Manifolds MA3H5. Exercise Sheet 3

1: (Every odd dimensional sphere admits a nowhere vanishing vector field.) Given $x \in S^{2 n-1} \subseteq \mathbb{R}^{2 n}$, write

$$
v(x)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots,-x_{2 n}, x_{2 n-1}\right) .
$$

Show that v is a vector field on $S^{2 n-1}$.
2: Show that the normal bundle, $\nu\left(S^{n}, \mathbb{R}^{n+1}\right)$, is diffeomorphic to $S^{n} \times \mathbb{R}$.

3: Show that the Möbius band is not orientable.

4: If M is a connected oriented manifold, show that every diffeomorphism from M to itself ether preserves or reverses orientation.

5: Let M and N be oriented manifolds of dimension m and n respectively. Give each of $M \times N$ and $N \times M$ the product orientation. Define $f: M \times N \longrightarrow N \times M$ by $f(x, y)=(y, x)$. Check that f is a diffeomorphism, and show that f preserves orientation if $m n$ is even, and reverses orientation if $m n$ is odd.

6: Let $f: S^{n} \longrightarrow S^{n}$ be the antipodal map on the n-sphere $S^{n} \subseteq \mathbb{R}^{n+1}$. (That is, $f(x)=-x$.) Show that f is orientation preserving if n is odd, and orientation reversing if n is even.

7: Let X be a vector field on M, and $f \in C^{\infty}(M)$. Define $X f: M \longrightarrow$ \mathbb{R} pointwise (as in the lectures). Show that this map is smooth. In fact, writing $X=\sum_{i} \lambda_{i} \frac{\partial}{\partial x_{i}}$ in local coordinates (i.e. with respect to some chart) we have $X f=\sum_{i} \lambda_{i} \frac{\partial f}{\partial x_{i}}$.

8: (Lie brackets) Let X, Y be vector fields on M. Given $f \in C_{x}^{\infty}(M)$, let $F=X(Y f)-Y(X f)$ (so $F \in C^{\infty}(M)$, by the previous question). If $x \in M$, show that $F(x)$ depends only on the germ of f at x, and only requires f to be defined on a neighbourhood of x. Show that it defines a linear functional on the space of germs at x, and satisfies the Leibnitz condition ((L) in the lecture notes), and so gives rise to a vector $v(x) \in T_{x} M$. Show that $[x \mapsto v(x)]$ is a vector field on M. In fact, in local coordinates, if $X=\sum_{i} \lambda_{i} \frac{\partial}{\partial x_{i}}$ and if $Y=\sum_{i} \mu_{i} \frac{\partial}{\partial x_{i}}$, then

$$
v=\sum_{i, j}\left(\lambda_{i} \frac{\partial \mu_{j}}{\partial x_{i}}-\mu_{i} \frac{\partial \lambda_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}} .
$$

We write $v=[X, Y]$, the "Lie bracket" of X and Y. Show that $[Y, X]=-[X, Y]$.

9: Suppose that X, Y are vector fields on M, and $f, g \in C^{\infty}(M)$. Show that $[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X$.

10: (Jacobi identity) Given vector fields, X, Y, Z show that

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0 .
$$

