Manifolds MA3H5. Exercise Sheet 4

1: Let $P^{n}=\left(\mathbb{R}^{n+1} \backslash\{0\}\right) / \sim$ be real projective n-space. Given $x=$ $\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \backslash\{0\}$, write $\left[x_{0}, \ldots, x_{n}\right] \in P^{n}$ for its \sim-class. Given $0 \leq i \leq n$, if $x_{i} \neq 0$, write $\phi_{i}\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\left(x_{0} / x_{i}, x_{1} / x_{i}, \ldots, x_{n} / x_{i}\right) \in$ \mathbb{R}^{n}, where, on the right-hand side, we have omitted the term " x_{i} / x_{i} ". Note that this is well defined.
Show that the collection of maps $\left\{\phi_{i}\right\}_{i=0}^{n}$, defined on suitable domains, gives rise to a smooth atlas for P^{n}.

2: Give a proof of Hadamard's lemma: If $U \subseteq \mathbb{R}^{n}$ is open $a \in U$, and $f: U \longrightarrow \mathbb{R}^{n}$ is smooth, then there are smooth funcitons $g_{i}=g_{i}^{U}:$ $U \longrightarrow \mathbb{R}^{n}$ such that $f(x)=f(a)+\sum_{i=1}^{m}\left(x_{i}-a_{i}\right) g_{i}(x)$ for all $x \in U$.
Show, moreover, that the g_{i}^{U} can be chosen consistently, that is in such a way that $g_{i} \mid V$ depends only on $f \mid V$ where $V \subseteq U$ is any open set containing containing a.
Deduce that Hadamard's lemma also holds for germs: that is, if $f \in$ $\mathcal{G}_{a}(M)$, then we can write $f=f(a)+\sum_{i=1}^{m}\left(\pi_{i}-a_{i}\right) g_{i}$ for $g_{i} \in \mathcal{G}_{a}(M)$, where $\pi_{i} \in \mathcal{G}_{a}(M)$ is the germ of the projection map $\left[x \mapsto x_{i}\right]$.

3: Suppose that $E \longrightarrow M$ and $F \longrightarrow N$ are vector bundles over manifolds M and N. Show that the direct product $E \times F \longrightarrow M \times N$ is a vector bundle. What is the fibre?

4: Suppose that $p: F \longrightarrow N$ is a vector bundle over N, and that $M \subseteq N$ is a submanifold. Let $E=p^{-1} M$. Show that $(p \mid E): E \longrightarrow M$ is a bundle.

5: Show that the diagonal $\Delta=\{(x, x) \mid x \in M\}$ is a submanifold of $M \times M$. Show how (3) and (4) can be used to give an equivalent construction of the Whitney sum of two bundles over M.

6: If $E, F, G \longrightarrow M$ are vector bundles over M, show that $(E \oplus F) \oplus G \equiv E \oplus(F \oplus G)$.

7: Show that for every $q \in \mathbb{N}, q>0$, there is a non-trivial bundle over S^{1} with fibre (isomorphic to) \mathbb{R}^{q}.

8: Let $E \longrightarrow M$ be a vector bundle. Show that there is a canonical isomorphism from E to $E^{* *}$.

Show that E is trivial if and only if E^{*} is trivial.
9: Let $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ be the 1 -form on \mathbb{R}^{2}, with cartesian coordinates x, y. Calculate $\int_{\gamma} \omega$, where γ is the unit circle, $\gamma(t)=(\cos t, \sin t)$.

10: Let M be a manifold and $x \in M$. Let $J \subseteq \mathcal{G}_{x}(M)$ be the of germs $f \in \mathcal{G}_{x}(M)$ which vanish at x (i.e. $f(x)=0$). Check that this is a subspace of $\mathcal{G}_{x}(M)$.
Let $K \subseteq J$ be the subspace spanned by $\{f g \mid f, g \in J\}$. Let θ : $\mathcal{G}_{x}(M) \longrightarrow T_{x}^{*} M$ be the linear map given by $\theta(f)=d f$ at x.
Show that θ is surjective.
Show that $\operatorname{ker} \theta=K$ (use Hadamard's Lemma for germs (Q1) above). Deduce that $T_{x}^{*} M$ is canonically isomorphic to J / K.
(This gives rise an equivalent, and direct, way of defining the cotangent space, $T_{x}^{*} M$. In this approach, one could retrospectively define the tangent space, $T_{x} M$, as the dual to $T_{x}^{*} M$.)

