Manifolds MA3H5. Exercise Sheet 6

(Recall the "classical" notions of "divergence, and curl" denoted $\nabla .v$ and $\nabla \times v$, of a vector field v defined on \mathbb{R}^3 . In x, y, z coordinates, if v = (P, Q, R), then $\nabla .v = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ etc.)

1: Let V be a finite-dimensional vector space, and let $E = V^*$. Let e_1, \ldots, e_m be a basis for E. Given $1 \le i < j \le m$, define $\phi_{ij} : V^2 \longrightarrow \mathbb{R}$ by $\phi_{ij}(v, w) = e_i(v)e_j(w) - e_i(w)e_j(v)$.

Show that ϕ is an alternating linear map.

Given any $\eta \in \Lambda^2 E$, write $\eta = \sum_{i < j} \lambda_{ij} e_i \wedge e_j$, and set $\eta(v, w) = \sum_{i < j} \lambda_{ij} \phi_{ij}(v, w)$.

If $e, f \in E$, show that $(e \wedge f)(v, w) = e(v)f(w) - e(w)f(v)$.

Show how this generalises to $\lambda^p E$. That is, for $\omega \in \Lambda^p E$, and v_1, \ldots, v_p , one can define $\omega(v_1, \ldots, v_p)$ to be an alternating multilinear map in the v_i .

2: Let M be a manifold, and let ω be a 1-form on M. Let X, Y be vector fields on M, and let [X, Y] be the Lie bracket (as defined on Sheet 3).

Show that $d\omega(X, Y) = X(\omega Y) - Y(\omega X) - \omega[X, Y].$

Here $d\omega(X, Y)$ for the 2-form, $d\omega$, is defined as in Q2.

(Note, we can assume that ω has the form udv for real functions u, v.)

3: If $f : \mathbb{R}^m \longrightarrow \mathbb{R}$ is compactly supported. Show that $\int_{\mathbb{R}^m} f\omega$ is just the usual integral $\int_{\mathbb{R}^m} f \, dx_1, \ldots, dx_m$, where ω is the volume form on \mathbb{R}^n .

4: (Green's Theorem) Let $P, Q : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be smooth functions.

Let ω be the 1-form $\omega = Pdx + Qdy$. Calculate dw.

Suppose that $D \subseteq \mathbb{R}$ is a compact disc, with smooth boundary, C: a compact 1-manifold in \mathbb{R}^2 . If t is a local parameter for C, show that the induced form ω on C is given by $\left(P\frac{dx}{dt} + Q\frac{dy}{dt}\right) dt$.

the induced form ω on C is given by $\left(P\frac{dx}{dt} + Q\frac{dy}{dt}\right) dt$. Show that $\int_C \left(P\frac{dx}{dt} + Q\frac{dy}{dt}\right) dt = \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$.

5: Suppose that v is a vector field in \mathbb{R}^3 . Write v = (P, Q, R), where P, Q, R are real-valued functions. Write $\omega = Pdx + Qdy + Rdz$. Calculate $d\omega$.

Under the natural identification of $\Lambda^2 \mathbb{R}^3$ with \mathbb{R}^3 , show that the operation $[\omega \mapsto d\omega]$ correspond to taking the curl of the vector field

 $[v \mapsto \nabla \times v].$

 $\mathbf{2}$

6: (Divergence Theorem) Let $B \subseteq \mathbb{R}$ be a compact 3-submanifold with boundary ∂B (an embedded 2-manifold). Given a vector field v on \mathbb{R}^3 , we aim to show that $\int_B (\nabla .v) \, dV = \int_{\partial B} (v.n) \, dA$, where "dV" informally denotes the volume form in \mathbb{R}^3 , "dA" denotes the area (volume) form on ∂B , and where n denotes the unit outward normal.

For this, write v = (P, Q, R) for real functions P, Q, R, and let ω be the 2-form $\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$. Show that $d\omega = (\nabla v)dx \wedge dy \wedge dz$.

We claim that the induced from on ∂B can be written as $(v.n)\eta$, where η is the volume (area) form on ∂B .

To do this, let $p \in \partial B$. By linearity in v, it's enough to check this when v(p) = (0, 0, 1). We can find local coordinates a, b, c in a neighbourhood, U, of p such that $S \cap U$ corresponds to c = 0, and such that $\frac{\partial}{\partial a} \frac{\partial}{\partial b} \frac{\partial}{\partial c}$ is an orthonormal frame in $T_p(\partial B)$. In this way, $n(p) = \frac{\partial}{\partial c}$ and $\eta(p) = da \wedge db$ at p. Note that since the Jacobian at p is orthogonal, we have $\frac{\partial c}{\partial z} = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial b}{\partial x} \frac{\partial a}{\partial y}$. Thus, $dx \wedge dy = \frac{\partial c}{\partial z} = (0, 0, 1).n(p)$.