
7. ETA EVALUATIONS USING GENERALIZED WEBER
FUNCTIONS

Introduction

This chapter is intended to continue the work which we began in chapter two, of
providing actual eta evaluations. As hinted in the previous chapters we are now
able to provide a number of new evaluations which depend not on Weber functions
but on the modular equations for their generalizations. In particular we will make
use of the Schläfli type modular equations which we developed earlier.

As in chapter two we need to be very familiar with the various identities which our
functions satisfy. These are recorded in chapter five, at least for the level 3 and 5
functions.

1. Class Number Five Evaluations Using Level Three Functions

We begin by adapting a technique of Weber. We let ω be the root (−r +
√
−m)/2

where m = 4n− r2, of the quadratic form z2 + rz + n. Note in particular that

(1) ω/n = −1/(ω + r).

We cannot make use of this in the case of the class number seven discimininant
d = −71, since to express 71 = 4n − r2 for a prime degree n is not possible
(consider the equation modulo 8).

We do have however 131 = 4× 53− 92.

We make use of the Schläfli type modular equation for level three functions and
degree n = 53. In general this will provide a polynomial relationship between g1(τ)
and g1(53τ) for general τ .

Firstly we make the transformation τ → τ +1 in our modular equation. This simply
makes it a polynomial relationship between ζ−1

12 g2(τ) and −g3(53τ). Alternatively,
since this will be an identity for all τ , sending τ → τ/53 this becomes a relationship
between ζ−1

12 g2(τ/53) and −g3(τ).

However for the value τ = ω = (−9 +
√
−131)/2 this will become a relationship

involving ζ−4
12 g3(ω) and −g3(ω) or between the values ζ−1

6 g1((1 +
√
−131)/2) and

ζ−2
6 g1((1 +

√
−131)/2).

The relevant modular equation defines

A∞ = (uv∞)2 + 32/(uv∞)2 and B∞ = (v∞/u)3 − (u/v∞)3.

Thus in our case if we let x = g1(ω) these functions will reduce to the values

(2) A = x4 + 9/x4 and B = 0.

The following piece of code calculates the modular equation of degree 53 and stores
it in the variable m. It has been adapted from the code used in chapter 6.
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etaq = prod(n=1,300,1-q^n+O(q^300))
etaq53 = subst(etaq+O(q^6),q,q^53)+O(q^300)
gq = etaq/subst(etaq,q,q^3)
gq53 = etaq53/subst(etaq53,q,q^3)
a = vector(14);b=vector(10)
a[1] = 1;b[1] = 1
a[2] = q^(-9)*(gq*gq53)^2+3^2/(q^(-9)*(gq*gq53)^2)
b[2] = q^(-13)*(gq53/gq)^3-q^(13)*(gq/gq53)^3
for(i=3,14,a[i]=a[i-1]*a[2])
for(i=3,10,b[i]=b[i-1]*b[2])
n = a[14]-b[10]
m = A^13-B^9
div9(y)=for(k=0,100,if(y-k*9==0,return(k)))
l(z)=for(i=0,9,if((z-i*13)%9==0,return(B^i*A^((z-i*13)/9))))
larr(x)=for(p=0,9,if((x-p*13)%9==0,return(b[p+1]*a[div9(x-p*13)+1])))
for(j=0,116,if(polcoeff(n,j-116,q)<>0,m=m-polcoeff(n,j-116,q)*l(116-j

);n=n-polcoeff(n,j-116,q)*larr(116-j)))

In order to find the minimum polynomial for x = g1(ω) we simply substitute the
values given by (2), remove the denominator by multiplying by x52 and factorize
the resulting polynomial in x. This can be done with the following code fragment

A = x^4+9/x^4
B = 0
factor(eval(m))

We find that there are only two factors which have degree divisible by 5 and it is
not hard to substitute the value g1(ω) into both and find that the correct minimal
polynomial is x20−13x18+38x16+9x14+185x12+352x10+555x8+81x6+1026x4−
1053x2 + 243.

The major disadvantage of this approach is that it does not calculate the complex
absolute value of the eta quotient but the quotient itself. It is not trivial to deter-
mine the minimum equation of one from the other. We would like to calculate the
minimal polynomial of |x|2/

√
3 since it is this value which we conjecture is a real

unit in the Hilbert class field. Unfortunately our methods have not led to such an
evaluation.

It is clear from the minimal polynomial that x2 is of degree 10 over Q and so it
must be in the Hilbert class field. This is precisely what was proved using Gee’s
results in chapter 1.

We move on to the next discriminant of class number five which is d = −179. We
have that 179 = 4× 47− 32 and so the same technique as above can be applied.

We first make the transformation τ → τ + 1 in the modular equation of degree
47 for signature 3 functions. We end up with a polynomial relationship between
ζ−1
12 g2(τ) and ζ−4

12 g3(47τ). Then we replace τ with τ/47.

Now by virtue of the fact that (1) holds and m = 179, n = 47 and r = 3 we see
that our modular equation becomes, for τ = ω = (1 +

√
−179)/2, a polynomial

relationship between ζ−1
12 g1((1 +

√
−179)/2) and ζ−3

12 g1((1 +
√
−179)/2).

Now for the modular equation of degree 47 we must have

A∞ = (uv∞) + 3/(uv∞) and B∞ = (v∞/u)6 + (u/v∞)6.

But from what we have just written we see that if we define x = ζ−1
6 g1((1 +√

−179)/2) then A = x2 + 3/x2 whilst B = 2.
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We modify the code that was used in the last example to obtain the modular
equation of degree 47. We make the substitutions just mentioned and then factor
the resulting expression to obtain a minimal polynomial for the value x.

There are two factors whose degree is divisible by 5. It is not hard to substitute
the value x = ζ−1

6 g1((1 +
√
−179)/2) into both factors and discover that in fact

x20 + 17x18 + 170x16 + 607x14 + 1869x12 + 3400x10 + 5607x8 + 5463x6 + 4590x4 +
1377x2 + 243 is its minimal polynomial.

Once again x2 has minimal polynomial of degree 10 over Q and since we already
knew that x2 must be in some extension of the Hilbert class field (since it is a root
of a discriminant function quotient) which is degree 10 over Q we know that it must
actually lie in the Hilbert class field. Again this is what we proved in chapter one.

2. A Class Number Five Evaluation Using Level Five Functions

We return to the discriminant d = −131 of class number five. One of the values we
would like to evaluate is h1((3 +

√
−131)/2) where h1(τ) = η(τ/5)/η(τ) is the level

five function defined in chapter five.

The method we use is virtually the same as for the last section. We again use the
fact that 131 = 4 × 53 − 92. We let ω be the root of z2 + rz + n indicated at the
start of section one, where r = 9, m = 131 and n = 53.

Our modular equation of degree 53 for level 5 functions is a polynomial relationship
between h1(τ) and h1(53τ).

After applying the transformation τ → τ + 2 and replacing τ with τ/53 it becomes
a polynomial relationship between ζ−1

6 h3(τ/53) and ζ−4
6 h2(τ).

Substituting the value τ = ω = ((1 +
√
−131)/2) it becomes a relation between

ζ−1
6 h1((1 +

√
−131)/2) and ζ−2

6 h1((1 +
√
−131)/2).

The modular equation of degree 53 for level 5 functions will have

A∞ = (uv∞) + 5/(uv∞) and B∞ = (v∞/u)3 + (u/v∞)3.

Letting x = h1((1 +
√
−131)/2) and plugging in the values above, these functions

can be expressed A = −x2 − 5/x2 and B = −2.

Following Pari code to required to generate the modular equation of degree 53 for
level 5 functions. It is included since it differs in important ways from the code we
presented for the degree 53 level 3 case and took the author some time to adapt
correctly from the earlier construction. In particular it needs to check that the total
order of each of the terms of the modular equation is even.

etaq = prod(n=1,500,1-q^n+O(q^500))
etaq53 = subst(etaq+O(q^10),q,q^53)+O(q^500)
gq = etaq/subst(etaq,q,q^5)
gq53 = etaq53/subst(etaq53,q,q^5)
a = vector(53);b=vector(19)
a[1] = 1;b[1] = 1
a[2] = q^(-9)*(gq*gq53)+5/(q^(-9)*(gq*gq53))
b[2] = q^(-26)*(gq53/gq)^3+q^(26)*(gq/gq53)^3
for(i=3,53,a[i]=a[i-1]*a[2])
for(i=3,19,b[i]=b[i-1]*b[2])
n = a[53]-b[19]
m = A^52-B^18
div9(y)=for(k=0,100,if(y-k*9==0,return(k)))
l(z)=for(i=0,18,if((z-i*26)%9==0,if(((z-i*26)/9+i)%2==0,return(B^i*A^



140 7. ETA EVALUATIONS USING GENERALIZED WEBER FUNCTIONS

((z-i*26)/9)))))
larr(x)=for(p=0,18,if((x-p*26)%9==0,if(((x-p*26)/9+p)%2==0,return(b[p

+1]*a[div9(x-p*26)+1]))))
for(j=0,467,if(polcoeff(n,j-467,q)<>0,m=m-polcoeff(n,j-467,q)*l(467-j

);n=n-polcoeff(n,j-467,q)*larr(467-j)))

Making the substitutions above for A and B and factorizing we find there is only
one factor whose degree is divisible by 5. Thus we find that x20 − 13x18 + 36x16 +
561x14 + 335x12 − 2552x10 + 1675x8 + 14025x6 + 4500x4 − 8125x2 + 3125 is the
minimum polynomial of x = h1((3 +

√
−131)/2).

3. Class Number Seven Evaluations

We wish to deal with the class number 7 case, d = −71. Firstly we write −71 =
712−72×71. Thus we can take ω to be the root (−71+

√
−71)/2 of z2+71z+18×71.

We note that ω/71 = −1/((ω + 71)/18).

We use the modular equation of degree 71 for level three functions. We can make it
into a polynomial in g1(τ/71) and g1(τ). Plugging in the value τ = ω given above it
becomes a relation between g((71+

√
−71)/36) and g1((−71+

√
−71)/2). But this

can be made into a relation between ζ6 g((−1 +
√
−71)/36) and g1((1 +

√
−71)/2)

or between ζ6 g1((1 +
√
−71)/2) and g1((1 +

√
−71)/2).

Now the modular equation of degree 71 (which is given in chapter six) defines

A∞ = (uv∞) + 3/(uv∞) and B∞ = (v∞/u)6 + (u/v∞)6.

Thus if we let x = ζ12 g1((1 +
√
−71)/2) then we have that A = x2 + 3/x2 and

B = 2 for the particular value of τ we have chosen.

Substituting these into the modular equation of degree 71 and factorizing we find
only one factor whose degree is divisible by 7. In fact the minimal polynomial of
the value x is x28 +2x24 +57x22 +177x20 +296x18 +864x16 +2081x14 +2592x12 +
2664x10 + 4779x8 + 4617x6 + 486x4 + 2187.

We move on to the next discriminant of class number 7, d = −151. We write−151 =
1512−152×151. So we can take ω = (−151+

√
−151)/2 a root of z2+151z+38×151.

We see from the quadratic equation that ω/151 = −1/((ω + 151)/38).

We use the modular equation of degree 151 for level five functions. It starts as a
polynomial relationship between h1(τ) and h1(151τ). After sending τ → τ − 3 and
then making the change τ → τ/151 it becomes a relation between h3(τ/151) and
h3(τ).

For the specific value τ = ω that we have chosen this becomes a relation between
h3((151+

√
−151)/76) and h3((−151+

√
−151)/2). This can be changed to a relation

between h5((−1 +
√
−151)/76) and ζ4

6 h1((3 +
√
−151)/2) or between ζ6 h1((3 +√

−151)/2) and ζ4
6 h1((3 +

√
−151)/2).

The modular equation of degree 151 must have

A∞ = (uv∞)3 + 53/(uv∞)3 and B∞ = (v∞/u) + (u/v∞).

If we take x = h1((3 +
√
−151)/2) then the values of these functions at ω are equal

to A = −x6 − 53/x6 and B = −2.

We adapt the Pari code that we used for the discriminants -131 and -179 and find
the modular equation of degree 151 for signature 5 functions. We then substitute
in the given value of A and B and factorize.

There are two factors whose degree is divisible by 7 and we easily find that the
mimimum polynomial for the value x above is x28 − 23x26 + 191x24 + 146x22 −
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4249x20 + 6199x18 + 27581x16 − 100057x14 + 137905x12 + 154975x10 − 531125x8 +
91250x6 + 596875x4 − 359375x2 + 78125.

It is unfortunate that our technique does not provide eta evaluations similar to
those of chapter two, namely evaluations of the absolute value of an eta quotient.
Of course we should still be happy to provide eta evaluations as we have, of the
square of an eta quotient but an important question is raised by the difference in
results between chapter two and the current chapter.

The astute reader will have realised that in chapter two we made use of Weber’s
modular equations of irrational form. These involve all the Weber functions and
not just a single function. However the modular equations which we developed in
chapter five and have used here are of Schläfli type and only involve the function
g1 or h1, etc. The question is, what sort of modular equation plays the part of the
equation of irrational form for our higher level functions?

In the next section we develop a modular equation which seems to be such a gen-
eralization. It involves all the level three functions at once. Even though it does
not help us to provide eta evaluations similar to those of chapter two we report on
the development of this kind of modular equation since it leads to identities which
are most curious indeed and perhaps worthy of further study. This will be a final
act in our development of modular equations which has arisen from our study in
the evaluation of the Dedekind eta function.

4. A Permanent Identity

It will be necessary to consider modular equations of prime degree p where p ≡
1 (mod 3).

For our functions gi of level 3 we define functions associated to each gi

v(i)
∞ = gi(pτ)

v(i)
c =

(
3
p

)
gi((τ + 36mc)/p) for − (p− 1)/2 ≤ c ≤ (p− 1)/2

where 36mc = ap + 1 is the smallest natural number congruent to 1 modulo p.

Note: we also extend this defintion to the function g, where we write simply v∞
and vc for the appropriate functions associated with g.

Also for convenience, we let u(i) = gi(τ), and also let u = g(τ).

We will be interested in functions Ψ(τ), built polynomially from the functions
u(i)v

(i)
c , which are invariant under the full modular group; or what is the same thing,

invariant under both the modular substitutions S and T . Thus these functions will
belong to the modular function field C(j).

In addition we will demand that these functions Ψ(τ) have no poles in the complex
upper half plane or at i∞. The first of these conditions ensures that Ψ is expressible
as a polynomial in j, and the second, in light of the q-expansion for j, ensures that
it is in fact a constant. Thus we will have the identity Ψ(τ) = C for some constant
C and all τ in the upper half plane. This identity will be the modular equation we
are after.

The condition that there be no poles on the upper half plane is automatic, given
that our functions will be built from terms like u(i)v

(i)
c which themselves have no

such poles.

Now to simplify matters, an argument similar to that in chapter five shows that
we only need to construct a function Ψ0(τ) built polynomially from the u(i)v

(i)
∞ ,
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which vanishes at q = 0. This then ensures an identity Ψ∞(τ) = 0 which will be
the modular equation we are after.

We now investigate the action of the modular substitutions on the functions u(i)

and v(i). Firstly for the u(i) the relevant data is easily found and summarized in
the following table.

u u(1) u(2) u(3)

τ → τ + 1 ε1u ε2u
(2) u(3) u(1)

τ → −1/τ u(1) u u(3) u(2)

where ε1 = e
2πi
12 and ε2 = e−

2πi
12 .

Now for the v’s. Firstly consider the action τ → τ + 1.

For v∞ : g(p(τ + 1)) = e
2pπi
12 g(pτ) = e

2pπi
12 v∞.

For i = 2, 3 we have v
(i)
∞ : gi(p(τ + 1)) = e−

2πi
12

(p−1)
3 gi+1(pτ) = e−

2πi
12

(p−1)
3 v

(i+1)
∞

where we adjust, as we will from now on without comment, (i + 1), by three if
necessary, so that it is in the range 1..3 and for i = 1 we have v

(1)
∞ : g1(p(τ + 1)) =

e−
2πi
12

(p+2)
3 g2(pτ) = e−

2πi
12

(p+2)
3 v

(2)
∞ .

For the other v
(i)
c we note that

τ + 36mc + 1
p

=
τ + 36m(c + 1)− ap

p
.

Thus
vc(τ + 1) = e−

2aπi
12 vc+1 = e

2pπi
12 vc+1,

since a ≡ −p (mod 12). Note we also adjust the c + 1 by p if necessary (which we
can do in light of the periodicity of our function) so that it lies in the correct range.

Now noting that a ≡ 2 (mod 3) in light of the fact that p ≡ 1 (mod 3), we also have

v(1)
c (τ + 1) = e

2πi
12

(a−2)
3 v

(2)
c+1(τ)

v(2)
c (τ + 1) = e

2πi
12

(a+1)
3 v

(3)
c+1(τ)

v(3)
c (τ + 1) = e

2πi
12

(a+1)
3 v

(1)
c+1(τ)

again adjust c + 1 wherever necessary.

Turning to τ → −1/τ we have

v∞ : g(−p/τ) = g1(τ/p) =
(

3
p

)
v
(1)
0

and vice versa, and

v0 :
(

3
p

)
g(−1/pτ) =

(
3
p

)
g1(pτ) =

(
3
p

)
v(1)
∞

and vice versa.

Similarly we have

v(2)
∞ : g2(−p/τ) = g3(τ/p) =

(
3
p

)
v
(3)
0

and vice versa, and

v
(2)
0 :

(
3
p

)
g(−1/pτ) =

(
3
p

)
g3(pτ) =

(
3
p

)
v(3)
∞

and vice versa.
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Now consider the other v
(i)
c and vc for c 6= 0, ∞.

We solve(
1 36mc
0 p

) (
0 −1
1 0

) (
τ
1

)
=

(
δ γ
β α

) (
1 A
0 p

) (
τ
1

)
This gives the following series of equations assuming the first matrix on the right
is in SL2(Z).

36mc = δ, −1 = δA + γp, p = β, 0 = βA + αp, αδ − βγ = 1.

Clearly the third and fourth equalities imply α = −A. Then the final one follows
automatically from the others. Thus it only remains for us to satisfy the second of
these requirements. We need

γ =
−36mcA− 1

p
∈ Z.

So we want 36mcA− 1 ≡ 0 (mod p). If we additionally impose the condition that
A = 36mc′, then clearly we need cc′ ≡ −1 (mod p), i.e: c′ ≡ −1/c (mod p) as we
might have expected.

Now, referring to the linear tranformations of the functions g, g1, g2 and g3 as given
in chapter five, we obtain the following.

vc : vc(−1/τ) = (−1)
β−1

2

(
β

3

)
v
(1)
−1/c(τ) =

(
3
p

)
v
(1)
−1/c(τ)

since β = p ≡ 1 (mod 3).

v(1)
c : v(1)

c (−1/τ) = (−1)
γ−1

2

(γ

3

)
v−1/c(τ) =

(
3
p

)
v−1/c(τ)

since γp ≡ −1 (mod 36).

v(2)
c : v(2)

c (−1/τ) = e
2πi
3

(
3
p

)
e−

2πi
9 [4p2−1] v

(3)
−1/c(τ).

v(3)
c : v(3)

c (−1/τ) = e
2πi
3

(
3
p

)
e−

2πi
9 [4γ2−1] v

(2)
−1/c(τ) = e

2πi
3

(
3
p

)
e−

2πi
9 [4p−1] v

(2)
−1/c(τ)

since if p ≡ 1, 4, 7 (mod 9) then γ2 ≡ 1, 4, 7 (mod 9) respectively.

As with our previous modular equations, we don’t particularly care how the various
functions are permuted. We only care about the various roots of unity that are
induced by the two transformations. These are summarized in the following tables.

uv∞ uv0 uvc uv
(1)
∞ uv

(1)
0 uv

(1)
c

S ε1 ε1 ε1 ε2 ε3 ε3

T ε6 ε6 ε6 ε6 ε6 ε6

uv
(2)
∞ uv

(2)
0 uv

(2)
c uv

(3)
∞ uv

(3)
0 uv

(3)
c

S ε4 ε5 ε5 ε4 ε5 ε5

T ε6 ε6 ε6 ε6 ε6 ε6

where ε1 = e
2(p+1)πi

12 , ε2 = e−
2(p+5)πi

12 , ε3 = e
2πi
12

a−5
3 , ε4 = e−

2πi
12

p−1
3 , ε5 = e

2πi
12

a+1
3

and ε6 =
(

3
p

)
.
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These roots of unity clearly depend on p modulo 36. There are six cases p ≡
1, 7, 13, 19, 25, 31 (mod 36). However in all cases it is convenient to introduce

Ac = (uvc)3 − (u(1)v
(1)
c )3 − (u(2)v

(2)
c )3 + (u(3)v

(3)
c )3

Bc = 1/(uvc)3 − 1/(u(1)v
(1)
c )3 − 1/(u(2)v

(2)
c )3 + 1/(u(3)v

(3)
c )3

We then find a polynomial F (x, y) so that the q-series of F∞ = F (A∞, B∞) disap-
pears upto and including the constant term. The Fc = F (Ac, Bc) are then permuted
upto sign by our transformations. In the cases p ≡ 7, 19, 31 (mod 36) they are per-
muted exactly. In the remaining cases, they are permuted always with a factor of
-1. However in all cases the q-series of the Fc can be transformed into each other
upto sign if the total degrees of the terms of F are either all odd or all even.
We look at the q-series for some small primes and give the corresponding modular
equations:
For p = 7:

A∞(q3) = 0 + O(q)
For p = 13:

A∞(q6−) = 0 + O(q)
For p = 19:

A∞(q3) = 0 + O(q)
For p = 31:

A∞(q3) = 0 + O(q)
As can be seen these are all the same. In fact numerically we have tested the
modular equations of this form for many values of the degree p. Not only do we
obtain A = 0 for p a prime satisfying the specified congruence but in fact the
relation appears to hold for all natural numbers (in fact the identity appears to be
even more general than that).
We do not prove this identity here since the proof must surely involve either deter-
mining special arithmetic properties of the q-series involved or the application of
some heavy analysis. Both of these would be beyond the scope of this thesis, not
being directly relevant to eta evaluations.
Nevertheless we conjecture that this identity holds for all degrees n where n is a
natural number.
At first glance this identity might seem to follow from the identity involving sixth
powers of the functions gi which is reported in the second section of chapter five.
However closer inspection reveals that this is merely the special case of our new
identity where n = 1.
In fact this new identity seems to be some kind of permanent identity (see Fine [1]
§41 for examples of permanent identities). There are many open questions related
to this sort of identity not the least of which is whether they truly are the correct
generalization of the modular equations of irrational form given by Weber for his
functions.
We have not looked for similar identities for our level 5, 7 or 13 functions and there
are clearly a multitude of future research directions which have opened up to us
and which might be pursued in the future. Due to constraints of time and space
we cannot pursue them all here but it will be interesting to see these questions
investigated further in the future.
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