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We present a simple model for the spatial spread of rabies among foxes
and use it to quantify its progress in England if rabies were introduced.
The model is based on the known ecology of fox behaviour and on the
assumption that the main vector for the spread of the disease is the rabid
fox. Known data and facts are used to determine real parameter values
involved in the model. We calculate the speed of propagation of the
epizootic front, the threshold for the existence of an epidemic, the period
and distance apart of the subsequent cyclical epidemics which follow the
main front, and finally we quantify a means for control of the spatial
spread of the disease.

By way of illustration we use the model to determine the progress of
rabies up through the southern part of England if it were introduced near
Southampton. Estimates for the current fox density in England were
used in the simulations. These suggest that the disease would reach
Manchester within about 3.5 years, moving at speeds as high as 100 km
per year in the central region. The model further indicates that although
it might seem that the disease had disappeared after the wave had passed
it would reappear in the south of England after just over 6 years and at
periodic times after that.

We consider the possibility of stopping the spread of the disease by
creating a rabies ‘break’ ahead of the front through vaccination to reduce
the population to a level below the threshold for an epidemic to exist.
Based on parameter values relevant to England, we estimate its minimum
width to be about 15km. The model suggests that vaccination has
considerable advantages over severe culling.

1. INTRODUCTION

During the past few hundred years, Europe has been repeatedly subjected to rabies
epidemics (Baer 1975). No one seems to know why rabies died out some 50 to 100
years before its current reappearance. The present epidemic is believed to have
started in 1939 in Poland and it has moved steadily westward at a rate of 30-60 km
per year, being slowed temporarily by such barriers as rivers, high mountains and
autobahns. The red fox is the main carrier, and victim, of rabies in the current
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epidemic, although most mammals are thought to be susceptible to the disease.
An epidemic, which is mainly being propagated by racoons, is also moving rapidly
up the east coast of America. Rabies, a viral infection of the central nervous
system, is transmitted by direct contact. The dog is the principal transmitter of
the disease to man. Although the incidence of rabies in man, at least in Europe
and America, is now rare, with only very few deaths a year, it is a particularly
horrifying disease for which there is no known case of a recovery once the disease
hasreached the clinical stage. Rabies is a disease that justifiably gives serious cause
for concern.

The wavefront of the European epizootic is now very close to the north coast
of France, in spite of various attempts to halt its progress by killing and vaccination
of foxes (Lignieres 1982). In France, in 1980 alone, 314 cases of rabies in domestic
animals were reported and 1280 cases in wild animals. Foxes account for about
709 of all recorded cases in Western Europe. It seems almost inevitable that in
the future rabies will be introduced into Britain through the illegal importation
of pets. The problem will be particularly serious in Britain because of the high
urban density of foxes, dogs and cats (see figure 9, which is a map of England with
the approximate fox density distribution). It is the comparatively high urban
racoon density that is responsible for the current rapid spread of rabies up the east
coast of America. It is important to understand how the rabies epizootic wavefront
progresses into uninfected regions, what control methods might halt it and how
the various parameters affect them. This paper is concerned with these specific
spatial problems. The book edited by Bacon (1985) is specifically concerned with
the population dynamics of rabies. As well as providing biological and ecological
background and useful data on the disease, it presents some of the mathematical
models currently being studied. Of particular relevance is the chapter by F. G. Ball.

In the region behind the front, rabies persists, with the number of cases reported
in any small area fluctuating up and down every 2-7 years. Figure 1 shows typical
fluctuations in the populations of susceptible, infected but not rabid, and rabid
foxes after the passage of the epidemic front. It also gives approximate times and
distances between the successive outbreaks. The figure was calculated from the
model proposed and studied in this paper, by using parameters derived from
published field studies relevant to the European continent. Figure 2 (in §3) shows
the corresponding fox density fluctuations with parameters appropriate for
England: it is qualitatively similar.

Because the fox is the main carrier of the rabies virus for the current epizootic,
in the model we propose here we assume that the ecology of foxes determines the
dynamics of the spread of rabies. Recently Kéllén et al. (1985) suggested that the
spatial spread of the European epizootic is due primarily to the migration of rabid
foxes. They studied a primitive model in which the fox population was divided
into two groups, susceptible and rabid. Their model captures certain aspects of the
spatial spread of the epizootic front, but it leaves out a basic feature of rabies,
namely the rather lengthy incubation period of between 12 and 150 days from the
time of an infected bite to the onset of the clinical infectious stage. Anderson et al.
(1981) studied a model for the overall dynamics of the fox-rabies interaction,
which takes this incubation period into account. They did not address the problem
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Fiaurg. 1. Typical fluctuations in the fox populations due to the passage of a rabies epidemic
wave as calculated from the model mechanism proposed in this paper (see §2, model system
(1)). The fox density in the uninfected region ahead of the front of the epidemic is taken
to be at a carrying capacity of 2 foxes km™2, a typical value (averaged over the yearly cycle)
for much of continental Europe. The infected population is not yet infectious: only rabid
foxes are assumed to transmit the disease. The time and distance between the recurring
outbreaks, and the wave speed, were obtained from the model by using estimates for the
field parameters given in table 1 and a diffusion coefficient of 200 km? per year. (The details
are given in §3.)

of spatial spread. In this paper we extend the Anderson et al. (1981) model to
include the spatial spread of the disease. We assume that the main cause for the
spread is the erratic movement of rabid foxes. Foxes do not colonize empty
territory very quickly. Not only that, it appears that the incidence of rabies in
young foxes, who disperse to seek their own territories, is not as high as in adult
foxes (Artois & Aubert 1982 ; Macdonald 1980). It seems not unreasonable at this
stage therefore to investigate this more realistic three-species model where the
rabid foxes are the main cause of the spatial spread. Some of the rather scant data
on the movement of rabid foxes in the wild are discussed in §4.

The motivation for continuing to study comparatively simple, deterministic
models for such a complex problem is that the results highlight possible key

5-2



114 J. D. Murray, E. A. Stanley and D. L.. Brown

processes that may be occurring. They also raise questions that any model must
address and that any control strategy must take into account. There is, as in any
modelling, a trade-off between simplicity and the number of parameters that have
to be estimated from field studies. Even with our simple model, which is derived
in detail in §2, some of the parameters are difficult to estimate from the available
data. In §4 we point out the importance of learning more about fox ecology and
the impact of rabies on fox behaviour to improve upon the estimation of the more
critical parameters. Tables 1 and 4 list the values we have been able to extract
from the published literature. It should perhaps be mentioned again that we study
here only the deterministic model. A fuller study should include stochastic effects,
which are particularly important at low fox densities. Qualitative features of such
models are to a certain extent independent of whether the model is deterministic
or stochastic.

The existence of a threshold population for the existence of an epidemic in a
spatially uniform population is well known. So if the susceptible fox density is below
a certain critical value we do not expect the epizootic wave to be able to propagate,
and rabies will die out. We determine a quantitative condition for this critical
density in terms of the parameters of our model in §2.

Using the model and the parameter values we deduce, we consider the spatial
spread of the rabies epizootic in §3 and determine the speed of propagation in terms
of the parameters, such as the susceptible fox population, the spatial dispersal of
rabid foxes, the incubation period and the life expectancy of a rabid fox. If the
fox population density is estimated at different times as the rabies epizootic passes
by, as in figure 1, the wave consists of two main parts. These are the epidemic wave
front, through which the fox population rapidly decreases and in which the number
of rabid foxes is greatest, and the tail where there are essentially periodic-like
outbreaks of the disease. Formulae for the maximum number of rabid foxes in the
first onslaught and the time between successive outbreaks of rabies in the endemic
regions are obtained in terms of relevant dimensionless groupings of the parameters
of the model. The introduction of non-dimensional parameters shows how different
parameters can have equivalent effects.

A crucial assumption of the model mechanism is that the rabid foxes disperse
in a random way, which we mimic as a simple diffusion process. The relevant
parameter is then the diffusion coefficient on which the propagation speed critically
depends. In §4 we discuss this in depth and investigate the sensitivity of the
mechanism to parameter values. We show that some are considerably more
important than others, which highlights the ecological aspects about which we
would like to know more.

One means of stopping the epizootic front from moving into a rabies-free region
is to reduce the susceptible fox population in a strip in front of the wave. This can
be by vaccination, accomplished by dropping food containing vaccine as has been
done in Switzerland, or by killing. There are powerful, and we believe overriding,
advantages to the former because it reduces the colonization of empty territory
with all the benefits that that implies, a major one being the reduction in the level
of spatial movement by potentially infected foxes. In §5 we estimate the width
in kilometres of a ‘rabies break’, that is a strip in which the susceptible population
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is sufficiently reduced to stop the infection from passing into the rabies-free region
on the other side of the ‘break’. This involves a numerical simulation of the full
system of equations that constitute the model.

The fox population in Britain is far from uniform, and the variable density
affects the local wave-front speed of propagation substantially. To address the
practical situation in England it is necessary to consider the two-dimensional
problem of an epidemic wave moving through a variable fox density, which we
do in §6. Using a two-dimensional numerical method on the full system of
equations, we first investigate how the epizootic front travels past a patch of higher
and of lower fox density. This gives some idea of how a higher fox density, for
example, can have a focusing effect on the wavefront. We then took a rough map
of estimated fox densities in England, namely figure 9, using the estimates given
by Macdonald (1981), and ran our numerical code to see how quickly rabies might
move up through various parts of England if rabies were introduced, by way of
example, near Southampton. The epizootic wave-front position is given in figure 11
in terms of days from the initial infection. Such numerical simulations involve
considerable computing time. The results presented here were carried out on a
Cray-XMP48 computer at the Los Alamos National Laboratory in New Mexico.

2. MODEL MECHANISM FOR THE SPATIAL SPREAD OF RABIES

Here we briefly recapitulate the Anderson et al. (1981) model and modify it to
incorporate spatial dispersal of rabid foxes. It is this modified model that we use
to study how an epizootic wave propagates outward from an initial source of rabies.

We divide the fox population into three groups: susceptible foxes, with a
population density S; infected, but non-infectious, foxes, with a density /; and
infectious, rabid foxes, R. This division is based on the relatively long incubation
period of 12-153 days that the rabies virus undergoes in the infected animal, during
which time the animal appears to behave normally and does not transmit the
disease, and on the relatively short period (1-10 days) of clinical disease that
follows (Sikes 1980; Winkler 1975; Toma & Andral 1977; Macdonald 1980).

The basic model assumptions are as follows.

(i) The dynamics of the fox population in the absence of rabies can be
approximated by the simple logistic law

dS/dT = (a—b) (1—S8/K)8,

where T is time, a is the birth rate, b is the intrinsic death rate, and K is the
environmental carrying capacity; @, b and K are parameters that may vary
according to the habitat, but are taken to be constant in time. The model thus
neglects the seasonality of births and food supply, with § being the mean value
of the population during the yearly cycle; a, b and K are also averaged out over
the year.

(ii) Rabies is transmitted from rabid to susceptible fox: interspecies trans-
mission is believed to be quite rare. Susceptible foxes become infected at an average
rate per head SR, which is proportional to the number of rabid foxes present. The
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transmission coefficient f#, which measures the rate of contact between the two
species, is a constant independent of environment.

(iii) Infected foxes become infectious at an average rate per head o, where 1 /0
is the average incubation time.

(iv) Rabies is invariably fatal, with rabid foxes dying at an average per capita
rate a (1/a is the average duration of clinical disease).

(v) Rabid and infected foxes continue to put pressure on the environment, and
to die of causes other than rabies, but they have a negligible number of healthy
offspring.

We take into account the spatial spread of the rabies epizootic by including some
basic facts about foxes relevant to dispersal effects of the rabid foxes (see, for
example, Baer 1975; Macdonald 1980). We thus make the following further
assumptions.

(vi) Foxes are territorial, and divide the countryside up into non-overlapping
ranges.

(vii) Rabies is transmitted by direct contact between foxes, usually by biting.

(viii) Rabies acts on the central nervous system, inducing behavioural changes
in the host. About half of infected foxes have so-called ‘furious rabies’, and exhibit
the ferocious symptoms typically associated with the disease, while with the rest
the virus affects the spinal cord, causing gradual paralysis. Foxes with furious
rabies may become aggressive and confused, losing their sense of direction and
territorial behaviour, and wandering randomly.

In our model we consider the major spatial dispersal to come from the random
wandering of the rabid foxes, which we model by simple diffusion, as was also done
by Kéllén et al. (1985). So we add a diffusion term to the equation for the rabid
foxes.

All of these assumptions (i)—(viii) suggest the following model system, which
governs the spatial and temporal evolution of the rabies epizootic:

3S/0T = (a—b)(1—N/K)S— SRS, (1a)
AI/OT = BSR—oI—[b+ (a—b) N/K]I, (1b)
OR/OT = oI —aR—[b+ (a—b) N/K|R+ D*R/0X?, (Lc)
where
N=8S+I+R (1d)

is the total fox population and D is the diffusion coefficient. Here for algebraic
simplicity we have written the equations in one-dimensional form. We use the full
two-dimensional form when we compute the spread of the disease in England,
discussed in §6. This model neglects the spatial dispersal of rabies by young,
itinerant foxes who may get bitten while in search of a territory and carry rabies
with them before they become rabid. There is some justification for this since rabies
is much less common in the young than in adults (Artois & Aubert 1982;
Macdonald 1980).

The term (¢ —b) N/ K in each of the equations (1) represents depletion of the food
supply by all foxes. Because rabid foxes presumably do not eat, it could be argued
that NV should be replaced by S+ 1. However, because rabid foxes represent a very
small proportion of the total number of foxes, and @ —b is also small, it would make
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little difference to the quantitative results whether or not this is done: the
numerical simulations of the model confirm this.

In the spatially uniform situation, that is (1) with D = 0, Anderson et al. (1981)
found that when rabies is introduced into a stable population of healthy foxes these
equations predict three possible behaviours. If the carrying capacity of the system
is below a critical value K,, given by

K, = (oc+a)(a+a)/fo, (2)
then rabies eventually disappears, and the population returns to its initial value

K. On the other hand, if K is larger than K, then the population oscillates about
a steady state S = §,, R = R, I = I, the steady-state solutions of (1), namely

8y = A7 [opK—ala—b)|*{[(e+b) K+ (a—b) (a+a)][¢ K (0 +b)
+a(@—0b)(c+a)l}, (3a)

I, = [opK—a(a=b)]"" [(a+b) fK+ (a—b) (x+a)] B,, (3b)
Ry = {flopK—ala—b)];"! (a—b)[cfK—(s+a)(x+a)]. (3¢)

If K is not too much bigger than K,, then the oscillations gradually damp out and
the system approaches §,, I,, R,, whereas if K is sufficiently large the system
approaches a limit cycle periodic oscillation about that point. There are thus two
bifurcation values for K, namely K, and the critical K between a limit cycle
oscillation and a stable steady state.

Epidemiological evidence supports the claim that rabies dies out if the carrying
capacity is small enough; the critical value is somewhere between 0.2 and 1.0 foxes
km™2 (WHO Report 1973; Macdonald 1980; Steck & Wandeler 1980; Anderson
et al. 1981; Boegel et al. 1981); £, which is a measure of the contact rate between
rabid and healthy foxes, cannot be estimated directly given the difficulty involved
in observing these contacts. Inversion of (2) gives an indirect way to compute £,
which is the method Anderson et al. (1981) used.

With K > K,, the parameter choices, listed in table 1, give 3—-5 year periods for
the oscillations and 04 9%, equilibrium persistence of rabies, defined by

p = (Ry+1y)/(S,+1,+Ry), 4)

which is in agreement with the available epidemiological evidence (Toma & Andral
1977; Macdonald 1980; Steck & Wandeler 1980; Jackson & Schneider 1984).

TABLE 1. PARAMETER VALUES USED BY ANDERSON ET AL. (1981)

parameter symbol value
average birth rate a 1 per year
average intrinsic b 0.5 per year
death rate
average duration of 1/a 5 days
clinical disease
average incubation 1/o 28 days
time
carrying capacity K, 1 fox km™
disease transmission g 80 km? per year
coefficient

carrying capacity K 0.25 to 4.0 foxes km™2
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3. SPATIAL SPREAD OF THE RABIES EPIZOOTIC AND ITS
SPEED OF PROPAGATION

To get an understanding of the behaviour predicted by the model system (1),
we first consider the case of a uniform environment in which all parameters are
constants. We are interested in the dynamics of the fox population when a few
rabid foxes are introduced into an initially stable rabies-free population.

It is, as always, instructive to introduce non-dimensional quantities, here by

s=8/K, qg=1/K, r=R/K, n=N/K,
6= (@—b)/pK. 8=b/pK. p=a/pK, d=(a+b)/pK )
x= (BK/D} X, t=pKT.

This allows us to determine the effective parameter groupings in the system, and

to obtain a qualitative understanding of the system in terms of them.
With (5) the model equations (1) become
0s/t = e(1 —n)s—rs, (6a
0q/0t = rs—(p+d+en)q,
or/ot = uq— (d+en) r+ 0% /0x?,
n=s+q+r, (
which have a positive uniform steady-state solution (s,, g, 7,) given by (3) on
dividing by K.

The behaviour of this system now depends only on the four dimensionless
parameters, €, §, u and d: the original system involves seven parameters. The actual
values of these dimensionless parameters are obtained from the physical
parameters, a, b, a, o, K and §. At a carrying capacity of two foxes km™ the values
in table 1 give ¢ = § = 0.003, ¢ = 0.08, and d = 0.46. A major benefit of non-
dimensionalization is that the parameters display equivalent effects of variations
in actual field parameters. We see from these values that e and § are relatively small
numbers compared with any of 1, u, d and 1 —d, a fact that can be used to simplify
the analysis of system (6) and allow us to derive useful analytical results, which
we discuss below (and which are derived in the Appendixes). Physically what this
means is that the infection rate is very much larger than the birth and death rates
from causes other than rabies during the epidemic.

Solving system (6) numerically, starting with s = 1 (that is § = K) everywhere
and with a small concentration of rabid foxes at the origin, gives two different
results, depending on the size of K. If K > K|, the critical carrying capacity for
an epidemic, or, equivalently in non-dimensional form,

d < [1+(8+e€)/u] 1=, (7)

an epidemic wave forms and travels outward from the initial concentration of rabid
foxes with near-constant velocity. 1f, however, inequality (7) is violated, then
rabies dies out, and the fox population returns to the carrying capacity of the
environment, just as it does for system (1) with D = 0. An example of the travelling
wave that forms when (7) is satisfied is shown in figure 1 above. This wave consists
of the rabies front, in which the largest number of foxes die from the disease,
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followed by an oscillatory tail, in which each successive outburst of rabies is smaller
than the preceding one. The oscillations gradually approach constant, non-zero
values with the rabid and infected fox population zero. Figure 2 illustrates the

fluctuations in fox density for a travelling wave with parameters appropriate for
England.
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Fieure 2. Fox populations during the passage of the rabies epidemic wave as predicted by our
model (system (6)) when the fox density in front of the epidemic is at the carrying capacity
of 4.6 foxes km™2, which is common in parts of England. D was assumed to be 200 km?
per year, and the other parameters were taken from table 1.

If we look for an analytical solution to system (6) which travels at a constant
non-dimensionalized velocity v (see Appendix 1 for details), it can be shown that
such a solution cannot exist unless relation (7) holds. Assuming that (7) is satisfied,
and, based on the parameter values in table 1, that

eand d < 1,d, pand 1—d, (8)

we find that the shape of the wave is the same as that found numerically, namely
a front followed by an oscillatory tail that moves into the rabies-free region. The
minimum speed at which the wave can travel is given by v = 2%, where z is the
unique positive root of the cubic.

9(2) = [4p+ (@ —p)*12° +2[3pu(1 —d) Bd + p) + (d+p)* (2d +p) 2*
+u2(d+p)*—6(1—d) (3d+p) —27(1 —d)*|z—4p*(1—d), (9)
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(a)

Fioure 3. For description see opposite.
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to first order in € and 4. A contour plot for this root v(= zt) is shown in figure 3
for 0 < d < 1. The waves found numerically appear to travel at this minimum
speed,v = 2zt or, in dimensional form V = (DBKz). Forexample, with the parameter
values in table 1, a diffusion coefficient of 200 km? per year and a carrying capacity
of 2 foxes km™2, the speed of propagation V is 51 km per year.

The uniform state (s,, ¢,, 7,) about which the wave oscillates is simply the
dimensionless form of the steady state of system (1) which was given by (3) in
dimensional form. A linear analysis near the point s,, gq,, 7, shows that, for
sufficiently large times, the wave tends to decaying oscillations of the form

s(x, t) = sy+ A cos [w(t+x/v)+Ylexp [ —A(t+z/v)], (11a)
9@, t) = ot (s—5,)", (11b)
r(@, t) = 1o+ p(g—q)/d, (11¢)

to first order in € and J, where the prime denotes differentiation with respect to
t+x/v, and the non-dimensional wave number o is given by

w = d[ud(1—d)/(u+d)+O0(e), (12)
with the decay rate A by
A = ed[2(u+dP ] p(p/v*— 1) (1—d) + (u+ d)?). (13)

A and ¢ are constants. Note that the oscillations in the susceptible population are
90° out of phase with both the infected and the rabid populations and that r and
q are related by r—r, =& (¢—q,) #/d. (This symmetry is broken if the oscillations
are calculated to the next order in ¢ and 8). This r—q relation correlates with the
long-time behaviour in figures 1 and 2. Note also that to first order in € and & (see
Appendix 1) the steady-state 7, = ug,/d so that far enough behind the front of the
wave r and ¢ are proportional to each other. In the numerical simulations this
proportionality always seems to hold when the physically reasonable parameters
are used. In Appendix 1 we use a nonlinear scaling technique to show that this
is in fact implied by the model equations. The mathematical analysis is based on
the observation that p is small compared with both d and the non-dimensional
wavespeed, but large compared with ¢ and §.

In Appendix 1 we derive an estimate for the maximum density of infected and
of rabid foxes in the first outbreak, namely

"max ~ /’l’[ln d+ (1 _d)/d]’
Gmax X d[In d+(1—d)/d],

Ficure 3. The dimensionless velocity of propagation, v, of the epidemic front as a function of
the dimensionless parameters x4 and d. u is related to the incubation time for the rabies virus,
and d is related to the duration time of the symptomatic, infectious, stage: equations (5)
give the expressions for these in terms of the field parameters of the model. The actual
dimensional wave speed is given by (8K D) v. Note that d = 0 for v > 1 (see (5) for d in terms
of the field parameters), which corresponds to a carrying capacity less than the critical value.
(@) Velocity v as a function of u, for # varying from 0 to 0.2 (the range of physical interest
when d is less than 1). Each curve is for a different value of the parameter d. (b) Contour
lines of constant velocity v as a function of x# and d. Contour intervals are 0.05.
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which in dimensional terms are

R .« ~ (cK,/a)[In (K,/K)+ K/K,—1],

Qmax ~ Ki[In (K, /K)+ K/K,—1].

Thus both R
above K,.

Comparison of expression (13) for the decay rate with equation (9) shows that
A is always positive, and thus the limit cycle behaviour which system (1) exhibits
for large K and D = 0 disappears when diffusion is taken into account: the
oscillations always decay to the constant state s,, g, and r,.

Using the values in table 1, we can obtain estimates for the percentage reduc-
tion in population due to rabies (at equilibrium), 100 (1—n,)% =
100 [1—(sy+q,+7,)]1%, and the persistence of rabies,

max and @ .. are zero for K = K, and increase as K increases

P = (qot+7,)/ 7.

We can calculate the non-dimensional wavespeed v from the positive root of g(z),
and both the dimensional period and decay rate 4 = SKA. The period is given by

7 =2n/(fKw)
or, writing it purely in terms of the original parameters,
7 = 2n{(a+0+b) [(a—b) (x+b) o{l — (a+b)/BK}]| 1} (14)

7 decreases with K. So, in general, the greater the fox density before the appearance
of rabies, the less frequently rabies outbreaks will appear far behind the front,
which agrees with some observations (Macdonald 1980). However, numerically we
found that close to the front, where nonlinearities are important, the time between
outbreaks may increase with K: see figures 1 and 2. The quantities n,, p, v and
A all depend on K. To first order in ¢ and &, n, is just K,/K, so that another
prediction of the model is that the fox density », K behind the rabies front oscillates
about (and eventually decays to) a value close to the critical value. The percentage
of rabid foxes at equilibrium, although never large, will be greater in the more
hospitable environments, since the persistence is

p=(a—b)(1-K/K)[(c+a)/oa]. (15)

Values for these five quantities are shown in table 2 for various values of the
carrying capacity : K varies from 0.25 to 6 foxes km™2 in Europe (Lloyd et al. 1976
Toma & Andral 1977 ; Steck & Wandeler 1980). For example, at K = 2 foxes km™2,
which is typical of much of France and Germany, the estimates in table 1 give
ny, = 0.47, p = 0.02, 7 = 3.7 years, A = 0.11 per year, v = 0.3.

Besides the carrying capacity, the growth rate, a —b, may also depend on the
environment. Lloyd et al. (1976) found the birth rate all over Europe to be about
the same (a between 1.0 and 1.1 per year), but because the intrinsic death rate
depends on such local factors as hunting intensity and climate, the growth rate
varies with environment. The speed of the rabies wave, as predicted by our model,
is not affected (to first order) by this, nor is the number of foxes after oscillations
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TABLE 2. DEPENDENCE OF PARAMETERS ON CARRYING CAPACITY, CALCULATED
FROM THE VALUES IN TABLE 1

non-
carrying time between  equilibrium dimensional
capacity successive fox persistence decay front
or K/K,® peaks density /K of rabies rate velocity
K (foxes km™2) T (years) (N P A (year™1) v
1.5 4.2 0.62 0.02 0.14 0.22
2.0 3.7 0.47 0.02 0.11 0.28
2.5 3.3 0.38 0.03 0.10 0.36
3.0 3.2 0.32 0.03 0.089 0.41

@ The parameters # and K only appear as the product K in the calculations for the values
in tables 2-4. From (3), K = (K/K,) (0 +a) (¢ +a)/0o, so that only a knowledge of the ratio of
the actual carrying capacity to the critical value is necessary to obtain the results.

die out. However, when the growth rate is higher, and carrying capacities are
similiar, the outbreaks of rabies behind the front will be more frequent, with their
amplitude decaying more rapidly, and the percentage of rabid foxes at equilibrium
will be greater. Values of b from 0.37 to 0.67 per year have been observed in Europe
(Anderson et al. (1981). At a carrying capacity of 2 foxes km™2, and with all values
besides b taken from table 1, 7 is 3.2 years for b = 0.37 per year and 4.5 years for
b = 0.67 per year, p goes from 0.28 to 0.15 as b increases and A decreases from
0.15 to 0.08 per year.

To calculate either the speed 1 of the epizootic, or the wavelength L = V7 of
the oscillations in the tail, we need an estimate for the diffusion coefficient. We
discuss this problem, along with the sensitivity of our quantitative results to the
physically measurable parameters, in the next section.

4. ESTIMATES FOR THE DIFFUSION COEFFICIENT: SENSITIVITY
OF THE MODEL TO PARAMETER VALUES

To transform the velocity of the wavefront and the wavelengths of the
oscillations in the tail into dimensional quantities, we need an estimate for the
diffusion coefficient D, which is a measure of the rate at which a rabid fox covers
ground in its wanderings. Little is known about the behaviour of rabid foxes in
the wild, making it very difficult to estimate D.

Andral et al. (1982) have tracked three rabid adult foxes in the wild. They
accomplished this by inoculating captured foxes with rabies virus, equipping them
with signal-emitting collars, and releasing them at the point of capture. They
traced the fox movements first during the incubation period, to determine their
home ranges and normal behaviour, and then during the rabid period, to observe
the changes induced by the disease. According to their observations, all three foxes
became more agitated once the clinical phase of the disease commenced, and the
pattern of daily activity changed. Drawings showing, for each fox, the incubation
period range and the principal displacements during the rabid period indicate that
all three left their home range at some point during the rabid phase, but none
travelled very far away.
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We can use the results of Andral et al. (1982) to estimate, in a crude manner,
the diffusion coefficient from the formula

N (straight line distance from the start)?
4 x (time from the start)

)

1
where the sum is over the number of all foxes involved. Use of the distance between
the start of the rabid period and the point of death, along with the approximate
length of the rabid period, gives an estimate of 50 km? per year for D. Since two
of the three foxes happened to die much closer to their starting position than their
mean distance away from it, this is most probably a lower bound on D. An
extremely rough idea of an upper bound can be gained from the maximum distance
that any one fox travelled away from its starting point. About halfway through
the rabid phase, one fox got as far away from its starting point as 2.7 km, giving
an estimate of 330 km? per year as an upper bound on D. There are other ways
of estimating diffusion coefficients. For example, D can be estimated as the product
of the average territory size 4 and the average rate k at which a rabid fox leaves
home. For their two-species model, Kéllén et al. (1985) suppose that infected foxes
leave home at the end of the incubation period of one month, i.e. upon becoming
rabid. Taking an average territory size to be about 5 km?2, they obtained
D = 60 km?. To determine D for our three-species model, we need an estimate for
the average rate at which foxes leave their territories after the onset of clinical
disease. If N infected foxes are observed, and the jth one leaves its territory at
time interval ¢; after becoming rabid, then k can be estimated by

N
N

=1
Since roughly half of all infected foxes develop paralytic rabies (see assumption 8),
and presumably never leave their home range, ¢;, is infinite for about ;N foxes.
For the furiously rabid foxes, if we suppose that half also never leave, and that
the rest leave evenly spread out over the 6 days that the disease may take to run
its course, then we can estimate

Ic~—1—l\§]4t‘1 ——l—i ——1———40 er year
N P 24 ;7 j days pery

Keeping the estimate of 5 km? for an average territory size (Toma & Andral 1977;
Macdonald 1980), this gives D = 190 km? per year.

An alternative method is to estimate the mean free path and velocity of rabid
foxes. The average total distance covered daily by the foxes observed by Andral
et al. (1977) was 9 km during the rabid period. Suppose that this is not atypical,
and that, for example, a rabid fox goes 100 m at a stretch before becoming
distracted and setting off in another direction. Then D = (velocity) x (pathlength)
gives a diffusion coefficient of 330 km? per year, the same as the upper bound that
we estimated previously. All of these methods for estimating D should, in principle,
be consistent, if enough observations of rabid fox behaviour could be made. But
there is simply not enough known about fox behaviour to get much better
estimates.
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Because the speed of the wave is proportional to D}, changing D from 50 to
330 km? per year increases V by a factor of 2.6. If we look at table 2 we see that
this means that, at K = 2 foxes km™2, we can get a velocity of anywhere from 25
to 65 km per year depending entirely on the value we choose for D. Although our
estimates for D are not good enough for us to give a firm quantitative prediction
of the speed of the wave, we can arrive at a range of speeds that are reasonable
when compared with the available data. By the same token, we cannot predict
wavelengths in the tail of the wave with great accuracy but again the results we
obtain compare reasonably with observation. This diffusion-coefficient inaccuracy
does not, however, prevent us from looking at the manner in which ¥ and L depend
on the carrying capacity. This is done in table 3 by using the same parameter values
as before.

TABLE 3. DEPENDENCE OF THE WAVE SPEED AND ASYMPTOTIC WAVE LENGTH (THAT
IS THE DISTANCE BETWEEN RECURRING OUTBREAKS) ON THE CARRYING
CAPACITY, CALCULATED WITH D = 200 KM? PER YEAR AND THE VALUES IN

TABLE 1
L (km): distance
K (foxes km™) or K/K;: V (km per year): velocity of between successive
carrying capacity the epidemic front outbreaks or peaks
1.5 35 150
2.0 50 210
2.5 70 220
3.0 80 250

The most difficult parameter to estimate, after D, is the disease transmission
coefficient, £. Even less is known about contacts between rabid and healthy foxes
than is known about the movements of rabid foxes, but # can be found from (2)
and knowledge of the critical density. From (2), we see that f is proportional to
1/K,. The calculations in tables 2 and 3 do not depend independently on either
K or £ but only on their product, and thus on the ratio K/K, (K alone is only
important if we wish to calculate the actual density of foxes present at a given
time from the dimensionless s, ¢, or 7). Absolute values of fox population densities
are, in practice, difficult to obtain; they are usually estimated from the numbers
of foxes reported dead, shot or gassed, and some assumption on the percentage
of the total population that this sample represents, or else by comparison of terrain
with areas of known fox densities. K| is particularly difficult to estimate, and values
of anywhere from 0.2 to 1.2 foxes km™ can be estimated from the values given
in the literature (WHO Report 1973; Steck & Wandeler 1980; Macdonald et al.
1981; Gurtler & Zimen 1982). Since finding K/K, only involves comparison of
population sizes, this ratio might be easier to obtain than K and K, separately.

A relevant question at this point is how sensitive the quantitative results in
table 2 and 3 are to the uncertainties in the remaining parameters in our model.
We have already discussed the dependence of these calculations on the growth rate
a—b and the carrying capacity in the last section. The uncertainties in the
remaining three independent parameters, b, « and o, do not appear to be as
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important. b does not appear in the first-order results, since it is involved in 8, which
is small and has no effect on the first-order analysis. The uncertainties in the other
two values also do not have a major effect on the physically relevant parameters
in tables 2 and 3. The average incubation time is generally considered to be
somewhere between 25 and 30 days (Winkler 1977; Toma & Andral 1977;
Macdonald 1980) which means that ¢ is probably in the interval of 11.4-14.6 per
year, which is a relatively small interval of uncertainty. The range for « is,
however, large: the average duration of clinical disease varies from 3 to 6 days,
implying that « may be anywhere from 60.6 to 122 per year (Sikes 1970; Winkler
1985; Toma & Andral 1977). The effect of this range on the values in tables 2 and
3 is shown in table 4. Although the values for some quantities, such as # and v,
change markedly when o varies over this interval, the physically relevant
quantities do not greatly change.

ABLE 4. SENSITIVITY OF MODEL PREDICTIONS TO THE UNCERTAINTY IN &, THE RABID FC
DEATH RATE, CALCULATED FROM ALL OTHER VALUES FROM TABLE 1, K/K, = 2 A
D = 200 km® PER YEAR

average ratio of
duration equilibrium time velocity distance
of transmission  fox density between of the between
clinical coefficient to carrying persistence successive decay epidemic successive
disease £ (km? capacity of rabies outbreaks rate V (km outbreak:
¢! (days) per year) Ny P T A (year™?) per year) L (km)
3 132 0.5 0.02 3.5 0.11 45 160
4 99 0.5 0.02 3.5 0.11 49 170
5 80 0.5 0.03 3.6 0.11 51 180
6 67 0.5 0.02 3.6 0.12 52 190

5. EP1Z00OTIC WAVE PROPAGATION INTO A NON-EPIDEMIC REGION:
CONTROL MEASURES

A possible protective barrier against the rabies epizootic can be achieved by
reducing the susceptible fox population below the critical density in areas ahead
of the advancing wave. This, for example, has been successful in Denmark,
specifically Jutland. It has also been carried out in some regions of Italy and
Switzerland, where it has been pursued with diligence, but it has had mixed results
(Irsara et al. 1982; Macdonald 1980; Westergaard 1982). Such a barrier can be
created by either killing or vaccination. Since killing releases territories there could
be a more rapid colonization by young foxes, which could enhance the spread of
the disease. Vaccination causes less disruption in the ecology, and is probably even
more economic.

For a rabies ‘break’ to be effective we must have reasonable estimates of both
the width and the allowable susceptible fox density within it. Here we use our
model to obtain estimates for how wide the protective break region needs to be
to keep rabies from reaching the areas beyond. In what follows, we use the term
‘infected fox’ to refer to all foxes with rabies, whether infectious or not.

If we observe the passage of the rabies epizootic wave at a fixed place we note
that each outbreak of the disease is followed by a long quiescent period, during
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which very few cases of rabies occur (see figures 1 and 2). The spatial and temporal
dimensions, as indicated in figure 1, are such that the secondary epidemic wave
is far enough behind for the first either to have moved past the break, or to have
effectively died out by the time that the second one arrives. Each successive
outbreak is weaker than the previous one. It therefore seems reasonable to assume
that the same population reduction schemes that eradicate the first outbreak will
also be effective in stopping all future outbreaks from passing through. We thus
only need to consider how wide the break needs to be to stop the first outbreak.
The width of the break is dependent on the size of the susceptible fox population
density within it. Figure 6 below gives the width of the break plotted against the
carrying capacity for various values of relevant parameters.

Because we model spatial dispersal by a deterministic diffusion mechanism it
is strictly not possible for the density of infected foxes to vanish anywhere. This
is an artefact that arises from treating the fox densities as continuous in space
and time, rather than dealing with individual foxes, and from using classical
diffusion to model the rabid fox dispersal. Thus we cannot simply have the
epizootic wave move into a break of finite width and determine whether or not
the density of infected foxes remains zero on the other side: it will always be
positive, although exponentially small. From a strict mathematical point of view,
no matter how wide the break is, eventually enough infected fox density will in
time leak through for the epizootic to start off again on the other side. Thus we
must think instead of determining when the probability is acceptably small that
an infected fox will reach the far side of the break.

Since the intent of any population reduction scheme is to hold the density of foxes
at a low value, we treat the break region as one with a carrying capacity below
K, the critical threshold value for persistence of an epidemic, and we assume that
the fox density has been reduced to this value well before the epizootic front
arrives. To obtain estimates for the width of the break we investigate the behaviour
of the model when the region of lowered susceptible fox density starts at x = 0 and
extends to infinity. In figures 4 and 5 we show what happens when the epizootic
wave, coming in from the left, impinges on the break region. Recall that the
epizootic wave cannot propagate when the carrying capacity is below the critical
value K, and also that the point of maximum infected fox density will be at z = 0.
As the infection wave moves into the region x > 0 it spreads out, decays in
amplitude and the total number of infected foxes decreases. Eventually there will
be less than p infected foxes km™2 remaining, where p is some small number. Let
t.(p) be the time at which this occurs. We now choose p sufficiently small that
the probability of a rabid fox’s encountering a healthy one after this critical time
is negligible. Since the wave cannot propagate in the break region it simply decays,
so for all time the density of infected foxes is greatest at the edge of the break and
decays exponentially in  — exponentially as 22 in fact. We choose the width of the
break to be the point x,, where the infected fox density is a given (small) fraction
m of the value at the origin, that is

I(x,, t,)+ R(x,, t,) = m[L(0, t,)+ R(0, ¢,)]. (16)

As far as we know, it has never proved possible to eliminate all foxes from a
region. A 709%, reduction in population is about the best that can be done
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Ficure 5. The decay of the rabid fox population in the first outbreak once the epidemic reaches
the break region. This plot shows the total infected fox density per kilometre (the integral
over x of I+ R) as a function of time for the case shown in figure 4, starting when the
epidemic front first reaches the break.

(Macdonald et al. 1981). The less effective the removal scheme, the wider the break
has to be. Figure 6 shows this dependence in terms of the percentage population
reduction in the break, for different choices of the average duration time of clinical
disease, 1/a. In generating the curves in figure 6, fK outside the break was held
at 160 per year, the number of infected foxes at the critical time wastakentobep = 1
foxes km™2, the ratio m in (16) was arbitrarily chosen to be 107%, and all other
parameters except o are from table 1. Under these assumptions, for any given
choice of a, equations (5) give d = (¢ +0.5)/160 and equation (2) gives a carrying
capacity outside the break region of K = 149/(a+0.5) foxes km™ per year. For
example, if we assume that the rabid period lasts an average of 3.8 days, then
d = 0.6 and K = 1.5 foxes km™2 outside of the break. If a reduction scheme can
reduce the carrying capacity to 0.4 foxes km™2 inside the break region well before
the epidemic arrives, then S, = 0.26 and figure 6 gives z, = 15. Assuming a
diffusion coefficient of 200 km? per year, equations (5) give the predicted break

Figure 4. The behaviour of the epizootic front when it encounters a break in the susceptible
fox population. These plots show (a) the susceptible and (b) the rabid fox population
densities for a sequence of times as the wave approaches the break region, stops and
dissipates. They were obtained by solving equations (1) numerically with a carrying
capacity of 2 foxes km™ in the region outside the vertical lines and of 0.4 foxes km™2 in
the region between them. Other values of parameters were taken from table 1. Note that
the susceptible population just outside the break remains slightly higher than elsewhere,
since few rabid foxes wander into this region from the right. The density of incubating foxes
stays essentially proportional to the rabid population (see the discussion in §3 and in
Appendix 1): with the parameter values used the incubating fox density is 5.6 times the
rabid fox density. The times and distances are normalized values within the computer model.
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Ficure 6. The dependence of the break width on the initial susceptible population inside the
break, as predicted by the model. The break width, in non-dimensional terms, is plotted
against the ratio of the carrying capacity in the break to the carrying capacity outside the
break for various values of the duration time of clinical disease, 1/x (d ~ a/BK). These
curves were obtained by solving system (1) numerically, until the total infected fox
population in the first outbreak is § fox km™. We use the scheme described in the text to
calculate this break width, which can be put into dimensional form by using relations (5),
i.e. the break width X, is (D/BK) z,, where x, is the non-dimensional break width with

= 1074 K was set at 160 per year, and all other parameters, except a, were taken from
table 1. For example, if we assume that 1/a =5 days then d = 0.46 and the carrying
capacity outside of the break is 2 foxes km™2. If the carrying capacity inside the break is
assumed to be 0.4 foxes km™ then S}, = 0.2 and this figure predicts that x, = 18. Assuming
that D = 200 km? yr™, the predicted break width X, is 20 km.

width as 17 km. Of course, the choice of p and m depends on how cautious we want
to be. The effect on the width of the break for varying p and m is shown in figure 7.
Except for p and m, the parameters used in obtaining figure 7 are the same as
for the curve d = 0.46 in figure 6 (1/ = 5 days, K = 2 foxes km~2 outside the break
region). The maximum value of /4 R at ¢, for all of the calculations was less than
0.15 foxes km™2. Even with m = 1072 there are fewer than 0.0015 infected foxes
km™ on the protected side of the break.

We can determine analytically an approximate functional dependence of the
break width on the parameters. The behaviour of the various fox population
densities in the break region after the epizootic wave has reached it should be
similiar to the situation in which a concentrated localized density of infected and
rabid foxes at time ¢t = 0 (with the same total number of / and R as for the epizootic
wave) is introduced at = 0 in a domain where the carrying capacity is everywhere
equal to the initial fox density in the break. We can then obtain an estimate of
the break width by looking at the following idealized problem. Suppose that the
carrying capacity is zero for all z, which implies that the susceptible fox density
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Ficure 7. The sensitivity of the break width to the parameters used in our scheme for estimating
it. As in figure 6, the non-dimensionalized break width is plotted against the relative
carrying capacity in the break region, this time for different values of p and m. p is the
total infected fox population per kilometre (that is the integral over x of I+ R), at the time
that the epidemic is assumed to be eliminated, and m is the ratio of the infected density
at the far edge of the break to that at the leading edge. The break width X, is z,(D/fK)z,
where z, is the non-dimensional break width. K = 2 foxes km™ outside of the break and
all other parameters are taken from table 1 (d = 0.46). As would be expected, decreasing
either p or m increases the predicted break width.

For example, suppose that the population reduction scheme makes K = 0.4 foxes k™2
in the break region. Assuming that D = 200 km? per year and taking p = } fox km™, as
m varies from 1072 to 107 the predicted break width goes from 9 to 20 km.

s=0. At time ¢t = 0, take r = r,d(x) and q = ¢,6(x), where §(z) is a Dirac delta
function (that is all of the r, rabid foxes are concentrated at = 0). From the values
in table 1 the dimensionless inverse of the incubation time g is small compared
with d and 1—d (see also the discussion in the appendixes) and as a consequence
we can determine, with the above scenario, an analytical expression for z, (see
Appendix 2 for details) to first order in x#, ¢ and §, which are also small. In
non-dimensional terms we find

Zo ~ (d—p) 4 In (1/m). (17)
In dimensional terms, from (5), this gives
X, ~ —(BK) ' [D(@+b+0)] Inm, (18)

with typical values for these parameters given in table 1.

The dependence of z., in (17), on d and m roughly agrees with figures 6 and 7.
It also suggests that the break width should not be very sensitive to p, which is
so when the carrying capacity in the break is not too close to the critical value.
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6. TWO-DIMENSIONAL EPIZOOTIC FRONTS AND EFFECTS
OF VARTABLE FOX DENSITIES

In general, fox populations are not uniform, but instead vary according to
the hospitality of the local environment. In this section we look at what happens
when the epizootic wave encounters a localized region of different carrying
capacity from the surrounding environment. In two dimensions the diffusion term
in system (1) becomes D(0?R/0X*+0*R/0Y?). Suppose that the carrying capacity,
K, and the initial susceptible fox density are equal to a uniform value everywhere
on a square region, except for a small patch in the centre of the square, where they
have different values. We now introduce a distribution of rabid foxes along one
edge of the square, so that a one-dimensional epidemic front starts off across the
square, and solve the model equations numerically. Figures 8 and 9 respectively
show the resulting rabid and susceptible fox population densities for lower and of
higher initial densities in the patch.

(a)

4
b /I K%
'f/ ’ll/”'

103 days 257 days 360 days

Fiaure 8. Effect on the epidemic front of a pocket of lowered carrying capacity K. System (1)
was solved on a square, with the initial rabies-free fox density and carrying capacity uniform
everywhere except in a rectangular region in the centre. In the centre patch K (S,) is 0.6
of the value outside. The epidemic wave comes in from one side of the square, and travels
across. The results are shown for a sequence of three times: before the epidemic reaches
the pocket, as the front passes the pocket, and afterward. (a) Three-dimensional plot of the
susceptible fox population density. (b) Contour plot of the susceptible fox density with
contour intervals of 0.1 where the density is normalized to run from 0 to 1. (¢) Three-
dimensional plot of the rabid fox density at each point in the square.
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(@)

(b)

(c)

103 days ' 386 days 643 days

Ficure 9. Effect on the epidemic front of a pocket of higher initial fox density (and carrying
capacity). System (1) was solved on a square, with the initial rabies-free fox density and
the carrying capacity uniform everywhere except in a rectangular region in the centre, where
they were raised by a factor of 1.7. The results are shown for a sequence of three times:
as the wave comes in from one side, as it passes the higher density pocket, and after it passes.
(@) Three-dimensional plot of the susceptible fox population density. (b) Contour plot of
the susceptible fox density, with contour intervals of 0.1, where the density is normalized
to have a maximum of 1. (¢) Three-dimensional plot of the rabid fox density at each point
in the square.

From figure 8b we see that the front moves more slowly through the region of
lowered carrying capacity, and from figure 9b that the reverse happens for the
pocket of raised capacity. The residual fox population, once the first outbreak has
moved past, is slightly higher in the pocket of lowered K (and lower in that of
raised K), than in the surrounding region. One interesting feature is that the pocket
of lowered density provides a sort of protection to the region just adjoining it.
There are never as many cases of rabies in a ring around the outside of this region,
and the final susceptible population density is higher there than further away. The
break region of the previous section also exhibits this feature, which arises because
the region of lower density does not provide as many rabid foxes to diffuse into
this area — there is, in effect, a preferential direction for the diffusion. The pocket
of higher density has the opposite effect. Another interesting fact is that the
epidemic appears to jump ahead of the epidemic front into the pocket of higher
density (see the central figure in figure 9¢). This is a focusing effect, which could
account for some of the cases when outbreaks of rabies appear in advance of the
front.
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7. RABIES IN ENGLAND: SOME QUANTITATIVE PREDICTIONS

For some time now, England has remained rabies-free owing mainly to the strict
quarantine laws and high public awareness of the potential dangers. With the
proximity of the disease in the north of France and the increased private traffic
between continental Europe and Britain it seems possible that the disease will
be brought into Britain in the near future. The appearance of rabies in Britain is
particularly serious because of the high density of foxes, both urban and rural, in
England. An additional cause for concern is the apparent compatibility of these
urban foxes with cats (Macdonald 1980). If no control measures are applied, the
epidemic would move quickly through England. We can use our model to obtain
a rough estimate for the position of the epidemic front after rabies is introduced
into the fox population.

Macdonald (1980) gives a map of estimated fox densities in England. We covered
the lower half of England with a grid, and assigned a density to each square based
on the values given on his map. Contour lines of these densities, normalized from
0 to 1, are shown in figure 10. A value of 1 corresponds to 2.4 adult foxes per

0
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«

Fiaure 10. Contour plot of fox densities in the southern half of England that were used in our
numerical simulations. Values are scaled to lie between 0 and 1, with { corresponding to
2.4 adult foxes km™ in springtime, or to an average of 4.6 foxes km™2 throughout the year.
These values are based on Macdonald’s (1980) estimates, who emphasizes that the density
map is probably not very accurate but is based on educated estimates.
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square kilometre in springtime. Recall that our model is stated in terms of
densities averaged over the yearly cycle (see assumption (i), §2). Before the
introduction of rabies, the population increases to its yearly high just after
whelping, then gradually returns to the adult springtime population. The average
density is roughly the mean between the populations just before and just after
whelping. The ratio of males to females is about 1.2:1, and females have an average
0f 3.7 to 4.2 cubs each year (Lloyd et al. 1976). Thus the average population is about
1.9 times the springtime adult population, and 1 corresponds to a carrying capacity
of 4.6 foxes km™ in figure 10.

Using the carrying capacities (and initial fox densities) shown in figure 10,
and supposing, by way of illustration, that the rabies epidemic starts near
Southampton, we solved the two-dimensional form of system (1) numerically. The
parameter values given in table 1 were used, and the diffusion coefficient was taken
to be 200 km? per year. The numerical simulations took about 120 minutes on a
Cray XMP-48 at the Los Alamos National Laboratory. The results are shown in
figures 11 and 12. The position of the front every 100 days is shown in figure 11. We
see that with such high fox densities the epidemic very quickly reaches most of
the region studied. Within 4 years the front has effectively reached Manchester.
The sequence in figure 12 shows that, just as in the uniform density case, most
of the cases of rabies are concentrated in a narrow band at the front ; the susceptible
population is effectively decimated by the epidemic and regenerates before another

20
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Fioure 11. The position of the wavefront every 120 days as predicted by our model and the
fox densities in figure 10. We assumed a diffusion coefficient of 200 km? per year, and took
the other parameter values from table 1.
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wave starts again. Figure 12 shows the second outbreak starting off from
Southampton, about 7 years after the first one.

These quantitative predictions are very rough. Macdonald (1980) emphasizes
that the fox densities in his map are only educated guesses, based on his knowledge
of fox ecology. As we emphasized in §4, not enough is known about the behaviour
of rabid foxes to obtain a sharp estimate for the diffusion coefficient, which means
that the speed of the wave may be anywhere from one half to four thirds of our
calculated result. We have also neglected such geographical factors as rivers, which
tend to provide a channel for the epidemic, speeding its movement parallel to the
banks and temporarily halting its direct passage. However, we believe that this
relatively simple model provides a plausible quantitative first estimate for the
progression of rabies in England if the epidemic wave were allowed to move
unchecked. As we saw above, it also gives the break widths that would seriously
impede the spread of the disease.

8. CONCLUSIONS

We have investigated a simple deterministic model for the spatial spread of the
rabies epidemic among foxes, which incorporates many of the salient features of
the disease and the ecology of foxes. Our model is sufficiently simple that we could
obtain fairly reliable estimates for all of the parameters except the diffusion
coefficient, for which we obtained a range of possible values. Analysis of the model
produces certain predictions for the behaviour of the epidemic wave, in different
environments, which we believe provide some quantitative insight into the spatial
spread of the epidemic and the transmission mechanisms responsible for its spread.
For example, it is not known whether the primary reason for the spatial spread
of the epidemic is the encroachment of confused rabid foxes onto their neighbour’s
territories, as we have assumed, or the migration of young foxes who carry the
disease with them while healthy, or if both mechanisms are equally important. By
isolating one of these mechanisms, we can determine how the epidemic wave
behaves if that is the primary factor in its spatial spread, and compare the results
with observation in continental Europe to see if it is possible for it to be the
dominating factor. Our results indicate that the confused movements of rabid foxes
is indeed sufficient to account for much of the behaviour of the current epidemic.
It would be interesting to investigate a model in which migrating young foxes are
the primary cause for spatial spread of rabies.

The agreement of our model with the available epidemiological evidence is quite
good, despite the uncertainty in the size of the diffusion coefficient. For an initial
fox density of 2 foxes km™2, which is similiar to densities reported for much of
mainland Europe, and for any reasonable choice of diffusion coefficient, the speed
of the epidemic front (25-65 km per year), obtained from our model, encompasses
the range of 3060 km per year usually observed. The speed of the wave increases
with fox density, and drops to zero as the fox density decreases to the critical value.
The model also predicts that rabies will essentially disappear for a period of about
5 years after the first outbreak, and then reappear, with the second outbreak
weaker than the first. This correlates very well with what has happened in many
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parts of Europe. Another interesting feature that emerges from the model is the
enhanced movement of the rabies epidemic into regions of higher density in
advance of the rest of the front. This may help to explain why outbreaks seemingly
far in advance of the epidemic occasionally occur.

It is possible for a strip of lowered susceptible fox population to check the
progression of the epidemic, and protect an uninfected region ahead of the front.
For this method of control to be efficiently applied, it is essential to have an
indication of how wide an effective break region must be. For our model control
scheme, figure 6 shows non-dimensional estimates for this width. If there are 2
foxes km~? initially, and the reduction scheme is 80 9, effective, then figure 6 gives
a break width of 10-25 km, depending on the diffusion coefficient. This is of the
right order of magnitude when compared with the protective break that has proved
effective in Denmark, where intensive control measures were applied to a strip
20 km wide with less intensive measures used in an adjoining 20 km strip.

The probability that rabies will eventually reach England and other uninfected
regions is high. It is clearly of considerable importance to understand as much
as possible about the disease, its transmission and how it spreads, well before it
arrives. The density of foxes in England is much greater in many areas than on
the continent, and the epidemic may proceed differently there. Figures 11-12
summarize some of our model’s predictions for a particular choice of diffusion
coefficient, and some estimates for the current fox populations in the southern half
of England. Perhaps the most disturbing aspect of these results is the rapidity with
which the epidemic would move through the central region, namely at speeds of
around 100 km per year. No less disturbing is the reappearance of the disease
several years after the passage of the epidemic front, a fact that could well give
rise to complacency.

J.D.M. thanks the Los Alamos National Laboratory, Los Alamos, New Mexico,
where most of this work was performed during a visit in 1985 as the Stan Ulam
Visiting Scholar.

APPENDIX 1. MATHEMATICAL ANALYSIS OF TRAVELLING
EPIZOOTIC WAVES

1. Linear analysis and wave speed determination

We look for epizootic wave solutions to the dimensionless system (6), which
travel at a constant velocity v into an undisturbed, rabies-free region. We thus look
for solutions s, ¢ and r as functions of the single variable £ = x+ v that satisfy

vs’ = e¢(1—n) s—rs,
vg’ = rs—(p+d+en)q,

q ( )q AL1)
vr’ = uqg— (d+en) r+d3r/dE2,

n=s+q+r,

where prime denotes differentiation with respect to £, and where s—>1, ¢—0, r—>0
as §—+ — o0, that is far ahead of the wave front. Physically, none of the population
densities can be negative, so we are interested only in non-negative solutions.
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Practical values of the model parameters make € < 1 and § <€ 1, which suggests
an asymptotic analytical procedure.

The system (A1.1) has three possible steady-state solutions in the positive
quadrant: (s, ¢, r) = (1, 0, 0), (0, 0, 0) and (s,, gy, ), Where s,, g, and r, are given,
up to first order in ¢ and &, by

So=d+[e+(ed+8)/nld, q,=ed(1—d)/u, r,=e(l—d). (A1.2)

From the full expressions for (s,, g,, 7,) all of s,, g, and r, are non-negative only
if

0<d<[l4+(e+0)/pu] *—e. (A1.3)
If a travelling wave solution to the system (6) exists that has the required
properties, it will appear as a trajectory, in the phase space of (A1.1), which goes
from the equilibrium at s = 1, ¢ = r = 0 to one of the other two equilibrium points,
(0, 0, 0) or (84, g9, 7o), and remains in the positive quadrant.

Writing (A1.1) as a first-order system and linearizing about the critical point
(s, q, v, dr/d&) = (1, 0, 0, 0) gives a linear system whose solutions are linear
combinations of the eigensolutions z;exp(A;£) where x; and A; are the four
eigenvectors and eigenvalues of the coefficient matrix. Sufficiently close to the
critical point, solutions of (A1.1) follow those of the linearized form. So we can
determine the solution behaviour near the critical point by looking at all possible
linear combinations of the eigensolutions. If ReA; < 0, then x; exp (A;§)—>0 as
£— 00 and the trajectory approaches the critical point, whereas if ReA; < 0 the
trajectory comes out of the critical point. Trajectories leaving the critical point
thus correspond to linear combinations of those eigensolutions with Re A; > 0. If
an eigenvalue is complex, then its eigensolution is oscillatory.

The four eigenvalues for the linear system near (1, 0, 0, 0) are A = —¢/v < 0 and
the roots of the cubic

JA)=2+[(p+d+e)/v—v)] A*—(d+p+d5+2¢)A
+[pu(l—d—e)—(0+¢€)(d+e)]/v. (Al4)

f(A)—>00 as A— o0 and f(A)—»> — o0 as A—> —oo. If (A1.3) holds, then f(0) > 0 and
fhas a negative slope at A = 0. Depending on the values of the various parameters,
f can look like either of the forms illustrated in figure A1.1.

With all the parameters fixed, as the velocity v is varied f will sequentially look
like each of these shapes. Thus, as long as (A 1.3) holds f has one negative real root
and, depending on the value of the velocity of the wave, it has either two positive
real roots or two complex roots. When the velocity is such that the roots of (A1.4)
are complex, with Im A # 0, these represent oscillatory solutions, which imply
negative populations, and hence physical waves cannot travel with such velocities.
The bifurcation value for v, v, say, between realistic and unrealistic solutions is
the value when (A 1.4) has a double root. Thus the range of velocities is determined
by finding v,. This is given by setting f = 0 and df/dA = 0 and eliminating A, to
get an equation for v, in terms of the parameters. To first order in € and ¢ it is
given by the positive real roots of g(v2), where g(z) is given by

g(z) = [4p+ (d—p)*] 2>+ 2[3u(1 —d) (3d +p) + (d+ p)*(2d + p)] 2
+p2[(d+p)—6(1—d) (3d+ p) —27(1 —d)?] z—4us(1—d), (A1.5)
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Freure A1.1. The eigenfunction cubic (A1.4) may have two positive roots (a) or none (b). A,
is the critical (double) root situation (c).

which is equation (9) in the paper. g(z) is negative and d%g/dz? is positive at z = 0
when (A 1.3) holds. A rough sketch of g(z) shows it has a unique positive root that
corresponds to the minimum possible velocity for an epizootic wave.

We now show that it is not possible for a trajectory to go from the critical point
at s = 1 to that at the origin. On linearizing (A1.1) about the origin we find the
eigensolutions

= aexp[—(u+0)§/v], bexp[t(d+i?)i] &, cexp [eE/v],

LS R ®

=

where
at = [O’ (d—ﬂ-s>/ﬂ—(ﬂ+8)2//ﬂ)2, L, —(lLL+6)/?)],

bT =10,0, 1, o+ (d+12)3], ¢T=]1,0,0,0],

and where the superscript T denotes the transpose. Sufficiently close to the origin,
trajectories that approach the origin are linear combinations of the two
eigensolutions with negative exponents, and so they approach the origin in the
plane s = 0. For the system (A1.1) ‘time’ is reversible, in the sense that we can
replace £ by —§ and trace backwards along any trajectory. Setting 7 = —§ in
(A1.1) and taking s = O initially, we see that s = 0 for all positive 7 irrespective
of the initial values of » and ¢. This implies that a trajectory that has s = 0 for
any £ had s = 0 for all previous £, and has s = 0 for all subsequent £. So a trajectory
cannot come from s = 1, enter the s = 0 plane, and approach the origin.

This implies that a travelling wave can only occur if there is a trajectory from
s = 1 to the critical point (s,, g,, ) and therefore that condition (A 1.3) must hold.
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To determine the behaviour of the wave as it approaches this critical point, we
now linearize (A 1.1) about (s,, g,, 7,) to get, after some algebra, the eigenvalues

Ny Ay = Mo—p/v+{(v—p/v) +4(u+d) (A1.6)
to first order in € and §, and
A3, Ay = {ileud(1 —d)/(p+d)]2/v}
—ed[20(u+d)*] 7 [p(1 —d) (u/v*— 1)+ (u+d)*]  (ALT)

to second order in € and §. A, is positive, and so, near the critical point, any solution
that approaches (s,, g,, 7,) as §—>c0 is a linear combination of the eigensolutions
corresponding to A,, A; and A,. Since |A,| > |Re(4;, A,)|, the amplitude of its
eigensolution decays much more rapidly than that of the eigensolutions of the
complex eigenvalues. Thus sufficiently far back in the tail of the wave (that is for
sufficiently large £), it is the solutions corresponding to the complex eigenvalues
that govern the behaviour of the travelling wave. The eigenvectors corresponding
to these eigenvalues are given by

§—8, 1

94 tiled(1—d)/p(p+d)}

r—ro || ilen(1—d)/d(u+d)}
v eu(1—d)/v(u+d)

which on taking an arbitrary real linear combination of the eigensolutions, gives
for sufficiently large £

8§—8y ~ [A coswE/v+ B sin wg/v] exp (—AE/v),
g—q, ~ (w/p) [A sinwé/v— B coswf/v] exp (—AE/v), (A1.8)
r—ry ~ (w/d) [A sinw§/v— B cos wf/v] exp (—AE/v).

Here w is the period of the waves, given by the imaginary part of the complex
eigenvalues divided by », and A is the decay rate of the amplitude, given by the
real part of these eigenvalues divided by v. A and B are constants, which depend
on the way the trajectory approaches s, ¢,, 7, and cannot be determined from a
linear analysis.

2. Scaling arguments, nonlinear analysis and estimates for the maximum
number of rabid foxes during the epizootic

From (A1.2) and (A1.8) we then have q¢ ~ rd/u for sufficiently large £: that is
the profiles for the infected and rabid fox densities are similar, differing only in
scale. In the simulations of the full nonlinear system, the striking profile similarity
holds for the entire wave, as is seen from figures 1 and 2. This surprising fact
suggests that, in view of the complexity of the three-species model, it would be
of interest and considerable benefit to investigate analytically the conditions under
which we could replace the three-species model with a two-species model; that is
we could replace, for example, a susceptible, infected and rabid system, by a
susceptible, rabid fox system: the infected fox population is then given by a simple
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scaling of the rabid population, which of course would have to be determined.
Under certain conditions, it is possible to give an analytical explanation of why
this phenomenon occurs: it is not completely obvious from the model system
(A1l.1).

A crucial first step is to note that for both sets of parameter values used in the
numerical simulations the parameters d and u satisfy d > p and (1—d) > u (x was
0.08 and 0.04), whereas the non-dimensional velocity » is about the same size as
d. Furthermore, ¢ and § are about the same size as u2. If we assume that these
order-of-magnitude comparisons hold in general, that is

O<pu<l, 0<e=pl,, 0<8=,u,280,.}

(A1.9)
and d, 1—d, v, €, d, are all O(1),

we can use a singular perturbation analysis (see, for example, Murray 1984) to
obtain asymptotic solutions to the full nonlinear system (A1.1) in the limit as
#—>0. The technical mathematical details will be presented elsewhere but here we
give a brief account of the arguments as to why r and ¢ have similar profiles.

To show that r and ¢ have similar profiles we need only show their similar
dependence on s, that is the curves ¢(s) and r(s) should differ only in scale. Using
the chain rule expressions

r =" dr/ds,
A1.10
r" = s d(s'dr/ds)/ds = s'{s" d?/ds*+ (ds’/ds) (dr/ds)} ( )
with similar ones for ¢, where prime denotes differentiation with respect to &, we
can replace the ¢ and r equations in (A1.1) by equations that involve s as the
independent variable rather than & Further, from the numerical solutions in
figures 1 and 2, » is everywhere very much smaller than q. In fact specifically from

(A 1.8) we see that asymptotically ¢ —¢q, ~ d(r—r,)/p. This suggests that we should
introduce a new stretched variable y for the rabid population by setting

r(s) = uy(s),

where we expect y, as well as ¢, to be O(1). Using (A 1.10) in the q and r equations
in (A1.1), together with the first of (A1.1) to replace 8" with its right-hand side,
and the last transformation, we obtain the following (travelling wave) phase plane
equations for g and y with s as the independent variable:

[—ys+pe,s(1—n)] dg/ds = ys—q—pu(8,+6€n) ¢,
q—dy = pl—ys+pe,s(1—n)] dy/ds—p*v™*[ —ys+ pe, s(1 —n)]
XA{[—ys+pueys(1—n)] d®y/ds? + [ —y + pey (1 —n—s)—s(1+ pu’e,) dy/ds
— p€y s — peys dg/ds] dy/ds}+ ule,yn,

n=s+q+py.
(A1.11)

These are the equations we now consider in detail to show that ¢ is proportional
to y (and hence r) over the complete travelling wave domain in s, and hence in
the travelling wave coordinate { = x+t.
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We know from the last section that the solution trajectory of interest starts at
s = 1,q = y = 0 and eventually spirals into s, ~ d, ¢, ~ pe,d(1 —d), y, ~ ue,(1—d).
Note also, from (A 1.11), that for small x, ds/dy = 0 for y = pue,(1 —n) = O(u). So,
with the knowledge we now have of the solution trajectory in the y—s plane, it is
qualitatively as illustrated in figure A 1.2, with the bottom parts of the successive
loops approximately straight lines parallel to the s-axis.

—

BB (1)

d 1

8>

Ficure A1.2. Schematic phase plane solution trajectory for the scaled rabid population y in
terms of the susceptible population s, from (A1.11).

To show the trajectory similarity between q and y we must now be more precise.
The first few loops of the spiral-type trajectory in figure A1.2 are each made up
of four main pieces, which are schematically illustrated in figure A 1.3a—d. These
consist of the top (a), where y and q are O(1) and the s-variation is O(1), the left
(b) and right (c) corners where y and ¢q are O(u), and s is respectively near a value
sy, and sy say, and the bottom of the curve, where y and q are even smaller than
#, and s varies by O(1). The equations governing the solution in these different
regions take on different approximate forms, the solutions of which have to be
matched in a singular perturbation way. The full analysis will be omitted here but
the procedure is described with sufficient detail to demonstrate the main point,
namely that ¢ is directly proportional to r.

For the upper part of the curve, that is figure A1.3a, both y and q are O(1). We
expect terms multiplied by x in (A1.11) to be negligible, and so here the solution
behaviour is governed by

—ysdg/ds=ys—q, q—dy=0,
the solution of which is
y(s) = In (s/s*)+(s*—s)/d, q(s) = dy(s), (A1.12)
where s* is a constant of integration. Note that over this part of the solution
trajectory the infected population g is proportional to the rabid population y, as
we wished to show. The solution y(s) here has two zeros, s;, and sy say, where

0<s,<d<sg<l (A1.13)

6 Vol. 229. B
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Ficure A1.3. (@) Typical upper part of the y-trajectory where y = O(1) and s varies by O(1).

(b, ¢) Left and right lower corners of the trajectory where y = O(x) and s is approximately
constant. (d) The bottom part of the curve where y = o(x) and s varies by O(1).

These zeros define the positions of the left and right corners of each loop. Of course
this solution is only valid as long as the neglected terms are very much smaller
than those retained.

If we consider the first loop, then sz = 1. Except for the first loop, as s tends
toward either sp, or sy the term us(1—n) in the first equation is no longer small
compared with —ys. For the first loop this is also the case as s— sy but is not true
at the right-hand root, where 1 —» and y go to zero together. Note that for the
first loop (A 1.12) becomes

y~1In(s)+(1—8)/d=>Ymax = In (d)+(1—d)/d ats=d. (A1.14)

This is a particularly useful result because it allows us to give estimates for the
maximum number of rabid and incubating foxes during the passage of the epizootic
wave. From (A 1.12) and the definition of y, using (A1.14), we get

Tmax ~ #[In (@) + (1 =d)/d], qmax ~ d[In (@) +(1=d)/d],  (A1.15)

which occurs when the susceptible population is s = d.
For the corner regions where y, ¢ and s—sp, or s—sg are all O(u), we must
introduce a further stretching transformation, namely

Yo=Y/t Go=q/p, S.=(8—5*%)/u, fors*=s, sy. (A1.16)
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Then (A1.11) becomes, for 0 < u < 1,
[(8%+pse) (—ye+eo(l—n)]dge/ds, = ye(s*+pse) —qe— (S +€47) G
QoY = p(s*+ps;) [—yc+e(1—n)]dy./ds. +O(u?), (A1.17)
n= 8%+ u(sc+qc) + 1Y

Now let 4 —0 in the usual singular perturbation way and the last two differential
equations become

[—y.t+e€(l —8%)]s* dqc/dsc = ycs*_9c7}

(A1.18)
9c = dye,
the (implicit) solution of which is
e = ds*(s*—d)[ey(1 —s*) Iny, —y.+C],
_ (A1.19)
9c = dyc’

where C is an integration constant. Once again ¢ is proportional to r to first order
in p.

This corner analysis breaks down when s, becomes unbounded as we leave the
vicinity of the corners. In singular perturbation parlance as s,—~ + c0 we have to
match the corner solution to the other parts of the solution, specifically the top
and bottom part of the trajectory loops in figure A1.3a, d. Here as y.—0,
In y, > — oo and s, + oo for the left corner, s, — oo for the right corner, as the
bottom part of the loop is approached. As y,— + 00, once again s,— + 00 for the
left and right corners respectively and the top part of the loop is approached. So,
this is saying that as y and ¢ get either large or small, s is no longer close to s*
and some of the neglected terms in (A1.17) become important.

Finally let us consider the bottom region. Here we make a further stretching
transformation by writing

y =)y, q=r(u)qy wherev(u)=o(u), (A1.20)

where for our purposes the specific form of v(x) need not be determined. The system
(A1.11) with this transformation becomes

s[vyy +pe(1—n)]dgy/ds = yp s — g, — p(8y + €y 1) g,
@ —dyy, = us[vyy+uey(1—n)]dy,/ds+ O (u?), (A1.21)
v =s8+v(qy+uyy)-

Here we have to be a little more careful in deriving the relevant equation for small
p. From the second of (A1.21) we again have

9o = dYp. (A1.22)
The realistic limiting form of the first equation is

peys(1—s)dgy,/ds = yy, s—qy,

6-2
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the solution of which gives, with (A 1.22),
Yu(8) = A[1/(1— )]0~ Drad(1/s) 1, (A1.23)

where A is an integration constant. Now, in this part of the curve, y is everywhere
o(u) by virtue of the transformation (A 1.20). Since s < 1 for all but the first loop,
this means that as 4 —0 in (A 1.23), y,, will become unbounded. This solution has
to match the corner solutions near s;, and sg. The only way this can be done is
if 4 is chosen so that (A 1.23) gives such bounded solutions. Thus the appropriate
form of (A1.23) is

Yol8) = C[(1 —s1)/(1— )]~ DInead(s, fs)iineod, (A1.24)

where C is another constant available for matching. From the corner transforma-
tion (A1.16), where y, = y/u is O(1), we can plausibly expect C to be O(u/v(x))
The detailed analysis in fact determines C' = pu/v(u)

The complete solution can be constructed by a systematic singular perturbation
analysis by appropriate asymptotic matching of the solution for each part of the
loop: the analysis is not trivial and is of intrinsic interest. The important point
to note is that we have demonstrated that all around the spiralling loops

g=dy=dr/p (A1.25)

to first order in u, where 0 < u < 1. This is what is observed in the numerical
solution of the original system, equations (6), namely figures 1 and 2. As the curves,
in travelling wave coordinates, approach the critical point, the linearized system
takes over, and the curves are then described by (A 1.6), where, of course, ¢ = dr/u
still holds. Thus we suggest that the number of rabid foxes will essentially be
proportional to the number of infected foxes at all points on the travelling wave with
(A 1.25) governing the behaviour at all times.

APPENDIX 2. MATHEMATICAL ESTIMATE OF THE BREAK WIDTH

In this appendix the mathematical arguments that result in the analytical
estimate for the break width given in (17) are presented briefly. As discussed in
§5 above, an estimate for the break width can be obtained by assuming that for
x = 0, all of the susceptible foxes have been eliminated, for example by immuniz-
ation or killing. In our analysis here we shall make the added approximation that
the nonlinear terms in the equations for the incubating and rabid foxes can be
neglected. Since ¢ and ¢ are small parameters, this should be a reasonable
approximation. A further justification for these approximations comes from the
numerical computations of the break width, where we found that the computed
break width did not change if these terms were neglected. With these assumptions,
equations (6) reduce to

Oq(x, t)/0t = pq(zx, t),

or(x, t)/ot = pq(x, t)—dr(x, t)+az7'(x,t)/ax2,} (A2.1)

By symmetry, instead of considering the problem of a é-function source of infected
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foxes at = 0 and ¢t = 0 that then move into the region « > 0, the initial conditions
can be replaced by

q(x, 0) = 2¢,6(x), r(x, 0) = 2r,0(x) (A2.2)

and the region — o0 < # < o0 considered instead. Here §(z) is the Dirac d-function.
The propagation of infected foxes into the break is described by (A2.1) and (A2.2).
The quantities of interest, however, are the time ¢, at which the population in the
break has decayed to a given level, p, defined implicitly by the formula

(KD/B)} f:’[q(x, te) + (@, t,)] do = p (A2.3)

and the break width, x,, which as discussed in §5 is given implicitly by
q(x,, to) +7(x,, t,) = mq(0, t,)+7(0, t,)]. (A2.4)

First we estimate ¢,. Integrating equations (A2.1) with respect to « from 0 to
o0, we get the two ordinary differential equations

dQ*(t)/dt = *
Q*(t)/dt = u@*(t), } A25)
dF*(t)/dt = — dF*(t)+dQ*(t),

where

Q*t) = qu(x, t)ydx, F*(¢) =fw[q(x, t)y+r(x, t)] de.

0

The initial conditions for (A2.5) are F*(0) = q,+7, @*©0)=q, The first of
equations (A2.5) is easily solved for @*(¢). @* can then be eliminated from the
second equation, to obtain the following equation for F'*, the (scaled) total number
of foxes present in the region x > 0:

dF*/dt = —dF*+dg,e . (A2.6)
With the given initial conditions, the solution to (A2.6) is
FH(t) = [go+ ro—d/(d—p)) e~ +dgy0/(d— o). (A2.7)
The critical time ¢, can then be determined from (A 2.3) by solving the equation
F*(t,) = p(B/KD):.

Note that each of the two terms on the right-hand side of (A2.7) involves an
exponential factor. Since, the reasonable values of the field parameters, d > y and
d—p = o(1/t,), the first of those terms can be neglected in comparison with the
second if ¢, is sufficiently large. We shall assume that this is the case, and verify
it a posteriori. So neglecting the first term, the resulting algebraic equation can be
solved to give

te ~ p7t In {d(KD/B)* qo/[p(d—p)]}- (A2.8)

Typical values for d and x are 0.46 and 0.08, respectively. (KD/p): q, can be
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approximated from figure 5 and the results of Appendix 1, §2. From the latter,
q = dr/u, so that the total number of infected foxes satisfies

|” aemax= @i g,

—

From figure 5,
9]
f (I+R)dX =~ 6.9 foxes km™,

—a0

giving (KD/B): q, = 5.9 foxes km™. For p = 1 fox km™, (A 2.8) gives an estimate
of t, ~ 33 for these values of the parameters, and so the ratio of the two
exponentials e~%c and e ¢ is approximately 3 x 107, which justifies neglecting
the smaller exponential in (A2.7) in the above analysis.

We now derive an estimate for the break width x,. This involves solving the
problem posed by (A2.1) and (A2.2). The first of (A2.1) gives

q(x, t) = 2q,0(x) e, (A2.9)
Substituting this into the second equation gives
Or/0t = —dr+ 0% [0ax®+ 2q, ud(x) e, (A2.10)
the solution of which, with initial conditions (A 2.2), is of the form
r(x, t) = (2ry/+/ M) exp (—ax? /4t —dt)+ e “r*(x, ),
where r*(x, t) is the solution of
Or¥ /0t = (u—d)r* 4 0% * /0% +2q, pd(x) (A2.11)
with homogeneous initial data. The last equation can be solved by using Laplace

transforms. Denote the Laplace transform of r*

plex, s) = j r¥*(x, t)e~% dt, Re s> 0.

0

Then p satisfies the inhomogeneous ordinary differential equation
d?p/dat+ (u—d—s) p = —2q,pud(x)/s, —ow <xr< o, Res>0. (A2.12)
Only the solution for « > 0 is of interest; it is given by
p(, 5) = pgfexp[ — (s+d—wh aly/is(s+d—w).

Thus, inverting the transform, we get
r¥(x, t) = (ﬂqo/2ni)f {exp [—(s+d—p)t x}e /{s(s+d—p)} ds, (A2.13)
c

where (' is the Bromwich contour. The singularities of the integrand are a pole at
s = 0 and a branch point at s = —(d — ). The branch cut can be taken along the
negative real axis to the left of the branch point, and so the contour of integration
can k _.eformed to lie above and below the negative real axis. Since it is only
necessary to evaluate r*(x, t) for t = ¢, it can be assumed that ¢ > 1 in the integral
(A2.13). Following Murray (1984, ch. 5), the main contribution to the integral is
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then given by the residue at the pole s = 0; the contribution from the branch cut
is exponentially small in comparison provided that

(x/2t)* < d—p. (A2.14)

This inequality will be shown to hold below. Thus we arrive at the solution for
r(z, t) given by

r(@, t) ~ [2ry/v/(nt)] exp [—a?/4t—dt])+ [ug,/ v/ (d—p)] exp [—pt—(d—p)t x].
(A2.15)

To estimate the break width, note that the formula (A2.4) cannot be used
directly since with (A2.9), g(x, ¢) always involves a §-function. Instead, we replace
(A2.4) by

(X, ) = mr(0, t,) (A2.4a)

(e and ¢

The assumptions (A2.14) and ¢ > 1 can again be used to justify neglecting the first
term in (A2.15) with respect to the second. So from (A2.4a) and (A2.15), an
estimate for the break width is given by

2, ~ (d—p)t In (1/m). (A2.16)

If we take m = 107 together with the parameters used previously to estimate
t., then assumption (A 2.14) is easily verified to be valid for ¢ = ¢, and = « since
(%./2t,)* = 0.05 and d—p = 0.38.

Note that, at least to leading order, the formula for x, is independent of the
critical time ¢,. The calculation of ¢, was only necessary for the purpose of verifying
the ‘¢t large’ assumption that was made throughout the analysis in this appendix.
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