Manifolds MA3H5. Exercise Sheet 2

1: Show that $(\mathbb{R} \times\{0\}) \cup(\{0\} \times \mathbb{R}) \subseteq \mathbb{R}^{2}$ is not a manifold. (Consider what the tangent space could be at the origin.)
Show that $(\mathbb{R} \times\{0\}) \cup(\{0\} \times \mathbb{R}) \times \mathbb{R} \subseteq \mathbb{R}^{3}$ is not a manifold.
Show that the cone $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}=x_{3}^{2}\right\}$ is not a manifold.
2: Show that if M is a connected manifold of dimension at least 2, then $M \backslash\{x\}$ is connected for all $x \in M$. (This gives another argument for the cone is not a manifold.)

3: Suppose that $M \subseteq \mathbb{R}^{n} \times[0, \infty) \subseteq \mathbb{R}^{n+1}$ is a manifold (of some dimension) in \mathbb{R}^{n+1}. If $x \in M \cap\left(\mathbb{R}^{n} \times\{0\}\right)$, show that $T_{x} M \subseteq \mathbb{R}^{n} \times\{0\}$. (So, if M has dimension n, then $T_{x} M=\mathbb{R}^{n} \times\{0\}$.)

5: Let $m, n \in \mathbb{N}$ and identify the set, \mathcal{M}, of $m \times n$ matrices with $\mathbb{R}^{m n}$. If $r \leq \min \{m, n\}$, prove that the set of $m \times n$ matrices of rank r is a manifold, and find its dimension.
Here is one way to proceed. First show that the set of matrices of rank at least r is open in \mathcal{M}. (Recall that this is equivalent to saying that a matrix has an $r \times r$ submatrix with non-zero determinant.) If $\operatorname{rank}(A) \geq r$, then after permuting rows and columns, we can write it in the form

$$
\left(\begin{array}{ll}
B & C \\
D & E
\end{array}\right)
$$

where B is a non-singular $r \times r$ matrix. Postmultiplying by

$$
\left(\begin{array}{cc}
I & -B^{-1} C \\
0 & I
\end{array}\right)
$$

show that $\operatorname{rank}(A)=r$ if and only if $E=D B^{-1} C$. Show that the derivative of the map $\left[A \mapsto E-D B^{-1} C\right]$, viewed as a map $\mathbb{R}^{m n} \longrightarrow$ $\mathbb{R}^{(m-r)(n-r)}$, has maximal rank at A.

6 Let $M \subseteq \mathbb{R}^{n}$ is an embedded submanifold of dimension m, and $c \in M$. We aim to show that M "looks like" a graph, near c, up to rigid motion.
Note that, up to rigid motion (eucidean isometry) of \mathbb{R}^{n}, we can can assume that $c=0^{n}$ and that $T_{c} M=\mathbb{R}^{m} \times\left\{0^{n-m}\right\}$.
Show that there is an open set $U \subseteq \mathbb{R}^{n}$ containing c, and a smooth map, $f: U \cap \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n-m}$, such that $U \cap M=\left\{(x, f(x)) \in \mathbb{R}^{m} \times \mathbb{R}^{n-n} \equiv\right.$ $\left.\mathbb{R}^{n} \mid x \in U \cap \mathbb{R}^{m}\right\}$. (Consider the inverse of a chart, postomposed with projection to \mathbb{R}^{m}, and apply the inverse function theorem.)

