exercise) that gives M the structure of a
smooth manifold. This construction gives rise to many examples:
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(3a) Z acts on R by n.x = x+ n. The quotient R/Z is diffeomorphic to S1 (exer-
cise).

(3b) Z acts on R2 by n.(x, y) = (x+n, y). Then R2/Z is diffeomorphic a cylinder.

(3c) Z acts on R2 by n.(x, y) = (x+ n, (−1)ny). Then R2/Z is diffeomorphic to a
Möbius band.

(3d) Z2 acts on R2 by (m,n).(x, y) = (x+m, y+n). Then R2/Z2 is diffeomorphic
to the torus.

(3e) The group, Γ, generated by [(x, y) 7→ (x+1,−y)] and [(x, y) 7→ (x, y+1)] is a
deck group. The quotient, R2/Γ is a compact 2-manifold, whose diffeomorphism
type is called the Klein bottle.
Exercise: Describe an embedding of the Klein bottle in R4. (One can show that
it cannot be embedded in R3.)

(3f) There are many more examples in higher dimensions. For example, the are
exactly 10 diffeomorphism types of compact 3-manifolds arising in this way as
quotients of R3 (one obvious example is the 3-torus, S1 × S1 × S1 = R3/Z3). It
would be complicated and unnatural to attempt to describe each of these as a
submanifold of euclidean space. (Read about “Bieberbach groups” or “crystallo-
graphic groups” if you want to learn more.)

(4) One can do similar constructions in other situations. For example, on can
take quotients of hyperbolic space to construct (locally) hyperbolic manifolds.

Suppose that M is a manifold equipped with a smooth atlas. We say that a
map, f : M −→ Rn, is smooth if f ◦ φ−1α : Vα −→ Rn is smooth for all charts
φα : Uα −→ Vα in the given atlas. (We will generalise this definition shortly.)

Definition. Suppose we have two smooth atlases, {φα}α∈A and {φβ}β∈B on the
same topological manifold, M . We say that these two atlases are equivalent if
their union {φα}α∈A∪B is also an atlas.

In other words, the transition maps between the charts of the different atlases
are also smooth. Clearly, this is an equivalence relation on the set of all atlases
for M .

Exercise : Two atlases are equivalent if and only if they determine the same set
of smooth functions to R. (By the second statement, we mean that f : M −→ R
is smooth with respect to the first atlas if and only if it smooth with respect to
the second.)
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Definition. A smooth structure on a topological manifold, M , is an equivalence
class of smooth atlases.

Note that the class of smooth function to Rn depends only on the smooth struc-
ture of M .

Remark : It is not hard to see that, in fact, any equivalence class of atlases
contains a unique maximal atlas in the class. In other words any other atlas in
the class is a subset of this maximal atlas. This gives another way of defining a
“smooth structure”: a smooth structure on M is essentially the same thing as a
maximal atlas.

Definition. A smooth manifold is a topological manifold equipped with a smooth
structure.

Definition. Let M,N be smooth manifolds. A map f : M −→ N is smooth if
ψβ ◦ f ◦ φ−1α : φα(Uα ∩ f−1Uβ) −→ Rn is smooth for all charts φα : Uα −→ Vα and
all charts ψβ : Uβ −→ Vβ in the smooth atlases of M and N respectively.

Here, by “the” smooth atlas, we mean any atlas in the given smooth structure:
it doesn’t matter which one. (Alternatively, take the unique maximal atlas in the
class.)

It is easily checked that a smooth map is necessarily continuous. (Or just add
this the hypothesis, if you don’t want to be bothered.)

Definition. A diffeomorphism between two smooth manifolds is a smooth map
with a smooth inverse.

This agrees with the definitions given for smooth manifolds embedded in eu-
clidean space.

Example. The identity map from Rn to Rn gives us a smooth atlas on Rn

consisting of a single chart. This gives us a smooth structure on Rn as a n-
manifold: the “standard” smooth structure.

If n = 1, this is the standard smooth structure on M = R. But we could
(somewhat perversely) take N = R with the map [x 7→ x3]. This also gives us a
one-chart atlas, hence a smooth structure. But it is different smooth structure.
The union of these two atlases (in other words the two charts together) do not form
an atlas. This is because the transition map [x 7→ x3] is not a diffeomorphism: its
inverse is not smooth.

Nevertheless, M and N are diffeomorphic. The map [x 7→ x1/3] : M −→ N is a
diffeomorphism. This is just a question of formally checking the definitions. So N
is really just a copy of the standard real line after all — it’s just that we initially
chose the “wrong” coordinates for it.
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Unless otherwise stated, we will always assume Rn to be equipped with the
standard smooth structure.

Exercises : Check the following:

(1) Any open subset of a smooth manifold has itself a natural structure as a
smooth manifold (by restricting charts).

(2) If φ : U −→ V is smooth chart in the atlas of M , then φ is a diffeomorphisms
from U ⊆ M to V ⊆ Rm, thought of as smooth manifolds in their own right (as
in part (1)).

Remarks

(1) It is true (though not so easy to prove) that if a nonempty open subset of Rm is
homeomorphic to an open subset of Rn, then m = n. The weaker statement with
“homeomorphic” replaced by “diffeomorphic”, on the other hand, is simple linear
algebra, given that tangent spaces are isomorphic as vector spaces. This means
that the dimension of a (topological or smooth) manifold is uniquely determined.

(2) It is natural to ask how the theories of topological manifolds and smooth
manifolds relate. As mentioned in the case of manifolds in euclidean space, the
situation is simpler in low dimensions. If m ≤ 3, then any (abstract) topological
m-manifold admits a smooth structure. Moreover, if n ≤ 3, if two smooth m-
manifolds are homeomorphic, then they are also diffeomorphic (though of course,
not every homeomorphism is a diffeomorphism, even in dimension 1). However,
for any m ≥ 4, there are compact topological m-manifolds which do not admit
any smooth structure. There are also pairs of homeomorphic smooth n-manifolds
which are not diffeomorphic. In fact, there are 28 pairwise non-diffeomorphic
smooth structures on the topological 7-sphere, S7 (Milnor). There is also a smooth
structure on R4 which is not diffeomorphic to the standard one (Donaldson). Non-
standard smooth structures of this type are ofter referred to as “exotic”. It is an
open problem as to whether the 4-sphere, S4, admits an exotic smooth structure
— the 4-dimensional smooth Poincaré conjecture.

Note that, in example (E4) of Section 2, the circle, S1, comes equipped with a
natural smooth structure. In examples (E12) and (E13), it does not — though
of course, we already know that it does admit such a structure. This similarly
applies to the 2-sphere respectively in examples (E5) and (E14).

(3) It’s not hard to see that the circle is the only compact 1-manifold up to diffeo-
morphism. Once can also give a complete classification of compact 2-manifolds
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up to diffeomorphism. This is not a feasible project in higher dimensions though.

(4) One can define different “categories” of manifolds, by replacing the assump-
tion that transition maps are diffeomophisms, by the assumption that they are X,
where “X” could be a range of different properties. Note that transition maps are
always homeomorphisms, so if we take X = “homeomorphism”, we just recover
the notion of a topological manifold. This is the weakest sensible assumption.
But we could also take X to be “Cr” for some finite r ∈ N, or to be “bilipschitz”
or “conformal” etc. (if you know what this means). Identifying R2m with Cm, we
could also take X to be “complex analytic” in even (real) dimension, giving rise
to the notion of a complex manifold. The key point in the discussion is that X
should be closed under inverses and composition. Each of these categories has its
own theory associated to it.

(5) One can show that any abstract m-manifold can be embedded in some Rn

(indeed for n = 2m + 1). This is the Whitney Embedding Theorem. (In other
words, it is diffeomorphic to a manifold in euclidean space, as defined in Section
3). However, such embeddings are often not particularly natural.

We next want to define tangent spaces. For a manifold, M , in Rn, this was de-
fined to be subspace of Rn. In other words, it made reference to the ambient space.
However, we saw that a vector gave a means of differentiating smooth functions.
That will be the basis of defining the tangent space for abstract manifolds.

So, let M be an (abstract) smooth m-manifold. Write C∞(M) for the vector
space of smooth functions on M . Write C∞x (M) for the set of local smooth
functions at x, and Gx(M) = C∞x (M)/∼ for the vector space of germs at x. These
are defined as in Section 3, except now, of course, interpreting “smooth function”
as we have defined it for an abstract manifold.

Let v be a linear functional on Gx(M). Write v.f = v(f). Of course, linearity
just means that v.(f + g) = v.f + v.g and v.(λf) = λv.f for all f, g ∈ Gx(M) and
λ ∈ R. The space of linear functionals is itself a vector space, with addition and
scalar multiplication defined by (v + w).f = v.f + w.f and (λv).f = λv.f . What
we have just described is, of course, just the dual space, (Gx(M))∗.

Definition. Let M be a smooth manifold and x ∈ M . The (new) tangent space
to M at x is the space of all linear functionals v on Gx(M) which satisfy:
(L) v.(fg) = f(x)(v.g) + g(x)(v.f) for all f, g ∈ Gx(M).

We said “space” because it is easily verified (exercise) that it is a subspace of
the dual space, (Gx(M))∗, hence intrinsically a vector space. (For the moment,

we know nothing about its dimension.) We will denote it by T̂xM . (The hat is
temporary. Once we have related it to our earlier definition, we will omit it.) We
will refer to elements of the tangent space as tangent vectors.
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Exercise: If U ⊆ M is open and x ∈ U , then there is natural identification of
T̂xU with T̂xM . (Recall that U is a manifold in its own right.)

As an example, suppose that γ : (−1, 1) −→M is a smooth curve with γ(0) = x.
Given f ∈ Gx(M), write v.f = (f ◦ γ)′(0). Thus, v ∈ (Gx(M))∗. Clearly, v.f only
depends on f restricted to an arbitrarily small neighbourhood of x. It follows
from the usual product rule (for smooth maps of R) that v satisfies (L), and so

v ∈ T̂xM . We write γ̂′(0) = v (again, we will drop the hat later). In fact, we will
see that every tangent vector arises in this way (Theorem 6.3).

First, we show that the tangent space is what we expect in the case where our
manifold is just Rm. For this, we will need the following, known as “Hadamard’s
Lemma”:

Lemma 6.1. Let a ∈ Rm. Then every f ∈ C∞a (Rm) has the form

f(x) = f(a) +
m∑
i=1

(xi − ai)gi(x),

for local functions, gi ∈ C∞a (Rm).

Proof. The idea is to apply Taylor’s theorem separately to the functions

f(a1, a2, . . . , ai−1, xi, x1+1, . . . , xm)− f(a1, a2, . . . , ai−1, ai, xi+1, . . . , xm),

and then take the sum over i. Details left as an exercise. �

In fact, we perform the construction in a canonical way. Thus, we can choose
the maps gi so that if we apply the same construction to maps with domain U and
V which agree on some open set W ⊆ U ∩V containing x, then the corresponding
gi also agree on W .

Note that we necessarily have gi(a) = ∂f
∂xi

(a).

Now, for each i, we have an element di ∈ T̂aRm defined by di.f = ∂f
∂xi

(a) for

all f ∈ C∞a (Rm). This gives rise to a linear map from Rm to T̂aRm sending the
standard basis elements, ei, to di.

Let πi : Rm −→ R be projection to the ith coordinate (that is, πi(x) = xi).
Then di.πj = δij. It follows easily that the di are linearly independent. In fact:

Lemma 6.2. {d1, . . . , dm} is a basis for T̂aRm.

Proof. It remains to prove that these elements span. So let v ∈ T̂aRm. Write
λi = v.πi.

First consider the constant function, 1, on any open U ⊆ Rm. By (L), we have
v.1 = v.(1 × 1) = 1v.1 + 1v.1 = 2v.1, so v.1 = 0. By linearity, it follows that v
kills all (locally) constant functions on Rm.
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Now suppose f ∈ C∞a (Rm). By Hadamard’s Lemma (7.1), we can write

f(x) = f(a) +
m∑
i=1

(πi(x)− πi(a))gi(x),

and so by (L):

v.f = 0 +
n∑
i=1

(πi(a)− πi(a))(v.gi) + gi(a)(v.πi)

=
m∑
i=1

λigi(a) =
m∑
i=1

λi
∂f

∂xi
(a) =

m∑
i=1

λidi.f.

Thus, v =
∑m

i=1 λidi. �

We can now identify T̂aRm with Rm by sending each di to the standard basis
element ei.

To apply this to manifolds, we note, quite generally, that if M and N are smooth
manifolds, and x ∈M , and θ : M −→ N is a diffeomorphism, we get a linear map
dxθ : T̂xM −→ T̂θ(x)N defined by

(dxθ)(v).f = v.(f ◦ θ)
for all f ∈ Gx(N). One needs to check (exercise) that this dxθ satisfies (L), and
so indeed lies in the tangent space to N . Note also, that if θ is a diffeomorphism,
then dxθ is a linear isomorphism.

Suppose that M is a smooth manifold, and φ : U −→ V is a chart of the atlas.
We have observed that φ is a diffeomorphism between the intrinsic manifolds
U ⊆M and V ⊆ Rm. Moreover, we have natural identifications T̂x(U) ≡ T̂xM and

T̂φ(x)V ≡ T̂φ(x)(Rm). Furthermore, by Lemma 6.2, there is a natural isomorphism

from T̂φ(x)(Rm) to Rm.
From this, we can draw some immediate conclusions.

Theorem 6.3. Let M be a smooth m-manifold and x ∈M . Then.
(1) dim T̂xM = m.

(2) If v ∈ T̂xM , there is a smooth curve, γ : I −→M with γ(0) = x and γ̂′(0) = v.
(3) If M is a smooth submanifold of Rn, then there is a natural identification of

T̂xM with TxM (as defined earlier) so that if γ : I −→M is a smooth curve with
γ(0) = x, then γ̂′(0) gets identified with γ′(0) (the usual tangent vector to a curve
in Rn).

Proof.
(1) Directly from Lemma 6.2.

(2) Let φ : U −→ V ⊆ Rm be a chart with x ∈ U , so that dxφ : T̂xM ≡
T̂xU −→ T̂xRm ≡ Rm is a linear isomorphism. Let δ : I −→ V be a curve with
δ′(0) = dxφ(v), and set γ = φ−1 ◦ δ.
(3) Recall that TxM was defined via the isomorphism to TφxM induced by φ. �
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In view part (3), we will henceforth drop the hat from the notation for tangent
space, TxM , and from the notation γ′(0).

Also note that (in view of (2)), given a smooth map, θ : M −→ N , one can
describe the map dxθ : TxM −→ Tθ(x)N by saying that it sends v ∈ TxM to
(θ ◦ γ)′(0) for any curve γ in M with γ′(0) = v.

The tangent bundle

We have defined individual tangent spaces at points of x. In fact, all these
tangent spaces can be “bundled” together to form a manifold, TM , called the
“tangent bundle”. In the case of manifolds in euclidean space, this came for free
(Proposition 5.1). Here we have to construct it explicitly.

As a set, TM , is just the formal disjoint union, TM =
⊔
x∈M TxM . (More

formally, this means that TM =
⋃
x∈M({x} × TxM), though as before we will

simplify things by identfying {x} × TxM with TxM .) We have a surjective map,
p : TM −→ M , with p(TxM) = {x} for all x ∈ M . Note that if U ⊆ M is open,
then TU = p−1U =

⊔
x∈U TxM . We need to define a topology on TM , as well as

an atlas for TM . We do the latter first.
Given a chart, φ : U −→ V ⊆ Rm of M , we have a map ψ : TU −→ V × Rm

given by ψ(v) = (φx, dxφ(v)), where x = pv. In this way, an atlas {φα : Uα −→
Vα}α∈A for M gives rise to a collection of maps, ψα : TUα −→ Vα × Rm ⊆ R2m.
We deem a set, O ⊆ TM , to be “open” if ψα(O ∩ TUα) is open in Vα ∩Rm for all
α ∈ A. One can check that this does indeed define a topology on TM . Moreover,
the collection of maps {ψα}α∈A, is a smooth atlas. (The transition maps for TM
can be defined in terms of the transition maps on M , which by definition are
smooth.) One can also check that the resulting smooth structure does not depend
on the atlas for M that we chose. (We could have taken the maximal atlas for
M .) It is also easily checked that the map p : TM −→M is a smooth submersion.

Definition. The manifold, TM , together with the map p : TM −→ M is called
the tangent bundle of M .

This was all rather formal. The main point we want to take from it is that
it allows us to speak of a “smooth vector field” on M , that is a section of the
tangent bundle, defined in the same way as in Section 5. It can be understood in
less abstract way, by the following exercise (with the same notion as in Section
5).

Exercises :
(1) If φ : U −→ M is chart, and λi : U −→ R are smooth functions, then∑m

i=1 λi
∂
∂xi

is a smooth vector field on U . Conversely, every smooth vector field
on U can be uniquely expressed in this form.
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(2) If X is a smooth vector field on M , and f ∈ C∞(M), then Xf ∈ C∞(M),
where Xf denotes the function given by Xf(x) = X(x).[f ], where [f ] ∈ Gx(M)
is the germ of f at x.

The point of these exercises is just to check smoothness in terms of the formal
definition.

For future reference, we also note that if x ∈ Uα, then ψα|TxM : TxM −→
{x} × Rm ≡ Rm is a linear isomorphism.

If f : M −→ N is a smooth map, we get a smooth map, f∗ : TM −→ TN .
The discussion of immersions and submersions in Section 4 now goes through

more or less verbatim — except with the new interpretation. In particular, Theo-
rem 4.5 holds as stated. (We conveniently forgot to mention the ambient euclidean
space in its statement.)

One can also define embeddings etc. One can check that a manifold, M , in Rm

(as defined in Section 3) is the same as an abstract manifold, M , together with
an embedding into Rm (as defined in this section.)

One can now to on to discuss other things, such as vector fields and orientations,
though we postpone this until the next section, since they are more conveniently
set in a broader context of “vector bundles”.

Lie Groups.

We finish this section with a (very) brief discussion of Lie groups.

Definition. A Lie group is a manifold, G, together with smooth maps, [x 7→
x−1] : G −→ G and [(x, y) 7→ xy] : G×G −→ G, which give G the structure of a
group.

We have already seen several examples: GL(n,R), GL(n,C), SL(n,R), SO(n,R),
etc.

7. Vector bundles

We will define the notion of a “vector bundle” over a manifold. The idea is to
associate to each point in the manifold a vector space of some given dimension
(perhaps different from that of the manifold) and assemble these together in a
nice smooth way. We will see, for example, that the tangent and normal bundles
we have already encountered are examples of such.

Suppose that M is an (abstract) m-manifold. By a family of vector spaces over
M , we mean a manifold E, together with a smooth map, p : E −→M , such that
for all x ∈ M , p−1x comes equipped with the structure of a vector space. We
write Ex = p−1x, and refer to Ex as a fibre of E. An example of such is M ×Rq,
with p : M×Rq −→M just projection to the first coordinate, so that each fibre is
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just a copy of Rq. If U ⊆ M is open, write E|U = p−1U . Then p|U : E|U −→ U
is a family of vector spaces over U .

Suppose p′ : E ′ −→ M is another family over M . An isomorphism from E to
E ′ is a diffeomorphism, ψ : E −→ E ′ with p′ ◦ ψ = p and such that ψ|Ex −→ E ′x
is a linear isomorphism for all x ∈ M . If such exists, we say that E and E ′ are
isomorphic. We say that a family E over M is trivial if it is isomorphic to M×Rq

for some q.

Definition. A vector bundle over M is a family of vector spaces, p : E −→ M ,
such that for all x ∈ M , there is some open U ⊆ M , with x ∈ U , and with E|U
trivial.

In other words, we can find an atlas, {φα : Uα −→ Vα}α∈A, for M , such that
for each α, we have diffeomorphism, ψα : E|Uα −→ Vα × Rq ⊆ Rm+q, which is
a linear isomorphism on each fibre. Note that the maps {ψα}α∈A form an atlas
for E. We refer to it as a locally trivialising atlas for E. It is easily seen from
the local structure, that p : E −→ M is a surjective smooth submersion. Also,
each fibre, Ex, is an embedded submanifold, and the vector space operations are
smooth. The notion of vector bundle is preserved under isomorphism, so we can
also talk about isomorphisms of vector bundles (with the same definition).

Henceforth, the only families of vector spaces we will encounter will be vector
bundles (so we can forget about the more general notion).

Examples :

(1) Clearly, M × Rq is vector bundle over M .

(2) If M is any smooth manifold, then the tangent bundle, TM , is a vector bundle
over M . For a manifold in euclidean space, this follows directly from the proof
that TM is a manifold (Proposition 5.1). For an abstract manifold, it follows
from the discussion at the end of Section 6. In fact, the two constructions agree,
or more precisely, they are isomorphic as vector bundles. So there is no ambiguity
in referring to the “tangent bundle” of M .

(3) If M ⊆ Rn is manifold in Rn, then the normal bundle, ν(M,Rn) is a vector
bundle. In fact, the proof that ν(M,Rn) is a manifold (Propsition 5.3) effectively
shows this — the map ψ : p−1U ′ −→ V ×Rn−m constructed in the proof restricts
to a linear isomorphism on each fibre.

(4) The space Bn, (example (E8) of Section 2) together with the projection to the
circle is a fibre bundle. In particular, the Möbius band, B1 is a fibre bundle over
the circle. Note that Bm is isomorphic to Bn if |m−n| is even (exercise). However
B0 cannot be isomorphic to B1, since they are not diffeomorphic. In particular,
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the Möbius band is non-trivial.

(5) TS1 is trivial. There are a number of ways to see this.
For example, if we take S1 to be the unit circle in R2, and define the tangent

bundle as in Section 3. Recall that in Section 3, we observed that the map,
f : S1 × R −→ TS1 given by explicitly by f((x1, x2), t) = ((x1, x2,−tx2, tx1)
for x = (x1, x2) ∈ S1, is a diffeomorphism. In fact, we see that it is a bundle
isomorphism.

It can also be seen more simply, by taking S1 to be the abstract manifold,
S1 = R/Z. In this case, each tangent space is canonically identified with R, so we
get an identification of TS1 with S1 × R.

Let p : E −→M be a vector bundle.

Definition. A section of E is a smooth map s : M −→ E with p ◦ s the identity
on M .

This is a generalisation of a section of a tangent space, as defined in Section 5.
A section of the tangent space is usually referred to as a vector field on M . Note
that (as for a tangent space) any section will be an embedding of M into E.

For example, any smooth map f : M −→ Rq, determines a section of M × Rq,
given by s(x) = (x, f(x)). The image of the section is the graph of f in M × Rq.

We say that a section is non-vanishing (or nowhere vanishing) if s(x) 6= 0 for
all x ∈M .

The Möbius band, B, has no non-vanishing section. (Exercise, using the In-
termediate Value Theorem.) This gives another (simpler) proof that the Möbius
band is a non-trivial bundle.

There is no non-trivial section to TS2. This is just a statement of the famous
“Hairy Ball Theorem”. Put another way:

Theorem 7.1. Every vector field on the 2-sphere, S2, has at least one zero.

Proof. (Sketch) We can give a sketch of a proof of this as follows. We use polar
coordinates, (θ, φ), for S2. Here θ ∈ R/2πZ is the longitude, and φ ∈ [−π/2, π/2]
is the latitude. The points φ = π/2 and φ = −π/2 correspond respectively to the
north and south poles. We identify the circle, S1, with R/2πZ.

Suppose, for contradiction that v is a nowhere-vanishing vector field on S2.
Given φ ∈ (−π/2, π/2) we define a continuous (in fact smooth) map hφ : S1 −→ S1

by setting hφ(θ) to be the angle which the tangent vector, ∂/∂θ, to the the φ-
latitude at (θ, φ), makes with the vector v(θ, φ) (taking account of the orientation
of S2). Now, the map hφ has a “degree” n(φ), associated to it. Informally, this
counts the number of times hφ wraps the circle around itself, taking account of
orientation. If we imagine walking once around the latitude, it is the number of



MANIFOLDS MA3H5 39

times we spin around relative to the vector field v, on going once around this
latitude. Now very near the north pole (that is, φ close to π/2), n(φ) must be
equal to 1, since v is approximately constant there, and we spin around once in
the positive direction. Similarly, near the south pole, n(φ) will be −1, since we
spin around in the negative direction. But now, hφ, varies continuously (in fact
smoothly) in φ. The degree does not change under continuous deformation (that
is, what topologists call a “homotopy”). (This should be intuitively clear, and is
not hard to prove, though we won’t make this precise here.) Thus, [φ 7→ n(φ)] is
constant on all of (−π/2, π/2) giving a contradiction. �

Remarks : It turns out any odd-dimensional manifold admits a non-vanishing
vector field, though we won’t prove that here.

An even-dimensional manifold may or may not. For example, the torus does
(exercise). However it is the only compact connected orientable 2-manifold which
does.

Back to general vector bundles, p : E −→M . We note:

Lemma 7.2. A vector bundle, E, is trivial if and only if there are sections
s1, s2, . . . , sq such that {s1(x), . . . , sq(x)} is a basis for Ex for all x ∈M .

Proof. If f : M×Rq −→ E is an isomorphism, set si(x) = f(x, ei), where e1, . . . , eq
is any fixed basis for Rq.

Conversely, if we have such sections, si, define a map f : M × Rq −→ E by
f(x, (λ1, . . . , λq)) =

∑q
i=1 λisi(x). This is an isomorphism. �

Example : Let Sn ⊆ Rn+1 be the unit sphere in Rn. Then the normal bundle,
ν(Sn,Rn+1) is trivial: the outward pointing unit normal is a nowhere vanishing
section.

Definition. A manifold, M , is parallelisable if the tangent bundle TM is trivial.

In view of Lemma 7.2, this is the same as saying that M admits a global frame
field. (Recall, from Section 5 that a “frame field” on M is a family of vector
fields, vi, on M , such that v1(x), . . . , vn(x) is a basis for TxM for all x ∈ M . We
observed there that frame fields exist locally, but not necessarily globally.)

One can check that any parallelisable manifold is orientable.

Examples :

(1) We have already observed that the circle is parallelisable. (Taking the unit
circle in R2, we can take the tangent at (x1, x2) to be (−x2, x1).)
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(2) By the Hairy Ball Theorem, S2 is not parallelisable (even though S2 is ori-
entable).

(3) S3 is parallelisable. Take S3 ⊆ R4 to be the unit sphere. If x = (x1, x2, x3, x4) ∈
S3, then (−x2, x1, x4,−x3), (−x3,−x4, x1, x2), (−x4, x3,−x2, x1) defines an or-
thonormal frame in TxS

3. This follows from the fact these four vectors to-
gether form an orthonormal basis for the ambient space R4, and that the first,
(x1, x2, x3, x4) is normal to S3, so the last three must lie in the tangent space.
(In fact, it turns out that any orientable 3-manifold is parallelisable, though we
won’t prove that here.)

(4) S7 is parallelisable. Take S7 ⊆ R8 to be the unit sphere.
If x = (x1, x2, x3, x4, x5, x6, x7, x8) ∈ S7, then
(−x2,+x1,+x4,−x3,+x6,−x5,−x8,+x7),
(−x3,−x4,+x1,+x2,+x7,+x8,−x5,−x6),
(−x4,+x3,−x2,+x1,+x8,−x7,+x6,−x5),
(−x5,−x6,−x7,−x8,+x1,+x2,+x3,+x4),
(−x6,+x5,−x8,+x7,−x2,+x1,−x4,+x3),
(−x7,+x8,+x5,−x6,−x3,+x4,+x1,−x2),
(−x8,−x7,+x6,+x5,−x4,−x3,+x2,+x1)
defines an orthonormal frame in TxS

7. This follows as for S3.
(In fact, it turns out that if Sn is parallelisable, then n ∈ {0, 1, 3, 7}. So, for
example, S5 is an example of a closed orientable odd-dimensional manifold that
is not parallelisable.)

(5) Any Lie group is parallelisable. To see this, let G be a Lie group. Given
x ∈ G, let Lx : G −→ G, be left multiplication: Lx(y) = xy. This a diffeo-
morphism of G to itself. It induces a smooth map (Lx)∗ : TG −→ TG. In
particular, dLx : T1G −→ TxG is a linear isomorphism. If v ∈ T1G, then setting
v(x) = dLx(v), we get a vector field [x 7→ v(x)] on G. Indeed, if v1, . . . , vm is any
basis for TG, then the maps [x 7→ vi(x)] give us a frame field on G.

Remark : The above examples are related. If we identify R2 with the com-
plex plane, C, then the vector field (−x2, x1) is obtained by multiplying by i:
(x1 + x2i)i = −x2 + x1i. Similarly, if we identify R4 with the quaternions, H (if
you know what these are), then the frame on S3 is obtained by multiplying on
the right by i, j, k: (x1 +x2i+x3j+x4k)i = −x2 +x1i+x4j−x3k etc. For S7 the
frame field is similarly obtained by identifying R8 with the Cayley numbers (or
“octonians”), O. Thus the fact that these spheres are parallelisable is related to
the existence of these number systems, which only exist in dimensions 1, 2, 4, and
8. In fact, the numbers C, H and O can be used respectively to give S1, S3 and
S7 each the structure of a Lie group. (The fact that algebraic structures of this
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sort only exist in these dimensions can be proven using topological arguments: it
is application of topology to a purely algebraic question.)

Vector fields.

Let X be a vector field on M (i.e. a section of the tangent bundle). Suppose
that f ∈ C∞(M); i.e. f : M −→ R is a smooth function. We can define a
function, Xf : M −→ R, by setting Xf(x) = X.[f ], where [f ] ∈ Gx(M) is the
germ of f at x ∈ M . In fact, we claim Xf is smooth. We can see this using
local coordinates. To see that Xf is smooth at x, let xi be local coordinates in
a neighbourhood, U , of x in M . Writing X =

∑
i λi

∂
∂xi

, where λi : U −→ R is

smooth, we have Xf =
∑

i λi
∂f
∂xi

(exactly as described in Section 3), and so in

particular it is smooth at x. Since x was abritrary, it follows that Xf ∈ C∞(M),
as claimed.

In fact, we see easily that [f 7→ Xf ] : C∞(M) −→ C∞(M) is a linear map from
C∞(M) to itself. Moreover, directly from our definition of tangent space, we see
that X(fg) = fXg + gXf for all f, g ∈ C∞(M). In fact, we have a converse:

Proposition 7.3. Suppose that L : C∞(M) −→ C∞(M) is a linear map satisfying
L(fg) = fL(g)+gL(f) for all f, g ∈ C∞(M). Then there is a unique vector field,
X, on M such that L(f) = Xf for all f ∈ C∞(M).

Proof. For this, we need the fact that, given any x ∈M , and any germ h ∈ Gx(M),
there is a function, f ∈ C∞(M) with h = [f ]. This will be proven in Section 8, see
Corollary 8.3. (Of course, by definition of germ, there must be such an f defined
on a neighbourhood of x in M . But we want it defined on all of M , which calls
for a result about extending smooth functions.)

Suppose that x ∈M . Given the above fact, L determines a vector X(x) ∈ TxM ,
so that L(f)(x) = X(x).[f ] where [f ] ∈ Gx(M) is the germ of f . This gives us
a map X = [x 7→ X(x)] which assigns a tangent vector to each point of M . We
need to check that X is smooth.

To this end, we again use local coordinates xi, on a neighbourhood, U , of x.
We write X =

∑
i λi

∂
∂xi

, where λi : U −→ R, and we want to check that the λi
are smooth. Now, let fi ∈ C∞(M) be a function that agrees with the coordinate
projection, πi, on a neighbourhood of x (as given by the result stated in the first
paragraph). In this neighbourhood, we have ∂fi

∂xi
≡ 1, and so λi = λi

∂fi
∂xi

= X.[fi] =

L(fi). But, by hypothesis, L(fi) ∈ C∞(M) is smooth, and so λi is smooth in a
neighbourhood of x, and so also is X. Since x was arbitrary, it follows that X is
smooth everywhere in M . Thus, X is a vector field, as required.

We still need to check uniqueness of X. By linearity, it’s enough to show that
if Xf ≡ 0 for all f ∈ C∞(M), then f ≡ 0. Again, use local coordinates. In the
notation of the previous paragraph, taking f = fi, we have λi = λi

∂fi
∂xi

= Xfi = 0.
In particular, X is identically 0 in a neighbourhood of x, hence everywhere. �
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As an example of this, suppose X, Y are vector fields on M . One checks (ex-
ercise) that [f 7→ X(Y f) − Y (Xf)] satisfies the hypotheses of Proposition 7.3.
It follows that there is a unique vector field, denoted [X, Y ], on M such that
[X, Y ]f = X(Y f)− Y (Xf) for all f ∈ C∞(M).

This is called the “Lie Bracket” of X and Y .

Exercise :
(1) If X =

∑
i λi

∂
∂xi

and Y =
∑

i µi
∂
∂xi

, in local coordinates, then [X, Y ] =∑
i νi

∂
∂xi

, where νi =
∑

j

(
λj

∂µi
∂xj
− µj ∂λi∂xj

)
.

(This gives a way of seeing directly that [X, Y ] is indeed a smooth vector field.)

(2) Let G be a Lie group. Describe how one can define a “Lie Bracket”, [., .], on
the tangent space, T1G, at the identity. (Use the fact that any v ∈ T1G determines
a vector field, [x 7→ v(x)], on G as described in Example (5) above.) Check that
[(v, w) 7→ [v, w] is bilinear. What other properties does it satisfy?

Operations on vector bundles.

Various canonical constructions on vector spaces can be applied also to vector
bundles. The basic idea is that if we do constructions fibre by fibre, then provided
that the operations are all smooth, we would expect them to fit together into a
smooth bundle. In principle, this can all be set in a fairly general context, though
here we will just deal with the constructions case by case.

The constructions are rather formal, though the idea is simple. If we have a
vector space, or a collection of vectors spaces, depending smoothly on a parameter
x, then any natural construction we perform to give us another vector space (such
as dual, or direct sum, etc.) will also depend smoothly on x.

First, we consider direct sums, which in the context of bundles are called “Whit-
ney sums”.

Let p : E −→M and p′ : E ′ −→M be vector bundles. Let Ê =
⊔
x∈M(Ex⊕E ′x)

(as a set), and let p̂ : Ê −→ M be the obvious map. We want to give this the
structure of a vector bundle.

Let {φ : Uα −→ Vα}α∈A be an atlas for M , which gives rise to locally trivialising
atlases, {ψα : p−1Uα −→ Vα × Rq}α and {ψ′α : (p′)−1Uα −→ Vα × Rr}α for E and
E ′ respectively. (After intersecting domains of charts, we can assume that we can
use the same atlas for M for both cases.)

Given v ∈ Ex ⊕ E ′x, write v = u + u′, with u ∈ Ex and u′ ∈ E ′x. Let w ∈ Rq

and w′ ∈ Rr be respectively the second coordinates of ψαu and ψ′αu
′. We define

θα : (p̂)−1Uα −→ Vα × Rq × Rr by θα(v) = (x,w,w′), where x = φv.
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We deem a set O ⊆ Ê to be open if θα(O) is open in Vα × Rq+r for all α ∈ A.
One can now check (similarly as in the construction of the tangent space of an

abstract manifold) that this gives us a topology on Ê, and endows it with the
structure of a vector bundle. Moreover, the resulting structure is independent of
the choice of atlases for M , E and E ′.

The bundle Ê is called the Whitney sum of the bundles E and E ′, and is gen-
erally denoted E ⊕ E ′.

Exercise: There are natural embeddings of manifolds, h : E −→ E ⊕ E ′ and
h′ : E ′ −→ E ⊕ E ′, so that for all x ∈M , h(Ex)⊕ h′(E ′x) ∼= Ex ⊕ E ′x.

Examples :

(1) The Whitney sum of trivial bundles is trivial.

(2) If B −→ S1 is the Möbius band, then B ⊕B is trivial (exercise).

(3) Let M ⊆ Rn be a manifold in Rn. Then TM ⊕ν(M,Rn) is trivial. In fact, the
each fibre, TxM⊕ (TxM)⊥ is just a copy of Rn, and so TM⊕ν(M,Rn) ≡M×Rn.
For example, we have TS2⊕ ν(S2,R3) ∼= S2×R3. We have seen that ν(S2,R3) ∼=
S2 × R. This shows that the Whitney sum of a non-trivial bundle with a trivial
bundle can be trivial.

We note that, up to isomorphism, the Whitney sum, E ⊕ E ′, can also be con-
structed as follows. Let F = {(v, w) ∈ E ×E ′ | pv = pw}. (Here, E ×E ′ denotes
the usual direct product of E and E ′. As such, it is a (2n + q + r)+manifold.)
There is an obvious map, F −→M , so that the preimage of x ∈ F is just a copy
of Ex×E ′x. We can naturally identify Ex⊕E ′x with Ex×E ′x. This gives rise to a
natural bijection from E ⊕E ′ to F ⊆ E ×E ′. One can check that this is, in fact,
an embedding of the manifold E ⊕ E ′ into E × E ′. (Note that the notation is
potentially confusing: while Ex ⊕ E ′x and Ex × E ′x are essentially the same thing
viewed from different perspectives, the manifolds E⊕E ′ and E×E ′ are definitely
different things.)

We can perform a similar construction for dual spaces.
Let p : E −→M be a vector bundle. Let E∗ =

⊔
x∈M E∗x (where E∗x is the dual

vector space to Ex) and let p∗ : E∗ −→M be the obvious map.
Now any linear isomorphism, θ : Ex −→ Rq, canonically gives rise to an isomor-

phism θ∗ : E∗x −→ Rq. This is defined by the condition that (θ∗v).(θw) = v(w)
for all w ∈ Ex and all v ∈ E∗x. (Here “.” denotes dot product on Rn). Let
{φα : Uα −→ Vα}α be an atlas for M , giving rise to a locally trivialising atlas,
{ψα : (E|Uα) −→ Vα × Rq}α for E. We define maps ψ∗α : E∗|Uα −→ Vα × Rq
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by ψ∗α(v) = (x, (ψα|Ex)∗(v)) where x = φαv, so v ∈ E∗. We use this to define a
topology on E∗, similarly as before, and check that this gives it the structure of
a vector bundle.

The construction was rather formal. All we really need to remember is that if
we have a family of vector spaces depending smoothly on x ∈ M , then the dual
spaces can also be assumed to vary smoothly in x.

Cotangent bundle.

The main case of interest to us is the dual to the tangent bundle, (TM)∗, more
usually denoted T ∗M . Its fibres have the form (TxM)∗, again more commonly
denoted T ∗xM . An element of T ∗xM called a covector at x. A section of T ∗M is
called a covector field, or more commonly a 1-form. (The latter terminology will
be explained in Section 10.)

Suppose that f ∈ C∞(M) is a smooth function on M . Then f determines
an element of T ∗xM , given by the linear map [v 7→ v.f ] : TxM −→ R, where
v ∈ TxM . (This only requires f to be defined on a neighbourhood of x. Indeed,
it only depends on the germ of f at x.) This element is denoted df(x). The map
[x 7→ df(x)] : M −→ T ∗M is a section of T ∗M is a section of T ∗M , that is, a
1-form. It is denoted df . Note that we have the product rule: d(fg) = gdf + fdg.

If φ : U −→ Rm is a chart, then we get 1-forms, dx1, . . . , dxm, defined on U ,
where xi is the ith coordinate of φ. In the notation for tangent vectors described in
Section 3, we see that dxi(

∂
∂xi

) = δij. We see that, at each x ∈M , {dx1, . . . , dxm}
is a basis for T ∗xM . In fact, it is the dual basis to the basis,

{
∂
∂x1
, . . . , ∂

∂xm

}
for

TxM . Note that if f is as smooth function, we have df = ∂f
∂xi
dxi.

Note that if ω is a 1-form on X is a vector field, we get a map, denoted ω(X),
from M to R. This is defined pointwise, just applying ω(x) ∈ T ∗x to X(x) ∈ TxM .
One checks (from the definion of the smooth structure, that ω(X) : M −→ R is
again smooth. In other words ω(X) ∈ C∞(M).

Suppose that {φα : Uα −→ Vα}α is an atlas for M . For each α, we have the
1-forms dxα1 , . . . , dx

α
m. On the overlap, Uα ∩ Uβ, these transform according to the

rule, dxαi =
∑m

j=1
∂xαi
∂xβj

dxβj . Note that Jαβ(x) =

(
∂xαi
∂xβj

)
ij

is the Jacobian of the

transition function φα ◦ φ−1β (evaluated at φβx). This is the inverse of the Jaco-

bian of the transition function φβ ◦ φ−1α (evaluated at φαx). This ties in with the
corresponding formula or tangent vectors, described in Section 3.

Example : For example, given polar coordinates in the (r, θ) in the euclidean
xy-plane, we have 1-forms, dr and dθ. These satisfy the familiar relations

dx = cos θ dr − r sin θ dθ
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and

dy = sin θ dr + r cos θ dθ.

which we can now make formal sense of.

1-forms can be used to integrate along curves. Suppose that γ : [a, b] −→M is
a smooth curve, and that ω is a 1-form on M . Then we get a smooth function
[t 7→ (ω(γ(t)))(γ′(t))], evaluating ω(γ(t)) ∈ T ∗γ(t)M at the vector γ′(t) ∈ Tγ(t)M .

We write
∫
γ
ω =

∫ b
a
(ω(γ(t)))(γ′(t)) dt.

Exercise : If f is a smooth function on M , then
∫
γ
df = f(b)−f(a). (Here, “df”

denotes the 1-form.)

Pull-backs :

Suppose M,N are smooth manifolds and f : M −→ N is a smooth function.
Given a 1-form, ω, on N , we can define a 1-form, η, on M as follows. Given x ∈M ,
write η(x)(v) = ω(f(x))(f∗v), where f∗(v) = (dxf)(v). Thus η(x) ∈ T ∗x (M). This
gives a map [x −→ η(x)] : M −→ T ∗M . One can check (exercise) that this is
smooth, hence a section of T ∗M . In other words, η is a 1-form on M .

This is commonly denoted f ∗ω = η, and called the pull-back of η to M .
As an example, suppose I ⊆M is an open interval, and γ : I −→M is smooth

path. Given a 1-form, ω, on M , we get a 1-form γ∗ω on I, which can be written
in the form γ∗ω = λ dt, where t is the R-coordinate, and λ : I −→ R is a smooth
function. One checks (execise) that

∫
γ
ω =

∫
I
λ(t) dt (in the usual sense). In other

words, the integral of a 1-form along a path can be equivalently defined by pulling
back the 1-form the domain, and integrating in the usual way.

8. Extending smooth functions

This section we give some technical but useful results about extending smooth
functions on manifolds. The basic building blocks are so-called “bump functions”
which are smooth, and identically zero outside a compact set. For example:

Lemma 8.1. There is a smooth function, θ0 : Rn −→ [0, 1] ⊆ R, with θ0(x) = 1
whenever ||x|| ≤ 1, and with θ0(x) = 0 whenever ||x|| ≥ 2.

Proof. We construct θ0 in stages. First, define θ1 : R −→ R by θ1(t) = e−1/t

for t > 0 and θ1(t) = 0 for t < 0. This is smooth (exercise). Now set θ2(t) =
θ1(t)/(θ1(t) + θ1(1 − t)). Thus θ2|(1,∞) ≡ 1 and θ2|(−∞, 0] ≡ 0. Now set
θ0(x) = θ2(2− ||x||) for x ∈ Rn. This is also smooth. �

We have the following corollary for manifolds.
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Lemma 8.2. Let M be an m-manifold, let W ⊆ M be an open subset, and let
x ∈ W . Then there is a smooth function θ : M −→ [0, 1] such that θ|(M \W ) ≡ 0
and such that θ is identically 1 on some neighbourhood of x.

Proof. Let φ : U −→ V ⊆ Rm be a chart with x ∈ U . After postcomposing with
a translation of Rm, we can suppose that 0 ∈ φ(W ∩U), and after postcomposing
again by a dilation, we can suppose that the 2-ball, B(0; 2), lies in φ(W ∩ U).
Now set θ(x) = θ0(φ(x)) for x ∈ U and set θ(x) = 0 for x ∈M \ U . �

Corollary 8.3. Suppose that f : W −→ R is a smooth function defined on some
open set W ⊆ M , and suppose that x ∈ W . Then there is a smooth function
g : M −→ R which agrees with f on some neighbourhood of x in W .

Proof. Let θ : M −→ [0, 1] be the function given by Lemma 8.2, and set g(x) =
f(x)θ(x) for x ∈ W and g(x) = 0 for x /∈ W . �

Recall from Section 6 that Gx(M) is the space of germs at x. There is a natu-
ral linear map from C∞(M) (the space of smooth real-valued function on M) to
Gx(M). Corollary 8.3 now tells us that this is surjective. In other words, every
germ arises from a global smooth function (defined on all of M).

Remark : Retrospectively, this means that we could have used C∞(M) in place
of Gx(M) in Section 6 to define the tangent space, TxM , to M at x. However,
this would be somewhat unnatural, in that it implicates the whole of M in what
is really just a local construction.

Partitions of Unity.

We next need a brief digression into general topology.
Let X be a hausdorff topological space. Recall that an open cover of X is

a collection, U , of open subsets of X with X =
⋃
U . We say that U is locally

finite if, for all x ∈ X, there is an open set O ⊆ X, with x ∈ O such that
{U ∈ U | O ∩ U 6= ∅} is finite. (If X is locally compact, this is equivalent to
saying that any compact subset of X meets only finitely many elements of U .)

Definition. A refinement of U is an open cover, V , of X such that (∀V ∈ V)(∃U ∈
U)(V ⊆ U).

Note that if X is locally compact, then any open cover has a refinement all of
whose elements are relatively compact. (Recall that a subset U ⊆ X is relatively
compact if its closure Ū is compact.)

Definition. X is paracompact if every open cover has a locally finite refinement.

Clearly any (finite) subcover of an open cover is a (locally finite) refinement.
Thus any compact space is paracompact. The following is a bit more challenging:
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Exercise (for topologists) : A locally compact second countable hausdorff
space is paracompact.

In particular, any manifold is paracompact.
If you don’t want to be bothered with the exercise, you can just substitute

“paracompact” for “second countable” in the definition of “manifold” in Section
6. (Since the converse is also holds, if one assumes that M is connected.) A lot
of books define “manifold” in this way anyway.

The point behind this is that it allows us to pass to covers with nicer properties.
For example, if we want, we can find an atlas for M which is locally finite, and
such that the domain of each chart has compact closure.

We now get back to manifolds.

Definition. Let f : M −→ [0,∞) ⊆ R be a smooth function. The support of f ,
denoted supp f , is the closure of {x ∈M | f(x) 6= 0}.

Let {Uα}α∈A be a locally finite open cover of M .

Definition. A partition of unity subordinate to {Uα}α is a collection of smooth
functions, ρα : M −→ [0, 1], indexed by α ∈ A, with supp ρα ⊆ Uα for all α ∈ A,
and such that

∑
α∈A ρα(x) = 1 for all x ∈M.

Note that this is just a finite sum, since ρα(x) = 0 for all but finitely many
α ∈ A.

We now have all the ingredients to prove the following:

Theorem 8.4. Any locally finite open cover of M has a subordinate partition of
unity.

Proof. The basic idea is quite simple, though the details are a bit technical.
First note that it’s enough to find such maps so that

∑
α∈A ρα(x) > 0 for all

x ∈M — since we can just renormalise, that is, replace ρα by ρα/(
∑

α∈A ρα).
Second, note that we can assume that each Ūα is compact. (Since we can always

find a locally finite subcover of, say {U ′β}β∈B, of {Uα}α∈A, by relatively compact
sets U ′β.) Given any β ∈ B, choose α(β) ∈ A with U ′β ⊆ Uα(β). If we have a
partition of unity, {ρ′β}β, subordinate to {U ′β}β, then set ρα =

∑
{ρ′β | α(β) = α}.

After renormalising, this gives a partition of unity for the original cover, {Uα}α.)
So let’s suppose that each Ūα is compact. Given any p ∈M , choose some α(p) ∈
A with p ∈ Uα(p). By Lemma 8.2, we can find an open set Op ⊆ Uα(p), with p ∈ Op,
together with a smooth function, θp : M −→ [0, 1] with sup θp ⊆ Uα(p) and with
θp|Op ≡ 1. Now {Op}p∈M is an open cover of M , so by paracompactness, there is a
locally finite subcover, V , say. For each V ∈ V , choose p(V ) ∈M with V ⊆ Op(V ).
Let P = {p(V ) | V ∈ V}. Given α ∈ A, let Pα = {p ∈ P | α(p) = α} ⊆ P ∩ Uα.
We claim that each Pα is finite. To see this, let K =

⋃
{Ūβ | Uα ∩ Uβ 6= ∅}. This

is compact (since there only finitely many such β). Now, if p = p(V ) ∈ Pα, then
V ⊆ K (since V ⊆ Op ⊆ Uα(p), and p ∈ Uα ∩ Uα(p), so Uα ∩ Uα(p) 6= ∅ and so
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Uα(p) ⊆ K). Since V is a locally finite cover of M , hence of K, there are only
finitely many such V , proving the claim. We now set ρα =

∑
p∈Pα θp. We now

have
∑

α∈A ρα(x) =
∑

p∈P θp(x) > 0 for all x ∈ M (since there is some V with

x ∈ V ⊆ Op(V ), so θp(V )(x) = 1). �

For future reference, we note that if {Uα}α∈A and {U ′β}β∈B are open covers of
M , then so is {Uα∩U ′β}(α,β)∈A×B. If {Uα}α and {U ′β}β are both locally finite, then
so is {Uα ∩ U ′β}α,β. If {ρα}α and {ρ′β}β are respectively partitions of unity subor-
dinate to {Uα}α and {U ′β}β, then {ραρ′β}α,β is a partition of unity subordinate to
{Uα ∩ U ′β}α,β.

Riemannian manifolds.

As an example of an application of partitions of unity, we consider the existence
of riemannian metrics (Theorem 8.5 below). (Some further applications will be
described in Section 10.) First, we need to say what a “riemannian metric” is.

Let p : TM −→M be the tangent bundle to M . Let P = {(v, w) ∈ TM×TM |
pv = pw}. In other words, it consists of pairs of tangent vectors based at the same
point of M . Clearly, there is a natural map P −→M , and as discussed in Section
7, and we can identify P with the Whitney sum TM ⊕ TM . In particular, P is
a smooth (3m)-manifold, so it makes sense to speak of a function from P to R as
being smooth.

Definition. A riemannian metric on M is a smooth map f : P −→ R such that
for all x ∈ M , the restriction of f to the fibre TxM × TxM , is an inner product
on TxM .

(Of course, this is not a “metric” in the standard metric space sense, though as
we will note, it does give rise to one.)

Given v, w ∈ TxM , we usually denote f((v, w)) as 〈v, w〉 — the usual notation

for an inner product. If v ∈ TxM , we write ||v|| =
√
〈v, v〉. This is the induced

norm on TxM . In particular, a riemannian metric gives us a way of measuring
norms of tangent vectors in a nice smooth way.

If M ⊆ Rn is a submanifold of Rn, then it already comes equipped with a
riemannian metric. Recall that in this case, TxM is identified with a subspace of
Rn, and we can simply take 〈v, w〉 = v.w, to be the restriction of the dot product
on Rn.

Thus, Rn is itself a riemannian manifold. So is also Sn is a natural way. If
m = 2 and R3, the riemannian metric is essentially the same thing as the “first
fundamental form” on the surface M ⊆ R3.

In general, an abstract manifold does not come already equipped with a rie-
mannian metric. However, we have:

Theorem 8.5. Every manifold admits a riemannian metric.
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Proof. Let {φα : Uα −→ Vα}α∈A be an atlas for M , giving rise to a trivialising
atlas, {ψα}α for TM . By paracompactness of M , we can assume {Uα}α to be
locally finite. Let {ρα}α be a partition of unity on M subordinate to {Uα}α, as
given by Theorem 8.4.

Given α ∈ A, and v, w ∈ TxM with x ∈ Uα, we set 〈v, w〉α = (ψαv).(ψαw). We
now set 〈v, w〉 =

∑
α∈A ρα(x)〈v, w〉α. This is smooth, and its restriction to each

tangent space is an inner product (since a positive linear combination of inner
products is an inner product). �

In other words, we use the partition of unity to patch together inner products
induced from the dot products given by charts. This is a typical application of
this principle.

Finally, what are riemannian metrics good for?
They arise naturally in many different contexts. They can be also used to prove

things about manifolds.
For example, if γ : [a, b] −→M is a smooth curve, we can its riemannian length,

length γ as
∫ b
a
||γ′(t)|| dt, where γ′(t) ∈ Tγ(t)M is its tangent, as defined in Section

6. (Note that if M ⊆ Rn is an embedded manifold, with the induced riemannian
metric from Rn, then this is the usual length in Rn.)

One can go on to show that if M is connected, then any two points, x, y ∈M ,
can be joined by a smooth path (a smooth version of Lemma 3.5). One can then
define d(x, y) to be the infimum of the lengths of all such paths. It’s not to hard to
see that d is a metric on M (in the traditional metric space sense), which induces
the original topology. It then follows (by Theorem 8.5) that any (connected)
riemannian manifold is metrisable. We won’t however go into the details of that
here.

9. Manifolds with boundary

This will be a brief section. We will summarise the basic theory of “manifolds”
come which come with a boundary. Such spaces arise naturally, and are also an
important tool in developing the theory of manifolds as we have so far described
them.

Write Hm = {(x1, . . . , xn) ∈ Rm | xn ≥ 0}, and ∂Hm = Rm−1 × {0} ⊆ Hm.
We now proceed to define a manifold with boundary exactly as for “manifold”

in Section 6, except with Hm now replacing Rm as the model space. Thus, M
is a second countable hausdorff topological space, which an atlas of charts, φα :
Uα −→ Vα, indexed by α ∈ A, where Vα is now an open set in Hm. To get the
smooth structure, we insist that the transition maps, φβ ◦ φ−1α : φα(Uα ∩ Uβ) −→
φβ(Uα ∩ Uβ), are all smooth in the sense defined in Section 3 for subsets of Rm

(that is, that they extend to smooth functions defined on an open neighbourhood
in Rm).

The following is a basic observation:
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Lemma 9.1. Suppose that x ∈ Uα ∩ Uβ. Then φαx ∈ ∂Hm if and only if φβx ∈
∂Hm.

This boils down to proving the following:

Lemma 9.2. Let θ : U −→ V be a diffeomorphism between open subsets, U, V ⊆
Hm. Then θ(U ∩Hm) = V ∩ ∂Hm.

We leave the proof as an exercise (using the inverse function theorem).
(The statement is also true for homeomorphisms, but much harder to prove.)

Definition. The boundary of M , denoted ∂M , is the set of x ∈ M such that
φαx ∈ ∂H for some (hence every) chart φα : Uα −→ Vα, of M , with x ∈ Uα.

The interior of M , denoted intM , is M \ ∂M .

Note : This terminology is specific to manifolds, and in general differs from the
standard terminology for topological spaces. (For example, the usual topological
interior of M as a subset of M is of course just M itself!)

Exercise : intM is canonically an m-manifold (without boundary) and ∂M is
canonically an (m− 1)-manifold (provided it is non-empty).

We have allowed ∂M to be the empty set, which we decided should not be con-
sidered a manifold. Hence the somewhat artificial clause in the above statement.

We can now go on to define smooth maps and diffeomorphisms in the same way
as before.

Examples :

(1) Hm is a manifold with boundary, ∂Hm = ∂Hm (as already defined).

(2) Any interval in R is a 1-manifold with boundary. In fact, any 1-manfold with
boundary is diffeomorphic to exactly one of S1, R, [0, 1] or [0,∞).

(3) The unit ball, B(0; 1), in Rn is a manifold with boundary, ∂B(0; 1) = Sn−1.
(This is also the topological boundary in this case.)

One can now go on to discuss tangent spaces and such.
Note that if M is oriented, then we can get an orientation on ∂M , simply by

restricting the charts in an oriented atlas to ∂M . In fact (for reasons that become
clear in Section 11), we adopt the convention that the “orientation induced” on
∂M is given by such a retriction in the case where m is even, whereas it is the
opposite orientation when m is odd.
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10. Differential forms and integration

First, we need some linear algebra. For simplicity, we assume all vector spaces
to be finite dimensional.

Given vector spaces, E,F , and p ∈ N, p ≥ 1, write A(Ep, F ) for the vector
space of alternating p-linear maps from Ep = E × · · · × E −→ F . (So that
A(E1, F ) = L(E,F ) is just the space of linear maps.) We want to define an
“exterior product” which allows us to convert any alternating multilinear map
into linear one. It is based on the following formal observation:

Lemma 10.1. Given E, p, there is a vector space, V , together with an surjective
map µ ∈ A(Ep, V ), such that if θ ∈ A(Ep, F ), there is a linear map θ̂ ∈ L(V, F )

such that θ = θ̂ ◦ µ.

Proof. Let V = (A(Ep,R))∗ — the dual space to A(Ep,R). Define µ : Ep −→ V
by µ(v)(φ) = φ(v), where v ∈ Ep and φ ∈ A(Ep,R). Note that µ is alternating in
the vi, since φ is.

We first check that the conclusion holds when F = R. To see this, let θ ∈
A(Ep,R). Define θ̂ : V −→ R by θ̂(f) = f(θ), for all f ∈ V (so f : A(Ep,R) −→
R). Now, if v ∈ Ep, we have θ̂(µ(v)) = (µ(v))(θ) = θ(v), and so θ̂ ◦ µ = θ, as
required.

Now a general finite dimensional vector space is isomorphic to Rd for some d, so
we can just apply the construction of the previous paragraph to each coordinate
separately.

One can also show that µ is surjective. But to save us the bother, we could just
replace V by the image of µ(Ep) ⊆ V , which will work just as well. �

Note that the map, θ̂, obtained from θ is unique. Also, if µ′ : Ep −→ V ′ is
another such map satisfying the same property, then we get unique linear maps
µ̂′ : V −→ V ′ and µ̂ : V ′ −→ V , with µ′ = µ̂′ ◦µ and µ = µ̂ ◦µ′. These are inverse
isomorphisms.

It follows that V is unique up to isomorphism (respecting µ). Henceforth, we
write V = ΛpE and given v1, v2, . . . , vp ∈ E, we write

v1 ∧ v2 ∧ · · · ∧ vp = µ(v1, v2, . . . , vp).

Definition. ΛpE is the p’th exterior power of E.

Note that Λ1E is naturally identified with E, via the map µ which we can
consider to be the identity. Also, ΛpE = {0} for p > n.

The above was all very formal, but there is a much more concrete way of
understanding what ΛpE looks like.

Let e1, e2, . . . , em be a basis for E. Now since µ is surjective, ΛpE is spanned
by elements of the form ei1 ∧ ei2 ∧ · · · ∧ eip , where ik ∈ I(m) = {1, . . . ,m}
(since Ep is spanned by elements of the form (ei1 , . . . , eip)). Now, if two of the
indices are equal, then this element is 0 (since the map µ is alternating). Thus,
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we can assume that all the ik are distinct. Also, by swapping any two of the
indices, the result changes by a factor of −1 (again, since µ is alternating). By
performing a sequence of such transpositions, we can put all the indices in order,
so we get ei1 ∧ · · · ∧ eip = ±ej1 ∧ · · · ∧ ejp , where {j1, . . . , jp} = {i1, . . . , ip}, and
j1 < j2 < · · · < jp. Note that the sign is given by the signature of the permutation
of the indices need to achieve this.

Now, write I(m, p) for the set of subsets of I(m) = {1, . . . ,m} of cardinality
p. Given I ∈ I(m, p), write eI = ei1 ∧ · · · ∧ eip , where I = {i1, . . . , ip} and
i1 < i2 < · · · < ip. We claim:

Lemma 10.2. {eI | I ∈ I(m, p)} is a basis for ΛpE.

Proof. We have already seen that the eI span ΛpE. We need to show that they
are linearly independent.

Now, given any I ∈ I(m, p), there is an alternating map, θI ∈ A(Ep,R), with
θI(ei1 , . . . , eip) = 1, and with θI(ej1 , . . . , ejp) = 0 if {j1, . . . , jp} 6= I. (Given
v1, . . . , vp ∈ E, write vi =

∑m
j=1 aijej where aij ∈ R, and set θI(v1, . . . , vp) to be

the determinant of the p × p matrix (aij)ij, where i ranges over {1, . . . , p}, and

j ranges over I.) Now θI gives rise to a map θ̂I : ΛpE −→ R, with θ̂(eI) = 1

and θ̂(eJ) = 0 for all J 6= I. It follows that the eI are linearly independent, as
claimed. �

It follows that dim ΛpE = |I(m, p)| =
(
m
p

)
.

Exercise : Show that dimA(Ep,R) =
(
m
p

)
. Given that, by our construction,

ΛpE ⊆ (A(Ep,R))∗, deduce that, in fact, ΛpE = (A(Ep,R))∗.

A particular case is when p = m, so the dimension is 1. In this case, the single
element eI(m) = e1 ∧ · · · ∧ ep serves as a basis.

What effect does changing the basis of E have on the basis of ΛpE?
First, consider the case where p = m. Let v1, . . . , vm ∈ E be (for the moment)

any set of m elements of E. Write vi =
∑m

j=1 aijej, so A = (aij)ij is an m ×m
matrix. We know that vI(m) = v1 ∧ · · · ∧ vm must be some multiple of eI . To
find this multiple, imagine expanding the expression (

∑
j a1jej)∧· · ·∧(

∑
j amjej).

The only terms that are non-zero are those which select a complete set of ei in
some order. In other words, each is some multiple of eπ−1(1)∧· · ·∧eπ−1(m) for some
permutation, π, of I(m). Putting these indices back in order, this expression is
equal to sig(π)eI , where sig(π) denotes the signature of π. The coefficient of eI
is thus sig(π)a1π(1) · · · amπ(m). Each permutation occurs exactly once, so we now
sum over all permutations and we get

∑
π sig(π)

∏m
i=1 aiπ(i), which is precisely the

determinant, det(A). In other words, vI(m) = (det(A))eI(m). Note that if vi is a
basis, then A is invertible, so the factor, det(A) is non-zero, as expected.

In Rm, this has a nice geometric interpretation. Recall that det(A) is the
signed volume of the parallelepiped with edges given by the vectors vi (that is
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with vertices of the form
∑

i εivi, where εi ∈ {0, 1}). By “signed volume” we
mean that it is positive if v1, . . . , vm is a positively oriented basis, and negative if
it is a negatively oriented basis, and 0 if it does not span (so that the parallelepided
is degenerate). Thus, we can think of v1 ∧ · · · ∧ vm as measuring the volume of
this parallelepiped (relative to the unit cube, given by the standard basis, which
is deemed to have volume 1).

In general, if p 6= m, then these things transform by a similar, though more
complicated formula. It can be shown by a similar argument as in the case where
p = m. Since we will not make explicit use of it, we leave the following as an
exercise:

Exercise : Let v1, . . . , vm ∈ E, and define A as before. Given I, J ∈ I(m, p),
let AIJ be the p × p matrix (aij)ij as i ranges over I and j ranges over J . Let
∆IJ = detAIJ . Then vI =

∑
J∈I(m,p) εIJ∆IJeJ , where εIJ is the minimal number

of transpositions needed to shift all the indices I to J .

Given p, q ∈ N with p, q ≥ 1, we can define a bilinear “wedge product”, [(η, ζ) 7→
η∧ζ] : ΛpE×ΛqE −→ Λp+qE. To do this, choose a basis e1, . . . , em, for E. Given
indices i1 < · · · < ip and j1 < · · · < jq in I(m), we set

(ei1 ∧ · · · ∧ eip) ∧ (ej1 ∧ · · · ∧ ejq) = ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq .

(Note the result is will be non-zero precisely when I = {i1, · · · , ip} and J =
{j1, . . . , jq} are disjoint, and then eI ∧ eJ = ±eI∪J .) We need to check that the
resulting map does not, in fact, depend on the basis {ei}i we choose.

In fact, we claim that if x1, . . . , xp, y1, . . . , yq are any elements of E, then

(x1 ∧ · · · ∧ xp) ∧ (y1 ∧ · · · ∧ yq) = x1 ∧ · · · ∧ xp ∧ y1 ∧ · · · ∧ yq.

To see this, first note that the formula defining ∧ remains valid if we permute
independently the indices {ik}k and {jl}l (since any transposition multiplies both
sides by −1). Also, both sides are multilinear in the entries, so the statement
follows by writing the xi’s and yj’s in terms of the ek’s. In particular, we see that
the same formula holds if we choose a different basis.

Exercises :

(1) If η ∈ ΛpE, ζ ∈ ΛqE and ω ∈ ΛrE, then (η ∧ ζ) ∧ ω = η ∧ (ζ ∧ ω).
This means that we can just denote the result by η ∧ ζ ∧ ω.

(2) If η ∈ ΛpE, ζ ∈ ΛqE, then η ∧ ζ = (−1)pqζ ∧ η.
In particular, if p = q is odd, then η ∧ η = 0.
Let η = (e1 ∧ e2) + (e3 ∧ e4) ∈ Λ2R4. Then η ∧ η 6= 0.
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Note : This notation is consistent. Recall that we can identify E with Λ1E. In
this case, if vi ∈ E, the element v1 ∧ · · · ∧ vp ∈ ΛpE as originally defined is the
same as the wedge product of the vi thought of as elements of Λ1E.

Example : The case of dimension 3 is special in that dim Λ2E = 3 = dimE.
Let e1, e2, e3 be the standard basis for R3. This gives us basis, e1∧e2, e2∧e3, e3∧

e1, for Λ2R3. (We write e3∧ e1 instead of e1∧ e3 to simplify the sign conventions.)
We have a linear isomorphism, θ : Λ2R3 −→ R3, given by θ(e1 ∧ e2) = e3, θ(e2 ∧
e3) = e1 and θ(e3 ∧ e1) = e2. Note that in all cases, θ(ei ∧ ej) = ei × ej, where
× denotes the usual cross product on R3. Since both sides are bilinear, it follows
that θ(v ∧ w) = v × w for all v, w ∈ R3. (Thus, if we identify Λ2R3 with R3 via
θ, then the wedge product is the same as the cross product. Indeed, the cross
product is often denoted by ∧.)

There is also a connection with triple products. If v, w, z ∈ R3, then v∧w∧z =
λe1 ∧ e2 ∧ e3, where λ is the triple product (v × w).z.

The above identification of Λ2R3 with R3 only really requires the dot product
and orientation on R3: one can check that any positively oriented orthonormal
frame would have given rise to same identification. Indeed, the same construction
works for any 3-dimensional oriented inner product space. However, for a general
3-dimensional vector space, E, there is no canonical identification of Λ2E with E,
so cross products do not make sense. Of course, it is also a phenomenon special
to 3 dimensions.

Suppose that E and E ′ are finite dimensional vector spaces, and that φ : E −→
E ′ is a linear map. This gives rise to a multilinear map, φp : Ep −→ (E ′)p, just
taking the direct products, and hence in turn to an alternating map, µ′ ◦ φp :
Ep −→ ΛpE ′, where µ′ : (E ′)p −→ ΛpE ′ is the exterior product of E ′. By the
defining property of ΛpE ′, we get a linear map, Λpφ : ΛpE −→ ΛpE ′, such that
(Λpφ) ◦ µ = µ′ ◦ φp.

Again, this is very formal, but it can be described more simply.
Note that if x1, . . . , xp ∈ E, then

(Λpφ)(x1 ∧ · · · ∧ xp) = (φx1) ∧ · · · ∧ (φxp).

In particular, if e1, . . . , em is a basis for E, then we can describe Λpφ by setting

(Λpφ)(eI) = (Λpφ)(ei1 ∧ · · · ∧ eip) = (φei1) ∧ · · · ∧ (φeip).

on the basis elements (eI)I of ΛpE, and extending linearly.

Exercise : Check explicitly that this is well defined.

We now finally get back to manifolds.
Let M be an m-manifold. Given x ∈ M , we can form the p’th exterior power,

ΛpT ∗xM of the cotangent space T ∗xM . We can assemble these together into a vector
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bundle, denoted ΛpT ∗M . (In other words, (ΛpT ∗M)x = ΛpT ∗xM .) This can be
achieved by a similar construction as for Whitney sums and dual bundles. We
won’t give details. We only really need to note that allows us talk about sections,
that is smooth fields of exterior products. More precisely, they can be written
simply in local coordinates, as we will see shortly. Note that Λ1T ∗M ≡ T ∗M .

Definition. A p-form on M is a section of the bundle ΛpT ∗M .

That is, for each x ∈M , we have ω(x) ∈ ΛpT ∗xN , which varies in a nice smooth
way. Note that a 1-form is the same a “covector field”. (The latter term is rarely
used.)

Given a p-form, η, and a q-form, ζ, we can form the (p+ q)-form η ∧ ζ. This is
defined pointwise: (η∧ζ)(x) = η(x)∧ζ(x). We have seen that η∧ζ = (−1)pqζ∧η,
and that (η ∧ ζ) ∧ ω = η ∧ (ζ ∧ ω) (so we can drop brackets from the notation).

Let φ : U −→M be a chart, with local coordinates, x1, . . . , xm. We have locally
defined 1-forms, dx1, . . . , dxm, which (evaluated at any given point ofM) give a ba-
sis for the cotangent space. Given I ∈ I(m, p), we will write dxI = dxi1∧· · ·∧dxip ,
where I = {i1, . . . , ip} and i1 < · · · < ip. (This is not standard notation. We use
bold font d in the above to avoid potential ambiguity of notation when we come to
describe exterior derivatives in Section 11.) Thus {dxI}I∈I(m,p) (evaluated at any
point of M) gives us a basis for the exterior product. It follows (using Lemma 7.2)
that any p-form, ω, on U can be uniquely written in the form ω =

∑
I∈I(m,p) λIdxI ,

where each λI : U −→ R is a smooth function. (This is all we really need from the
bundle structure of ΛpT ∗M .) In particular, if p = m, any m-form locally looks
like λdx1 ∧ · · · ∧ dxm, where λ is a smooth function.

Pull-backs.

We can generalise the notion of “pull-back” to p-forms.
Suppose that M and N are manifolds (of dimension m and n) and that f :

M −→ N is a smooth function. Given a p-form, ω, on N , we can define a pull-
back p-form, f ∗ω, on M as follows. Given x ∈ M , we have the derivative map
dxf : TxM −→ TfxN , hence a dual map (dxf)∗ : T ∗fxN −→ T ∗xM . This in turn
gives rise to a linear map Λp(dxf)∗ : ΛpT ∗fxN −→ ΛpT ∗xM . We set (f ∗ω)(x) =
(Λp(dxf)∗)(ω(f(x))). One checks that this is smooth, and so f ∗ω is a p-form on
M . When p = 1, this reduces to the pull-back on 1-forms already defined.

In particular, we can pull back p-forms to any manifold embedded in a larger
manifold, such as Rn.

Again this is very formal. It’s much easier to see with an example.

(1) Suppose S1 is the unit circle in R2. Let θ be the angle co-ordinate, so that
x = cos θ and y = sin θ, where x, y are the usual coordinates on R2. Then the pull
back of dx and dy are obtained by differentiating these formulae: − sin θ dθ and
cos θ dθ. From this, we can pull back an arbitrary 1-form, just by linear extension.
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For example 2xy dx+ xey dy pulls back to (−2 cos θ sin2 θ + cos2 θesin θ) dθ, etc.

(2) Suppose S2 is the unit 2-sphere in R3. Consider spherical polar coordinates,
θ, φ (away from the poles). The coordinates in R3 are given by x = sin θ cosφ,
y = sin θ sinφ, z = sin θ. The pull-backs of dx, dy and dz are respectively:
cos θ cosφ dθ − sin θ sinφ dφ, cos θ sinφ dθ + sin θ cosφ dφ and cosφ dφ. So the
pull back of dx ∧ dy is cos θ sin θ dθ ∧ dφ.

Exercise : Check that the above examples agree with the formal definition of
pull-back.

Integration on manifolds.

For the rest of this section, we will focus on m-forms.
Let {φα : Uα −→ Vα}α∈A be an atlas for M . If α, β ∈ A, then on the overlap,

Uα ∩ Uβ, we have

dxαi ∧ · · · ∧ dxαm = ∆αβ(x)dxβ1 ∧ · · · ∧ dxβm

where ∆αβ is the determinant of the Jacobian of the transition function, φα ◦φ−1β .
(Recall that 1-forms transform according to the Jacobian.) Note in particular, if
we have an oriented atlas, then ∆αβ(x) > 0. This gives rise to:

Theorem 10.3. An m-manifold is orientable if and only if it admits a nowhere
vanishing m-form.

Proof. Suppose M is orientable. Choose an oriented atlas. We can suppose (by
paracompactness) that the cover, {Uα}α, is locally finite. Let {ρα}α be a partition
of unity subordinate to this cover (Theorem 8.4). Let ω =

∑
α∈A ραdx

α
1∧· · ·∧dxαm.

(We define ω(x) pointwise, so this a finite sum for any given x.) Now if x ∈ Uα,
we can express all of the contributions in terms of dxα1 ∧ · · · ∧ dxαm. By the above
transformation rule, we see that all the coefficients are non-negative, and at least
one must be positive. In particular, ω(x) 6= 0.

Conversely, suppose that ω is a nowhere vanishing m-form. Let {φα : Uα −→
Vα}α be an atlas for M . We can suppose that each Uα is connected. Writing
ω = λαdx

α
1∧· · ·∧dxαm, we see that λα is either always positive or always negative on

Uα. After postcomposing the chart with an orientation-reversing diffeomorphism
of Rn, if necessary, we can suppose that it is always positive. (We can take this
diffeomorphism to be just [(x1, . . . , xm) 7→ (−x1, . . . , xm)]). This now gives an
oriented atlas, since if x ∈ Uα ∩ Uβ, we have λβ(x) = ∆αβ(x)λα(x), so ∆αβ(x) >
0. �

In general, there is no preferred m-form on M . However, in some cases, if M
has additional structure, there is a canonical choice.
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Suppose, for example, that M ⊆ Rn, is a manifold embedded in Rn, equipped
with an orientation. Given x ∈ M , let v1(x), . . . , vm(x) ∈ TxM be a positively
oriented orthonormal basis for TxM . Let η1(x), . . . , ηm(x) ∈ T ∗xM be the dual
basis, and set ω(x) = η1(x) ∧ · · · ∧ ηm(x) ∈ ΛpT ∗xM . First note that ω(x) is, in
fact, well defined independently of the choice of v1(x), . . . , vm(x). This is because
a different choice of basis would transform by an orthogonal matrix (in SO(n,R)),
and the dual basis would also. But this has determinant 1, so we get the same
element of the exterior power. Second, we need to note that ω varies smoothly
in x. One way to see this is to recall, by Lemma 5.2 and subsequent discussion,
that we choose the vi locally to vary smoothly in x. Since everything is given by
simple formulae, it then follows that the ηi and ω, vary smoothly also. Thus, ω
is a canonically defined nowhere vanishing m-form on M . It is referred to as the
volume form, for reasons that will become apparent below.

In fact, the same construction works for a riemannian manifold. (The proof of
Lemma 5.2 works also in this case.) Thus, any oriented riemannian manifold also
has a globally defined volume form.

Integration of m-forms.

Let M be an oriented manifold. Given an m-form, ω, on M , we define the
support of ω, denoted suppω, to be the closure of the set {x ∈ M | ω(x) 6= 0}.
In this section, we will suppose that suppω is compact. The aim is to define the
integral,

∫
M
ω, of ω over M .

To this end, let {φ | Uα −→ Vα}α∈A be a locally finite oriented atlas.
Suppose, first that η is an m-form with supp η ⊆ Uα for some α ∈ A. We write

η = λαdx
α
1 ∧ · · · ∧ dxαm, where λα : Uα −→ R is smooth and compactly supported,

and set and set Iα(η) =
∫
Vα
λα ◦ φ−1α (x) dx (in the usual sense of an integral of a

compactly supported smooth function in Rm).
Now, choose a partition of unity, {ρα}α, subordinate to {Uα}α, and set

∫
M
ω =∑

α∈A Iα(ραω). (Note this is a finite sum, since only finitely many Uα meet
suppω.)

We need to check that this is well defined, independently of the choice of atlas
and partition of unity.

Let {φ′β : U ′β −→ V ′β}β∈B be another locally finite oriented atlas with the same
orientation.

Suppose first, that η is an m-form with supp η ⊆ Uα ∩ U ′β, where α ∈ A and
β ∈ B.

Lemma 10.4. Iα(η) = Iβ(η).

Proof. Locally, we write η = λαdx
α
I(m) = λβdx

β
I(m). Then, by the coordinate-

change formula, we have dxαI(m) = ∆αβ(x)dxβI(m), so λβ = ∆αβλα, where ∆αβ :

Uα ∩ Uβ −→ R is the determinant of the Jacobian of φα ◦ (φ′β)−1, evaluated at
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φ′β(x). We therefore get:

Iβ(η) =

∫
V ′β

λβ ◦ (φ′β)−1(x) dx =

∫
V ′β

(λβ ◦ (φα)−1) ◦ (φα ◦ (φ′β)−1)(x) dx

=

∫
V ′β

λβ ◦ φ−1α (x) ∆−1αβ(x) dx =

∫
Vα

λα ◦ φ−1α (x) dx = Iα(η).

Here the penultimate equality is the “change of variable” rule for integration in
Rm, as mentioned in Section 1. (This cancels out the Jacobian arising from the
change of coordinates in the m-form, and explains why m-forms are the natural
things to use for integation.) �

We can now write this quantity unambiguously as I{α,β}(η).
Let {ρ′β}β be a partition of unity subordinate to {U ′β}β. As observed in Section

8, {ραρ′β}(α,β)∈A×B is a partition of unity subordinate to {Uα∩U ′β}(α,β)∈A×B. Since
integration is additive in Rn, if supp η ⊆ Uα, we have Iα(η) =

∑
β∈B I{α,β}(ρ

′
βη).

Similarly, this holds interchanging the roles of α and β.
We now have∑

α∈A

Iα(ραω) =
∑

α∈A,β∈β

I{α,β}(ραρ
′
βω) =

∑
β∈B

Iβ(ρ′βω)

as required.
This shows that

∫
M
ω is well defined.

This now allows us to define the volume of a compact orientable riemannian
manifold. Choose any orientation, and set ω to be the volume form. We define
its volume to be volM =

∫
M
ω. Note that this is necessarily positive, since ω

is consistent with the orientation. If we reverse the orientation, we get the same
answer (exercise).

In fact, if f : M −→ R is any smooth function, we can integrate f with respect
to volume, that is, integrate the m-form fω. The result,

∫
M
fω, is often denoted

informally as
∫
M
f dV (or

∫
M
f dA if dimM = 2), where of course, “V ” and “A”

stand for “volume” and “area”. However this notation is somewhat at odds with
ours, and could lead to ambiguities with “exterior derivatives” described in the
next section.

Question : How should one define the volume of a compact non-orientable
riemannian manifold?

11. Exterior derivatives and Stokes’s theorem

Let M be an m-manifold. We write Ωp(M) for the space of p-forms, viewed as
a real vector space. We identify Ω0(M) ≡ C∞(M), that is, a “0-form” is just a
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smooth real-valued function on M . If U ⊆ M is open, and ω ∈ Ωp(M), we write
ω|U ∈ Ωp(U) for the restriction of ω to U .

We claim that we can consistently define a family of linear functions, d :
Ωp(M) −→ Ωp+1(M) (all traditionally denoted by the same symbol, d), so as
to satisfy the following:

(D1) If f ∈ Ω0(M), then df has its original meaning as a 1-form (as defined in
Section 7).
(D2) If f ∈ Ω0(M) and ω ∈ Ωp(M), then d(fω) = (df) ∧ ω + fdω.
(D3) If ω ∈ Ωp(M), then ddω = 0.
(D4) If U ⊆M is open, then d(ω|U) = (dω)|U .

Note that (D4) tells us that f is a local operation. If x ∈ M , then dω(x) only
depends on ω defined on an arbitrarily small neighbourhood of x.

In fact, we claim first, that such a system of maps (if it indeed exists) will be
unique.

To see this, we begin with the observation that if n ∈ N, and f1, . . . , fn ∈
Ω0(M), then d(df1∧· · ·∧dfn) = 0. This can be seen by induction on n, as follows.
Applying (D2) with f = f1 and ω = df2 ∧ · · · ∧ dfn = 0, we get

df1 ∧ · · · ∧ dfn = d(f1df2 ∧ · · · ∧ dfn)− f1d(df2 ∧ · · · ∧ dfn).

The second term of the right-hand side is 0 by induction. Applying d to both
sides, (D3) now tells us that the result is 0.

Now, by (D4) it is enough to check uniqueness for forms defined on the domain,
U , of a chart, φ : U −→ V . As usual, we write x1, . . . , xm for the coordinates.
Now dxi has its usual meaning (by (D1)). Any ω ∈ Ωp(U) has the form ω =∑

I∈I(m,p) λIdxI , where λI ∈ Ω0(U). By the previous paragraph, d(dxI) = 0, so

applying (D2) and linearity, we get dω =
∑

I∈I(m,p)(dλI) ∧ dxI . In other words,
we have no choice in how we define dω. It is unique.

To show existence we first check that if we define dω in the manner prescribed
above, then it must satisfy (D1)–(D3).

So let φ : U −→ V be a chart as above. Given

ω =
∑

I∈I(m,p)

λIdxI ∈ Ωp(U),

we now define

dω =
∑

I∈I(m,p)

(dλI) ∧ dxI ,

where dλI is defined as in Section 7. (If ω = λ ∈ Ω0(U), this is just interpreted
as dλ in the above sense.) Now (D1) holds, by definition. For (D2), we note that,

d((fλI)dxI) = d(fλI)∧dxI = (λIdf)∧dxI+fdλI∧dxI = df∧(λIdxI)+fdλI∧dxI .
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(Here we have used the product rule for Ω0(U) as described in Section 7.) Thus,
(D2) follows summing over all I ∈ I(m, p). For (D3), note that dλI =

∑m
i=1

∂λI
∂xi
dxi.

Thus,

dd(λIdxI) = d

(∑
j

∂λI
∂xj

dxj ∧ dxI

)
=
∑
i,j

∂2λI
∂xi∂xj

dxi ∧ dxj ∧ dxI

=
∑
i<j

(
∂2λI
∂xi∂xj

− ∂2λI
∂xj∂xi

)
dxi ∧ dxj ∧ dxI = 0.

Note that the second equality above calls for the observation that if f ∈ Ω0(U),
then d(fdxi1 ∧· · ·∧dxip) = (df)∧dxi1 ∧· · ·∧dxip for any indices, ik, in any order.
(This follows, since transposing any two indices in the defining formula has the
same effect on both sides, and setting two indices equal sets both sides equal to
0.) Summing over I, now gives (D3).

Note, by the earlier argument, (D1)–(D3) are enough to show uniqueness of
d : Ωp(U) −→ Ωp+1(U), without reference to (D4).

Of course, we need to define d : Ωp(W ) −→ Ωp+1(W ) for any open subset
W ⊆M , including M itself. But we can now do this pointwise. If x ∈ W , choose
any chart φ : U −→ V with x ∈ U ⊆ W . Given any ω ∈ Ωp(U), the above gives
d(ω|U) ∈ Ωp+1(U), and we set dω(x) = d(ω|U)(x). To check this is well defined,
note that if φ′ : U ′ −→ V ′ is another such chart, the operations satisfy (D1)–(D3)
on the intersecton U∩U ′, so by uniqueness we must have d(ω|U)(x) = d(ω|U ′)(x).

Now, by construction, (D4) holds. Since the properties are all local, we see that
(D1)–(D3) hold also.

(Alternatively, one can check, using the change of basis formula left as an ex-
ercise in Section 10, that the definition of dω, is invariant under change of coor-
dinates.)

In summary, we have now seen that there is a unique family of maps satisfying
(D1)–(D4) above.

Definition. Given ω ∈ Ωp(M), dω is called the exterior derivative of ω.

Exercise : If η ∈ Ωp(M) and ω ∈ Ωq(M), then d(η∧ω) = (dη)∧ω+(−1)pη∧dω.

Stokes’s Theorem

Let M now be an m-manifold with boundary (as discussed in Section 9). Thus,
∂M is an (m−1) manifold (if it is non-empty). We can define p-forms and exterior
derivatives on M in essentially the same way, and we will use the same notation.

We first note that there is a natural linear map, ι : Ωp(M) −→ Ωp(∂M), de-
fined as follows. Suppose ω ∈ Ωp(M), and that x1, . . . , xm are local coordinates
defined by some chart (to an open subset of Hm). We can write ω locally as∑

I∈I(m,p) λIdxI . We now define ιω locally by
∑

I∈I(m−1,p) λIdxI , where we have
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identified I(m− 1, p) ⊆ I(m, p). In other words, we have simply thrown away all
those terms that do not involve dxm.

Exercise If x ∈ ∂M , then ιω(x) does not depend on the choice of chart containing
x. (Note that any change of chart will send dxm to a 1-form of the form λdxm,
where λ is a smooth function.)

Given this, we see that ιω is defined on all of ∂M .
In fact, the ιω is usually just denoted by ω, and is thought of as the restriction

of ω to ∂M . This is the convention we adopt here.
We can finally state Stokes’s theorem:

Theorem 11.1. Let M be a compact oriented m-manifold with boundary. Let ω
be an (m− 1)-form on M . Then

∫
M
dω =

∫
∂M

ω.

If ∂M = ∅, this says that
∫
M
dω = 0.

Proof. Suppose first that suppω ⊆ U , where φ : U −→ V ⊆ Hm is a chart with
local coordinates x1, . . . , xm. We can write ω locally in the form ω =

∑n
i=1 ωi

with ωi = λidxIi , where Ii = I(m) \ {i}. (In other words, dxIi can be written as
“dx1∧ · · · ∧ dxm” except with the “dxi” term omitted.) Thus, ω restricted to ∂M
(as defined above) is just ωm.

Now

dωi =
∂λi
∂xi

dxi ∧ dxIi = (−1)i+1∂λi
∂xi

dxI(m).

Suppressing φ from the notation, we see (from the definition of integral) that∫
M

dωi =

∫
U

dωi = (−1)m+1

∫
Hm

∂λi
∂xi

dx1 dx2 . . . dxm,

the last term being the usual integral in Hm ⊆ Rm. Integrating the term in dxi
first (using Fubini’s Theorem) we get that

∫
M
dωi = 0 if i ≤ m, and that∫

M

dwm = (−1)m
∫
∂Hm

λm(x1, . . . , xm−1, 0) dx1 . . . dxm−1 =

∫
∂M

ωm =

∫
∂M

ω.

(We lose the (−1)m because of the conventions of orientation of ∂M defined at
the end of Section 9.) Thus, summing over i, we get

∫
M
dω =

∫
∂M

ω.
For the general case, choose any finite oriented atlas, {φα : Uα −→ Vα}α, for

M , and let {ρα}α be a subordinate partition of unity. Note that∑
α

d(ραω) =
∑
α

dρα ∧ ω +
∑
α

ραdω = 0 + dω = dω,

since
∑

α dρα = d1 = 0, and so∫
M

dω =

∫
M

∑
α

d(ραω) =
∑
α

∫
M

d(ραω) =
∑
α

∫
∂M

ραω =

∫
∂M

ω,
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by the earlier case. �

de Rham cohomology

We finish with a brief mention of “de Rham cohomology”.
Let M be any manifold (without boundary).

Definition. We say that a p-form, ω, on M is closed if dω = 0. We say that ω is
exact if there is a (p− 1)-form, η, on M such that ω = dη.

Since dd = 0, we see that every exact form is closed.
We write Bp(M) ⊆ Zp(M) = Ωp(M) for the subspaces of exact and closed

p-forms. Write Hp(M) = Zp(M)/Bp(M) for the quotient space.

Definition. Hp(M) is the p’th-de Rham cohomology group of M .

de Rham’s theorem says that Hp is naturally isomorphic to the singular coho-
mology of M with real coefficients, generally denoted Hp(M,R). In particular, it
depends only on the topology of M (not on the smooth structure). It also follows
that (if M is compact) Hp(M) is finite dimensional as a vector space over R, even
though Zp(M) and Bp(M) are both infinite dimensional.
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