Manifolds MA3H5. Exercise Sheet 2

1: Show that $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R}) \subset \mathbb{R}^2$ is not a manifold. (Consider what the tangent space could be at the origin.) Show that $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R}) \times \mathbb{R} \subseteq \mathbb{R}^3$ is not a manifold. Show that the cone $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = x_3^2\}$ is not a manifold.

2: Show that if M is a connected manifold of dimension at least 2, then $M \setminus \{x\}$ is connected for all $x \in M$. (This gives another argument for the cone is not a manifold.)

3: Suppose that $M \subseteq \mathbb{R}^n \times [0, \infty) \subseteq \mathbb{R}^{n+1}$ is a manifold (of some dimension) in \mathbb{R}^{n+1} . If $x \in M \cap (\mathbb{R}^n \times \{0\})$, show that $T_x M \subseteq \mathbb{R}^n \times \{0\}$. (So, if M has dimension n, then $T_x M = \mathbb{R}^n \times \{0\}$.)

5: Let $m, n \in \mathbb{N}$ and identify the set, \mathcal{M} , of $m \times n$ matrices with \mathbb{R}^{mn} . If $r < \min\{m, n\}$, prove that the set of $m \times n$ matrices of rank r is a manifold, and find its dimension.

Here is one way to proceed. First show that the set of matrices of rank at least r is open in \mathcal{M} . (Recall that this is equivalent to saying that a matrix has an $r \times r$ submatrix with non-zero determinant.) If $\operatorname{rank}(A) > r$, then after permuting rows and columns, we can write it in the form

$$\begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

where B is a non-singular $r \times r$ matrix. Postmultiplying by

$$\begin{pmatrix} I & -B^{-1}C \\ 0 & I \end{pmatrix}$$

show that rank(A) = r if and only if $E = DB^{-1}C$. Show that the derivative of the map $[A \mapsto E - DB^{-1}C]$, viewed as a map $\mathbb{R}^{mn} \longrightarrow$ $\mathbb{R}^{(m-r)(n-r)}$, has maximal rank at A.

6 Let $M \subseteq \mathbb{R}^n$ is an embedded submanifold of dimension m, and $c \in M$. We aim to show that M "looks like" a graph, near c, up to rigid motion.

Note that, up to rigid motion (eucidean isometry) of \mathbb{R}^n , we can can assume that $c = 0^n$ and that $T_c M = \mathbb{R}^m \times \{0^{n-m}\}.$

Show that there is an open set $U \subseteq \mathbb{R}^n$ containing c, and a smooth map, $f: U \cap \mathbb{R}^m \longrightarrow \mathbb{R}^{n-m}$, such that $U \cap M = \{(x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^{n-n} \equiv (x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^{n-n} \in \mathbb{R}^m \}$ $\mathbb{R}^n \mid x \in U \cap \mathbb{R}^m$. (Consider the inverse of a chart, postomposed with projection to \mathbb{R}^m , and apply the inverse function theorem.)