Manifolds MA3H5. Exercise Sheet 1

1: (i) Given real numbers $a<b$, find a diffeomorphism $(a, b) \rightarrow \mathbb{R}$.
(ii) Find a diffeomorphism $(0, \infty) \rightarrow \mathbb{R}$.
(iii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth map, and let $\operatorname{graph}(f)$ be the set $\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R} \mid y=f(x)\right\}$. Show that the map $x \mapsto(x, f(x))$ is a diffeomorphism from \mathbb{R}^{m} to $\operatorname{graph}(f)$.
(iv) Let C_{0} be the cylinder $S^{1} \times(0, \infty) \subseteq \mathbb{R}^{3}$ and let C be the cylinder $S^{1} \times \mathbb{R}$. Find diffeomorphisms $C_{0} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ and $C \longrightarrow \mathbb{R}^{2} \backslash\{0\}$.
(iv) Let C_{1} be the cylinder $S^{1} \times[0,1]$. Find a subset of \mathbb{R}^{2} to which this is diffeomorphic.

2: Let $\mathcal{M}(n, \mathbb{R})$ be the set of real $n \times n$ matrices, identified with the real vector space $\mathbb{R}^{n^{2}}$, taking entries as coordinates. Find the derivative of the determinant map det : $\mathcal{M}(n, \mathbb{R}) \longrightarrow \mathbb{R}$, as an $n^{2} \times 1$ matrix (which you can rearrange into an $n \times n$ matrix).

3: Show that stereographic projection $S^{2} \backslash\left\{p_{N}\right\} \longrightarrow \mathbb{R}^{2}$ is a diffemorphism (write down a formula for its inverse).
Show that $S^{2} \subseteq \mathbb{R}^{2}$ is a 2 -manifold.
Verify the formula for the transition map $\mathbb{R}^{2} \backslash\{0\} \longrightarrow \mathbb{R}^{2} \backslash\{0\}$ either geometrically, or by writing down formulae.

4: Show that if $U \subseteq \mathbb{R}^{n}$ is open, $f: U \longrightarrow \mathbb{R}^{n}$ is smooth, and $\operatorname{det}\left(d_{x} f\right) \neq 0$ for all $x \in U$, then $f(U)$ is open in \mathbb{R}^{n}.
Show that if $M \subseteq \mathbb{R}^{n}$ is an n-manifold, then M is an open subset of M.

Deduce that there is no compact n-manifold in \mathbb{R}^{n}.
5: Show that the dimension of a manifold is uniquely determined.
6: Show that the 2-manifolds, $T_{a, b} \subseteq \mathbb{R}^{3}$ and $T \subseteq \mathbb{R}^{4}$ (examples (E6) and (E7) in lectures) are diffeomorphic, for all $a>b>0$.
7. Prove that if $M^{m} \subseteq \mathbb{R}^{p}$ and $N^{n} \subseteq \mathbb{R}^{q}$ are smooth manifolds then
(i) $M \times N \subseteq \mathbb{R}^{p+q}$ is a smooth manifold of dimension $m+n$, and
(ii) $T_{(x, y)}(M \times N)=T_{x} M \times T_{y} N$.

8: (Definiton of germs.) Let M be an m-manifold (in \mathbb{R}^{n}) Show that the relation \sim defined on the set, $C_{x}^{\infty}(M)$, of local functions at x (as in lectures) is an equivalence relation.

Show that $\mathcal{G}_{x}(M)=C_{x}^{\infty}(M) / \sim$ has naturally the structure of a vector space.
Show that the derivative $v . f$ for $v \in T_{x} M$ and $f \in \mathcal{G}_{x}(M)$ is well defined.
Show that the map $[(v, f) \mapsto v . f]: T_{x} M \times \mathcal{G}_{x}(M) \longrightarrow \mathbb{R}$ is bilinear.
Show that, for all $f, g \in \mathcal{G}_{x}(M)$ we have $v .(f g)=f(x)(v . g)+g(x)(v . f)$.
9: (Stack of records theorem).
Suppose that M and N are smooth manifolds of the same dimension, n, with M compact. Suppose that $f: M \longrightarrow N$ is a smooth map, and that $d_{x} f$ is invertible for all $x \in M$. Given any $y \in N$, show that $f^{-1}(y)$ is finite, and that there exists a neighbourhood V of y in N such that $f^{-1}(V)$ is a disjoint union of open sets of X, each of which is mapped diffeomorphically to V by f. Does either statement still hold if we drop the requirement that M be compact?
Show that f is surjective, and and indeed that any two points in N have the same number of preimages in M (again supposing that M is compact).

10: Let \sim be the equivalence relation on $S^{2} \subseteq \mathbb{R}^{3}$ which identifies antipodal points (i.e. $x \sim-x$). Let $P^{2}=S^{2} / \sim$ with the quotient topology (the real procjective plane). Similarly, define an equivalence relation, \sim, on $\mathbb{R}^{3} \backslash\{0\}$ by $x \sim y$ if there exists $\lambda \in \mathbb{R} \backslash\{0\}$ with $y=\lambda x$. Again, we give $\left(\mathbb{R}^{3} \backslash\{0\}\right) / \sim$ the quotient topology.
Show that the natural map $P^{2} \longrightarrow\left(\mathbb{R}^{3} \backslash\{0\}\right) / \sim$ is, in fact, a homeomorphism.

11: Let $M=\left\{\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\} \subseteq \mathbb{R}^{6}$. Show that M is a 2 -manifold.
(For example, if $x_{1}>0$ and $x_{3}>0$, one can define smooth map neighbourhood of the correponding point of M, just by projecting to the 1 st and 4 th coordinates. This gives us local coordinates $t=x_{1}^{2}$, $u=x_{1} x_{2}$. From t, u we can recover x_{1}, x_{2}, x_{3}, locally by nice simple formulae: $x_{1}=\sqrt{t}, x_{2}=u / \sqrt{t}$ and $x_{3}=\sqrt{1-t-u^{2} / t}$. Use this to show that we have a chart in a neighbourhood of our point.
Note that at least one of x_{1}, x_{2}, x_{3} must be non-zero. Up to symmetries, we see this deals all cases apart from the points where two of x_{1}, x_{2}, x_{3} are 0 , and the other is ± 1. For this, we need to project to different coordinates.)
Show that the projective plane, P^{2}, is homeomorphic to M (hence a 2-manifold).

