Manifolds MA3H5. Exercise Sheet 6

(Recall the "classical" notions of "divergence, and curl" denoted $\nabla . v$ and $\nabla \times v$, of a vector field v defined on \mathbb{R}^{3}. In x, y, z coordinates, if $v=(P, Q, R)$, then $\nabla \cdot v=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ etc. $)$

1: Let V be a finite-dimensional vector space, and let $E=V^{*}$. Let e_{1}, \ldots, e_{m} be a basis for E. Given $1 \leq i<j \leq m$, define $\phi_{i j}: V^{2} \longrightarrow \mathbb{R}$ by $\phi_{i j}(v, w)=e_{i}(v) e_{j}(w)-e_{i}(w) e_{j}(v)$.
Show that ϕ is an alternating linear map.
Given any $\eta \in \Lambda^{2} E$, write $\eta=\sum_{i<j} \lambda_{i j} e_{i} \wedge e_{j}$, and set $\eta(v, w)=$ $\sum_{i<j} \lambda_{i j} \phi_{i j}(v, w)$.
If $e, f \in E$, show that $(e \wedge f)(v, w)=e(v) f(w)-e(w) f(v)$.
Show how this generalises to $\lambda^{p} E$. That is, for $\omega \in \Lambda^{p} E$, and v_{1}, \ldots, v_{p}, one can define $\omega\left(v_{1}, \ldots, v_{p}\right)$ to be an alternating multilinear map in the v_{i}.

2: Let M be a manifold, and let ω be a 1-form on M. Let X, Y be vector fields on M, and let [X, Y] be the Lie bracket (as defined on Sheet 3).
Show that $d \omega(X, Y)=X(\omega Y)-Y(\omega X)-\omega[X, Y]$.
Here $d \omega(X, Y)$ for the 2-form, $d \omega$, is defined as in Q2.
(Note, we can assume that ω has the form $u d v$ for real functions u, v.)
3: If $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}$ is compactly supported. Show that $\int_{\mathbb{R}^{m}} f \omega$ is just the usual intergral $\int_{\mathbb{R}^{m}} f d x_{1}, \ldots, d x_{m}$, where ω is the volume form on \mathbb{R}^{n}.

4: (Green's Theorem) Let $P, Q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be smooth functions.
Let ω be the 1 -form $\omega=P d x+Q d y$. Calculate $d w$.
Suppose that $D \subseteq \mathbb{R}$ is a compact disc, with smooth boundary, C : a compact 1-manifold in \mathbb{R}^{2}. If t is a local parameter for C, show that the induced form ω on C is given by $\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$.
Show that $\int_{C}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t=\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$.
5: Suppose that v is a vector field in \mathbb{R}^{3}. Write $v=(P, Q, R)$, where P, Q, R are real-valued functions. Write $\omega=P d x+Q d y+R d z$. Calculate $d \omega$.
Under the natural identification of $\Lambda^{2} \mathbb{R}^{3}$ with \mathbb{R}^{3}, show that the operation $[\omega \mapsto d \omega]$ correspond to taking the curl of the vector field
$[v \mapsto \nabla \times v]$.

6: (Divergence Theorem) Let $B \subseteq \mathbb{R}$ be a compact 3 -submanifold with boundary ∂B (an embedded 2-manifold). Given a vector field v on \mathbb{R}^{3}, we aim to show that $\int_{B}(\nabla . v) d V=\int_{\partial B}(v . n) d A$, where " $d V$ " informally denotes the volume form in \mathbb{R}^{3}, " $d A$ " denotes the area (volume) form on ∂B, and where n denotes the unit outward normal.
For this, write $v=(P, Q, R)$ for real functions P, Q, R, and let ω be the 2-form $\omega=P d y \wedge d z+Q d z \wedge d x+R d x \wedge d y$.
Show that $d \omega=(\nabla . v) d x \wedge d y \wedge d z$.
We claim that the induced from on ∂B can be written as $(v . n) \eta$, where η is the volume (area) form on ∂B.

To do this, let $p \in \partial B$. By linearity in v, it's enough to check this when $v(p)=(0,0,1)$. We can find local coordinates a, b, c in a neighbourhood, U, of p such that $S \cap U$ corresponds to $c=0$, and such that $\frac{\partial}{\partial a} \frac{\partial}{\partial b} \frac{\partial}{\partial c}$ is an orthonormal frame in $T_{p}(\partial B)$. In this way, $n(p)=\frac{\partial}{\partial c}$ and $\eta(p)=d a \wedge d b$ at p. Note that since the Jacobian at p is orthogonal, we have $\frac{\partial c}{\partial z}=\frac{\partial a}{\partial x} \frac{\partial b}{\partial y}-\frac{\partial b}{\partial x} \frac{\partial a}{\partial y}$. Thus, $d x \wedge d y=\frac{\partial c}{\partial z}=(0,0,1) \cdot n(p)$.

