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Abstract. Various generalizations of the classical Weber functions are de-
veloped. Schläfli type modular equations are explicitly derived for particular
ones of these functions which are associated with a congruence subgroup Γ0(N)

which is of genus zero.

Introduction

The purpose of this paper is twofold. Firstly we demonstrate that various satisfac-
tory analogues of the classical Weber functions

(1) f(τ) =
e−

πi
24 η

(
τ+1
2

)
η(τ)

, f1(τ) =
η
(

τ
2

)
η(τ)

, f2(τ) =
√

2
η (2τ)
η(τ)

exist and that they satisfy identities akin to those derived by Weber for his func-
tions, in §34 of [6]. That is, we derive analogues of the identities

f(τ + 1) = e−
πi
24 f1(τ), f1(τ + 1) = e−

πi
24 f(τ), f2(τ + 1) = e

πi
12 f2(τ),

f(−1/τ) = f(τ), f1(−1/τ) = f2(τ), f2(−1/τ) = f1(τ),

f f1f2 =
√

2, f8 = f81 + f82.

In particular we call the classical Weber functions (1), functions of signature 2, after
the τ/2 in the definition of f1, and describe generalizations of these for other prime
signatures N . In fact, one starts with the function η(τ/N)

η(τ) and applies modular
transformations to obtain a family of related functions of signature N analogous
to the other Weber functions. This does not quite give our functions; we need to
modify these slightly in each case as explained at the start of section 1. In that
section and the following one, we illustrate what can be done by obtaining sets
of functions of signatures 3 and 5 respectively. Dealing with different signatures
separately in this way preserves, for the most part, the elegance of the identities
that they then obey, which compare well with those of Weber as listed above.

The second purpose of this paper is to define Schläfli type modular equations for
the functions u(τ) = η(τ/N)

η(τ) as Weber does in §73 of [6] for his functions.

For a prime degree p we define

P (τ) = (u(τ)u(pτ))k and Q(τ) =
(

u(τ)
u(pτ)

)l

for some natural numbers k and l.

A Schläfli modular equation is then a polynomial relation between two composite
functions of the form

A = P + c/P and B = Q± 1/Q,

for some c ∈ R.
97
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We obtain explicit Schläfli modular equations for signatures N = 3, 5, 7 and 13, for
various prime degrees p, in sections 5, 6, 7 and 8 respectively.

The method of obtaining such modular equations is via modular functions for the
congruence subgroup

Γ0(N) =
{(

δ γ
β α

)
∈ SL2(Z) : γ ≡ 0 (mod N)

}
.

The extended complex upper half plane modulo the action of this group can be
thought of as a Riemann surface whose genus is zero for only a finite number of N
(see section 3). Such functions for a given Γ0(N) can be thought of as meromorphic
functions on this associated Riemann surface of genus zero. These functions form
a rational function field. We note that a generator for this field which induces a
bijection between the Riemann surface associated to Γ0(N) and the complex sphere
is called a Hauptmodul (or principal modulus). This can be made unique by nor-
malizing it. The usual normalization is to require it to be 0 at points corresponding
to τ = 0 and ∞ at points corresponding to τ = i∞.

To create our modular equation for a prime degree p we form a set of composite
functions Fc which satisfy the following conditions:

(i) The Fc are meromorphic;

(ii) They are permuted by Γ0(N);

(iii) They have q-expansions of level N ;

(iv) They have no poles on the complex upper half plane;

(v) They are permuted at least up to sign by a so called Fricke involution taking
the cusp τ = 0 to the ‘other’ (inequivalent) cusp of Γ0(N), τ = i∞;

(vi) The q-series of F∞ vanishes up to and including the constant term; and,

(vii) The q-series of F∞ and of each of the other Fc are related in such a way that
the vanishing of one up to and including the constant term (or altogether) implies
the vanishing of all the others up to and including the constant term (or altogether,
respectively).

Note that (i), (ii) and (iii) imply that G =
∏

c Fc is a modular function for Γ0(N).
Now (v), (vi) and (vii) together imply that G2, and therefore also G, has a zero at
τ = 0 and τ = i∞.

Combine these facts with (iv) and Liouville’s theorem and we see that G is a
constant, which in this case is clearly zero.

In fact, in the sequel, we will obtain all of the above by specifying sets of functions
Ac and Bc, permuted by Γ0(N) and permuted up to sign by the Fricke involution,
and by defining Fc = F (Ac, Bc) for some polynomial F (x, y) in two arguments.

We will pick A∞ and B∞ to be the functions A and B spoken of above. Supposing
the conditions (i) to (vii) above hold, then G is identically zero and thus one
of its factors Fc is then identically zero. Thus Fc has a q-series which vanishes
altogether. But (vii) above then guarantees that the q-series of all the other Fc

vanish identically, and in particular F∞ is identically zero. This provides us with
the modular equation we are after, since F∞ = 0 is by definition a polynomial
relationship between A∞ and B∞.

It should be noted that the author’s interest in these modular equations arose from
a study of the use of modular equations in evaluating singular values of quotients of
the Dedekind eta function. The final section of this paper details a simple evaluation
of this kind by making use of the modular equations derived earlier. Further details
will be found in the author’s thesis [4].
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1. Signature Three Functions

Referring to the three Weber functions f, f1, f2 as being of signature two, our first
generalization is to a set of four new functions which we refer to as being of signature
three. Denoting, as we shall when it is convenient, the n-th root of unity e2πi/n by
ζn, we take the following

Definition 1.0.1. Define the four functions

g(τ) =
√

3
η(3τ)
η(τ)

, g1(τ) =
η( τ

3 )
η(τ)

, g2(τ) =
η( τ+4

3 )
η(τ)

, g3(τ) = ζ−1
12

η( τ+8
3 )

η(τ)
.

Various functions of this type already appear in the literature (see for example [3]
or even [6] §72), however they appear there without the root of unity that we have
added. This is included to simplify the modular transformation laws that these
functions obey. With our new definitions for signature three, we have

Theorem 1.0.2.
g
g1

g2

g3

 ◦ S =


ζ12 g

ζ−1
12 g2

g3

g1

 and


g
g1

g2

g3

 ◦ T =


g1

g
g3

g2


where S stands for the transformation τ → τ + 1 and T for τ → −1/τ .

Note: It will also be convenient to let S and T denote matrices associated to
these fractional linear transformations. To this end all matrices and congruence
subgroups in this paper will be thought of as belonging to the inhomogeneous
modular group Γ = SL2(Z)/{±I} where I is the 2× 2 identity matrix. (For more
details on this see [5] I §2.)

Proof: We can obtain the first four of these relations by simple application of the
transformation formula for the Dedekind eta function for τ → τ + 1.

Since T is an involution, two of the final four identities follow from the other two.
Thus it remains to prove only the first and third, say, of these identities.

The first follows easily from the transformation law of the eta function for the
transformation τ → − 1

τ .

The other identity requires more effort however. Firstly we note that

g2

(
− 1

τ + 1

)
= ζ24

η
(

τ
3τ+3

)
η
(
− 1

τ+1

) = ζ24

η
(

1
3+ 3

τ

)
η
(
− 1

τ+1

)
= ζ24

√
−i (−3− 3/τ)

η
(
−3− 3

τ

)
η
(
− 1

τ+1

) = ζ−1
12

√
3i(1 + 1/τ)

η
(
− 3

τ

)
η
(
− 1

τ+1

)
= ζ−1

12

√
3i(1 + 1/τ)

√
−iτ/3

η
(

τ
3

)
η
(
− 1

τ+1

) = ζ−1
12

√
τ + 1

η
(

τ
3

)
η
(
− 1

τ+1

) .

Thus we see that

g2

(
−1

τ

)
= ζ−1

12

√
τ

η
(

τ−1
3

)
η
(
− 1

τ

) = ζ−5
24

√
τ√
−iτ

η
(

τ+8
3

)
η (τ)

= g3(τ).

�

We can now easily prove the following
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Theorem 1.0.3. The product of the four functions gi is a constant on the complex
upper half plane:

g(τ) g1(τ) g2(τ) g3(τ) = ζ12

√
3.

Proof: From the previous theorem, it is clear that the product is a modular function
invariant under all transformations in the full modular group. The product is thus
an element of the modular function field C(j(τ)) where j(τ) is the absolute modular
invariant.

Now, since the eta function is not zero on the upper half plane, it is clear from
the definitions of the gi that this product has no poles or zeroes on the upper half
plane. However, since j(τ) takes on every complex value in the upper half plane,
this implies that our product is actually a constant.

We compute the leading term of the q-series for each of our four functions:

g =
√

3 q
1
12 + . . . , g1 = q−

1
36 − . . . , g2 = ζ2

36 q−
1
36 − . . . , g3 = ζ36 q−

1
36 − . . .

The result then follows from multiplying these expressions. �

Theorem 1.0.4. We have

g(τ)6 − g1(τ)6 − g2(τ)6 + g3(τ)6 = 0.

Proof: Once again we clearly have a modular function in C(j). However there are
again no poles, so this function must be in C[j]. However it is easy to check that
the q-series has no negative powers of q as j does, and thus it is a constant. That
constant is zero as follows from the q-series. �

2. Signature Five Functions

We take a further example of generalized Weber functions, this time of signature
five.

Definition 2.0.5. Define the six functions

h(τ) =
√

5
η(5τ)
η(τ)

, h1(τ) =
η( τ

5 )
η(τ)

, h2(τ) = ζ12

η( τ+6
5 )

η(τ)
,

h3(τ) =
η( τ+12

5 )
η(τ)

, h4(τ) = ζ−1
12

η( τ+18
5 )

η(τ)
, h5(τ) = ζ−2

12

η( τ+24
5 )

η(τ)
.

We now prove

Theorem 2.0.6.
h
h1

h2

h3

h4

h5

 ◦ S =


ζ6 h

ζ−1
6 h2

h3

h4

h5

h1

 and


h
h1

h2

h3

h4

h5

 ◦ T =


h1

h
h5

h3

h4

h2


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Proof: Once again, the first eight of these identities follow easily from the appro-
priate transformation laws of the eta function. Clearly the last of the identities on
the right follows from the third, thus it only remains to prove the three remaining
identities. We have

h2

(
− 1

τ + 1

)
= ζ12

η
(

τ
5(τ+1) + 1

)
η
(
− 1

τ+1

) = ζ3
24

√
−i (−5(τ + 1)/τ)η

(
−5(τ+1)

τ

)
√
−i(τ + 1)η (τ + 1)

= ζ−1
12

√
−5/τη

(−5
τ

)
η (τ + 1)

= ζ24

η
(

τ
5

)
η (τ + 1)

.

Thus we have

h2

(
−1

τ

)
= ζ24

η
(

τ−1
5

)
η (τ)

= ζ24

η
(

τ+24
5 − 5

)
η (τ)

= ζ−2
12

η
(

τ+24
5

)
η (τ)

= h5(τ).

Similarly we have

h3

(
− 1

τ + 3

)
=

η
(

2τ+5
5(τ+3) + 2

)
η
(
− 1

τ+3

) = ζ12

√
−i
(
−5(τ+3)

2τ+5

)
η
(
−5(τ+3)

2τ+5

)
η
(
− 1

τ+3

)

=

√
−i
(
−5(τ+3)

2τ+5

)
η
(
−τ−5
2τ+5

)
η
(
− 1

τ+3

) =

√(
5(τ+3)

τ+5

)
η
(

2τ+5
τ+5

)
η
(
− 1

τ+3

)

= ζ12

√(
5(τ+3)

τ+5

)
η
(
−5
τ+5

)
η
(
− 1

τ+3

) = ζ12

η
(

τ+5
5

)
η (τ + 3)

.

Then we have

h3

(
−1

τ

)
= ζ12

η
(

τ+2
5

)
η (τ)

=
η
(

τ+12
5

)
η (τ)

= h3(τ)

Finally we have

h4

(
− 1

τ + 2

)
= ζ−1

12

η
(

3τ+5
5(τ+2) + 3

)
η
(
− 1

τ+2

) = ζ24

√
−i
(
−5(τ+2)

3τ+5

)
η
(
−5(τ+2)

3τ+5

)
η
(
− 1

τ+2

)

= ζ−1
24

√
−i
(
−5(τ+2)

3τ+5

)
η
(

τ
3τ+5

)
η
(
− 1

τ+2

) = ζ−1
24

√
−5(τ + 2)/τ η

(
−(3τ+5)

τ

)
η
(
− 1

τ+2

)
= ζ−2

12

√
−5(τ + 2)/τ η

(−5
τ

)
η
(
− 1

τ+2

) = ζ12

η
(

τ
5

)
η (τ + 2)

,

so that we have

h4

(
−1

τ

)
= ζ12

η
(

τ−2
5

)
η (τ)

= ζ−1
12

η
(

τ+18
5

)
η (τ)

= h4(τ)

�

Now we can prove
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Theorem 2.0.7. The product of the six functions hi is a constant on the complex
upper half plane:

h(τ) h1(τ) h2(τ) h3(τ) h4(τ) h5(τ) = ζ12

√
−5.

Proof: The previous theorem shows the product is in C(j). Since there are no poles
or zeroes, it is a constant which we determine from the q-series.

h =
√

5 q
1
6 + . . . , h1 = q−

1
30 − . . . , h2 = ζ2

15 q−
1
30 − . . . ,

h3 = ζ10 q−
1
30 − . . . , h4 = ζ15 q−

1
30 − . . . , h5 = ζ30 q−

1
30 − . . .

Multiplying these expressions gives the stated result. �

Theorem 2.0.8. We have

h(τ)6 + h1(τ)6 + h2(τ)6 + h3(τ)6 + h4(τ)6 + h5(τ)6 = −30.

Proof: Again the left hand side of the identity has no poles in the upper half plane
and so is in C[j]. Examining the q series tells us that it is a constant, and moreover
that this constant is -30. �

3. Hauptmoduln for Γ0(N)

We note that from the theorems in the previous two sections, g12
1 is invariant under

the transformations STS and S3. These generate the group Γ0(3). Likewise h6
1

is invariant under S5, STS, S2TS−2 and S3TS−3 which generate Γ0(5). We will
make use of the well known fact that for p = 2, 3, 5, 7, 13 (the primes p for which
Γ0(p) is genus zero - see below)

hp(τ) =
(

η(τ/p)
η(τ)

) 24
p−1

is a Hauptmodul for Γ0(p) (see for example [1] §7.2.1 for a conjugate statement).

We recall some facts about the groups Γ0(N). According to [5] IV. §5.5, Γ0(p),
for p an odd prime, is generated by Sp and all the elements of the form SvTS−v′ ,
where vv′ + 1 ≡ 0 (mod p).

Let F be the usual fundamental region for the full modular group, then a funda-
mental region for Γ0(p) is given by

Fp =

 ⋃
− p−1

2 ≤i≤ p−1
2

Si(F)

 ∪ T (F).

The group Γ0(p) therefore has index p + 1 in the modular group Γ.

The group Γ0(N) is not normal in Γ and is conjugate to Γ0(N).

The genus of Γ0(N) is zero for precisely the values N = 1, . . . , 10, 12, 13, 16, 18, 25.

We finish this section by noting that the Hauptmoduln g12
1 and h6

1 satisfy polynomial
equations over C(j) of degree equal to the index of Γ0(3) or Γ0(5) in the modular
group.

For g12
1 note that Weber has a similar function x0. In fact in his notation we have

g12
1 = x2

0. But he shows that x0 is a root of

x4 + 18x2 + γ3 x− 27 = 0.
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That is

(x4 + 18x2 − 27)2 = γ2
3x2.

But since γ2
3 = j − 1728 then this is a quartic equation in x2 over C(j). This is

precisely what is required, since the index of Γ0(3) in Γ is four.

Also h6
1 = x3

0 in Weber’s notation. But by rearranging what Weber has, x0 satisfies

(x6 + 10x3 + 5)3 = γ3
2x3.

But since γ3
2 = j then this is a sextic in x3 over C(j), and six is the index of Γ0(5)

in Γ.

4. Functions Permuted by Γ0(N)

In order to construct Schläfli modular equations for signature N we will need to
construct functions invariant under Γ0(N). Our first step is to construct functions
which are permuted up to sign by Γ0(N).

In §38 of [6], Weber calculates a formula for a linear transformation of the eta
function. He has the following

Definition 4.0.9. Define a function E by

η

(
δτ + γ

βτ + α

)
= E

((
δ γ
β α

)
; τ
)

η(τ)

for each (
δ γ
β α

)
∈ SL2(Z).

He then gives the formula

Lemma 4.0.10.

E

((
δ γ
β α

)
; τ
)

=


(

β
α

)
i

α−1
2 e

πi
12 [α(γ−β)−(α2−1)βδ]

√
α + βτ, if α > 0 is odd(

α
β

)
i
1−β

2 e
πi
12 [β(α+δ)−(β2−1)αγ]

√
−i(α + βτ), if β > 0 is odd

involving Jacobi symbols.

For N ∈ N define

gN (τ) =
η(τ/N)

η(τ)
.

Theorem 4.0.11. Let A =
(

δ γ
β α

)
∈ Γ0(N) be such that α is odd, then

(2) gN (Aτ) =
(

N

|α|

)
e−

πi
12 (N−1)[α(γ/N+β)+(α2−1)βδ] gN (τ)
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Proof: Note that

(3)
1
N

δτ + γ

βτ + α
=

(δ/N)(Nτ) + γ

β(Nτ) + (Nα)
=

δ(τ/N) + (γ/N)
(Nβ)(τ/N) + α

Now suppose that α is positive. Since N |γ, then from the second of the expressions
in (3) and Lemma (4.0.10) we have

gN (Aτ) =
E

((
δ γ/N

Nβ α

)
; τ/N

)
E

((
δ γ
β α

)
; τ
) η(τ/N)

η(τ)

=
(

N

α

)
e−

πi
12 (N−1)[α(γ/N+β)+(α2−1)βδ] gN (τ)

Now if α is negative, we can multiply α, β, γ, δ by -1. Note A then represents the
same fractional linear transformation, but α is now positive. This observation leads
to the stated result. �

For notational convenience we will write this theorem as follows

gN (Aτ) =
(

N

|α|

)
νN (α, β, γ, δ) gN (τ).

Note that νN is a root of unity, and if

(4) sN =
24

gcd(24, N − 1)

then in fact, it is an sthN root of unity. Note that in particular if N is odd then
sN |12.

Theorem 4.0.12. Let g(τ) be a function, periodic with even period P ∈ N such

that N |P . Suppose for A =
(

δ γ
β α

)
∈ Γ0(N) and α odd that

(5) g(Aτ) =
(

N

|α|

)
ν(α, β, γ, δ) g(τ)

then if p is an odd prime with (p, P ) = 1, then if p|β,

(6) g(pAτ) =
(

N

|α|

)
ν(α′, β′, γ′, δ′) g(pτ)

where α′ = α, β′ = β/p, γ′ = pγ, δ′ = δ; and if p6
∣∣ β,

(7) g(pAτ) =
(

N

|α′|

)
ν(α′, β′, γ′, δ′) g(τ ′/p)

where α′ = α+Pmc′β
p , β′ = β, γ′ = γ + Pmc′δ, δ′ = pδ and τ ′ = τ − Pmc′, where

c′ ≡ −α/β (mod p) and Pm is the smallest positive multiple of P congruent to
1 (mod p).

Proof: Note that

(8) p
δτ + γ

βτ + α
=

δ(pτ) + (pγ)
(β/p)(pτ) + α

=
(pδ)(τ/p) + γ

β(τ/p) + (α/p)

If p|β, then using the first expression in (8) and the given transformation law for
g, we obtain (6).



5. SCHLÄFLI MODULAR EQUATIONS FOR GENERALIZED WEBER FUNCTIONS 105

If p 6
∣∣ β, then we may use the second expression, except that now it may be that

p6
∣∣ α. But since p6

∣∣ β, we can set c′ ≡ −α/β (mod p). Then setting τ ′ = τ −Pmc′,
the second expression of (8) becomes

(pδ)(τ ′/p) + (γ + Pmc′δ)

β(τ ′/p) +
(

α+Pmc′β
p

) .

Note that N |P and hence N |γ′, the determinant of this transformation with respect
to (τ ′/p) is still 1, and α′ is still odd, and so by the transformation formula for g,
our result follows. �

Similarly we have

Theorem 4.0.13. With hypotheses as per the previous theorem, if p|(δ + Pmcβ)
then

(9) g((Aτ + Pmc)/p) =
(

N

|α|

)
ν(α′, β′, γ′, δ′) g(τ/p)

where α′ = α, β′ = pβ, γ′ = (γ + Pmcα)/p and δ′ = δ + Pmcβ; and otherwise, if
p6
∣∣ (δ + Pmcβ) then

(10) g((Aτ + Pmc)/p) =
(

N

|α|

)
ν(α′, β′, γ′, δ′) g(τ ′/p)

where α′ = α, β′ = pβ, γ′ = (γ + Pmc′α)/p, δ′ = δ + Pmc′β, τ ′ = τ − Pmc′ and
c′ ≡ −γ+cα

δ+cβ (mod p).

Proof: Note that

(11)
1
p

(
δτ + γ

βτ + α
+ Pmc

)
=

1
p

(δ + Pmcβ)τ + (γ + Pmcα)
βτ + α

the determinant of which, with respect to τ , is 1. Also, since we have N |P , then
N |(γ + Pmcα).

We can use (3) (replace N by p throughout) to rewrite the right hand side of (11).
This results in two new expressions for (11). If p|(δ + Pmcβ) we can use the first
of these expressions, otherwise, use the second. In the first case, the result (9)
follows immediately. In the second case it may be that p6

∣∣ (γ + Pmcα). But since
p6
∣∣ (δ + Pmcβ) we can write

c′ ≡ −γ + Pmcα

δ + Pmcβ
≡ −γ + cα

δ + cβ
(mod p),

and setting τ ′ = τ − Pmc′ we obtain the given result (10). �

Theorem 4.0.14. Let N be odd and P , the period of gN , be even. Let p be a prime
with (p, 6P ) = 1. Let p′ be the smallest positive residue of p (mod SN ) with SN

defined as per (4), then

vN,c =
gN ((τ + Pmc)/p)

gN (τ)p′
and vN,∞ =

gN (pτ)
gN (τ)p′

for − (p− 1)/2 ≤ c ≤ (p− 1)/2

are permuted up to sign by τ → Aτ where A =
(

δ γ
β α

)
∈ Γ0(N) and α is odd.

The sign is given by
(

N
|α′|

)(
N
|α|

)
where α′ is the appropriate value as given by the

appropriate theorem (4.0.12) or (4.0.13).
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Proof: We first prove if N is odd then N |P , and in fact 24|(N − 1)P/N . Since
η(τ + 1) = ζ24 η(τ), it is clear that a 24-th root of unity is induced by taking
τ → τ + N in η(τ/N). Thus gN (τ) is periodic with minimal period P = tN for t
as small as possible, where tN ≡ t (mod 24). In particular it is always true that
N |P and 24|t(N − 1) = (N − 1)P/N , hence our claim.

To prove our theorem we merely need to show that

νN (α′, β′, γ′, δ′) = νN (α, β, γ, δ)p′

where α′, β′, γ′, δ′ are given by the various expression of the last two theorems.

Firstly as
νN (α′, β′, γ′, δ′) = e−

πi
12 (N−1)[α′(γ′/N+β′)+(α

′2−1)β′δ′]

then since N−1 is even, we are only interested in the values of α′, β′, γ′, δ′ (mod 12).
Also since (p, 6) = 1 then p ≡ 1, 5, 7 or 11 (mod 12) and so p ≡ 1/p (mod 12).

Also, since (N, 2) = 1 and 24|(N − 1)P/N we have that

(N − 1)
γ′

N
= (N − 1)

(γ + Pmc′δ)
N

≡ (N − 1)
γ

N
(mod 24)

Applying these results, νN (α′, β′, γ′, δ′) becomes νN (α, pβ, pγ, δ) in (6), (9) and
(10) and νN (pα, β, γ, pδ) in (7).

A simple calculation then shows that in all cases νN (α′, β′, γ′, δ′) = νN (α, β, γ, δ)p′

as required, since p ≡ p′ (mod 12).

It is clear that the signs that appear in the transformations of this theorem are as
given. �

It appears that this theorem can be extended to even N by merely raising the
functions vN,c and vN,∞ to the power of two to compensate for the fact that (N−1)
is no longer divisible by two.

We can subject the signs that appear in this theorem to further analysis and obtain
a more convenient expression. For example

Theorem 4.0.15. The signs appearing in the preceeding theorem are given by +1
in the case of equations (6), (9) and (10) and

(
N
p

)
in the case of equation (7).

Proof: In the case of the first three equations referenced we have that α′ = α, which
leads immediately to the given result.

In the case of equation (7) we note that as the transformations we are dealing with
are in Γ0(N) then we must have that gcd(N,α′) = gcd(N,α) = 1. We also know
that α and α′ are odd. Thus we can use the quadratic reciprocity law, generalized
for Jacobi symbols, to determine that the required sign is given by

(−1)
(N−1)(|α′|+|α|−2)

4

(
|α′|
N

)(
|α|
N

)
.

Now since p|α′| ≡ |α| (mod N), from the expression for α′ belonging to equation
(7), then this sign becomes

(−1)
(N−1)(|α′|+|α|−2)

4

( p

N

)
.

It is clear that at worst, this expression depends on N , |α| and |α′| modulo 8.
But since 24|(N − 1)P/N as per the proof of the above theorem, we see from the
expression for α′ that (N − 1)|α| ≡ (N − 1)p|α′| (mod 8), so that the sign is given
by

(−1)
(N−1)((p+1)|α′|−2)

4

( p

N

)
.
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Since α′ is odd, this can be further simplified to

(−1)
(N−1)(p−1)

4

( p

N

)
=
(

N

p

)
,

as required. �

Let us denote the numerators of the functions vN,c and vN,∞ by vc and v∞ respec-
tively, for an odd N which we now consider to be fixed.

If we change the definition of these functions vc we can arrange that the sign in
the previous theorem becomes +1 in all cases. We note that the case represented
by equation (7) is only relevant when we have a permutation taking v∞ to some
vc, with c 6= ∞, or vice versa. Thus we multiply the functions vc, for c 6= ∞, by(

N
p

)
to obtain a sign of +1 in all cases. For convenience we record the definitions

of these functions here

u(τ) = gN (τ), v∞(τ) = gN (pτ),

vc(τ) =
(

N

p

)
gN

(
τ + Pmc

p

)
for − (p− 1)/2 ≤ c ≤ (p− 1)/2.

From now on we refer to the functions vc and v∞ collectively as the vc. Of course
we also adjust the numerators of the vN,c appropriately.

We will assume for now that Γ0(N) has a set of generators of the form
(

δ γ
β α

)
where α is odd. Again we check this for individual N of interest later. Thus we
can speak of the functions vN,c as being permuted by Γ0(N).

We wish to construct functions of the form

(12) Pc = (uvc)k

for some k ∈ N, which are permuted by Γ0(N), and similarly for functions

(13) Qc = (vc/u)l

for some l ∈ N.

In addition, we will want the Pc to be permuted exactly as the Qc. These functions
are obtained by multiplying or dividing the functions vN,c, etc., by some power of
u which is known to be invariant under Γ0(N). For suppose that um is known to
be such a power, with m ∈ N as small as possible. We know that the vN,c = vc/up′

are permuted. Thus let

(14) Pc = (vc/up′)k uma; a ∈ Z

where (p′ + 1)k = ma. These satisfy the requirements for the Pc. Also choose

(15) Qc = (vc/up′)l umb; b ∈ Z

where (p′ − 1)l = mb. These are also permuted, and in precisely the same way as
the Pc. We note that these equations are soluble if we set

(16) k =
m

gcd(p′ + 1,m)
and l =

m

gcd(p′ − 1,m)
.

Now we not only want functions which have the properties just mentioned but
which are also invariant at least up to sign under a Fricke involution, τ → −N/τ .
To this end we prove

Lemma 4.0.16. The transformation τ → −N
τ sends gN to

√
N

gN
.
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Proof: From the definition,

gN (Nτ) =
η(τ)

η(Nτ)
.

Sending τ → −1/τ and applying the transformation formula of the Dedekind eta
function to the right hand side, we obtain the required result. �

We now know what the Fricke involution does to u = gN (τ) and we are in a position
to see what it does to the vc.

Using the lemma, it is trivial to determine the Fricke involutory action on v∞ and
v0.

v∞ : v∞(−N/τ) = gN (−Np/τ) =
√

N

gN (τ/p)
=
(

N

p

) √
N

v0

For the other vc we solve(
1 Pmc
0 p

)(
0 −N
1 0

)(
τ
1

)
=
(

δ γ
β α

)(
0 −N
1 0

)(
1 A
0 p

)(
τ
1

)
where A = Pmk for some integer k, and where the first matrix on the right is in
SL2(Z). Note in particular that since N |P always, we have that A/N is an integer.

This matrix equation yields the four equations

Pmc = γ, −N = −Npδ + γA, p = α, 0 = −Npβ + αA

Clearly the last two of these yield β = A
N and the first two yield

(17) δ =
(P/N)mcA + 1

p
.

Once again for
(

δ γ
β α

)
∈ SL2(Z) we check that the determinant is one and we

see that demanding that A = Pmk only leaves us to fulfil the requirement that
δ ∈ Z, i.e.

(18) (P/N)mcA + 1 ≡ 0 (mod p).

Since (p, N) = 1 and Pm ≡ 1 (mod p), then so long as we do not have c ≡ 0 (mod p)
this is equivalent to

k ≡ −N

c
(mod p)

as one might have expected.

We again use our formula (2), and the lemma (4.0.16) to deduce

(19) vc

(
−N

τ

)
=
(

N

|δ|

) √
N

vk
.

This expression can be simplified. Since γ is divisible by N , then (δ,N) = 1.
Clearly from (17) we have that δ is odd. Thus by the quadratic law for Jacobi
symbols, the sign in (19) is (−1)

(N−1)(|δ|−1)
4

(
|δ|
N

)
. However p|δ| ≡ 1 (mod N) and

|δ| ≡ p (mod 4) and so (19) becomes

vc

(
−N

c

)
=
(

N

p

) √
N

vk
.

We are now in a position to do calculations for individual N .
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5. Schläfli-type Modular Equations for Signature Three

We now derive modular equations where the signature N = 3.

In section 3 we noted that Γ0(3) was generated by STS and S3. Alternatively, by
applying the well known identity STSTST = I we see that TST and S3 can be
taken as generators.

These transformations are represented by matrices of the form
(

δ γ
β α

)
with α

odd as required. In fact TST is represented by
(
−1 0

1 −1

)
and S3 by

(
1 3
0 1

)
.

As per the calculation in the proof of theorem (4.0.14) we note that the period of
our function g3(τ) of signature three (i.e. the function g1(τ) of section 1) is P = 36.
Note that the period is even as required.

The signs that are induced by the Fricke involution are given by
(

3
p

)
.

For N = 3 we have SN = 12 as per (4). Thus p′ ≡ p (mod 12) in equation (16).
Since the Hauptmodul for Γ0(3) is u12 and is invariant under Γ0(3) we can set
m = 12. Now we can use (16) to determine values for k and l for any particular
prime p we are considering.

As we hinted in the introduction, we initially define the functions

Ac = Pc ± 3k/Pc and Bc = Qc ± 1/Qc

with Pc and Qc defined as in (12) and (13), and with the signs for Ac and Bc

somehow dependent on the signs induced by the Fricke involution as it acts on Pc

and Qc respectively. It is always possible, for example, to choose these signs so that
the Fricke involution permutes the Ac and Bc with no sign changes; thus all the Ac

and Bc are permuted without sign changes by Γ0(N) and by the Fricke involution.

Now, as per condition (vi) of the introduction, we find a polynomial in two ar-
guments, F (x, y), such that the q-series of F∞ = F (A∞, B∞) vanishes up to and
including the constant term. However, even in the cases that this can be done, we
still need to satisfy condition (vii) of the introduction, i.e. we need to be able to
show that by virtue of the vanishing of the q-series of F∞ we also have the vanishing
of the q-series of the other Fc = F (Ac, Bc). Thus we need to show that the q-series
of the various Ac are related in an appropriate way, and similarly for the Bc.

Consider the q-series A∞(qN ) of the function A∞, where qN = exp
(

2πiτ
N

)
for some

N ∈ N. The substitution

(20) τ → τ

p

takes A∞(qN ) to A∞(qpN ). But as functions of τ this substitution takes uv∞ →(
N
p

)
v0u. This will not always take A∞ to A0, depending of course on whether k

is odd or even in the definition of Pc.

This same transformation will take B∞ to ±B0 depending on the index l in the
definition of Qc and the sign that we choose in the definition of the Bc. (It is
important to note for this case, that (u/v∞) goes to (v0/u).)

The problem here is that the components of F0, namely A0 and B0, may not have
q-series related to the components of F∞ in the same way. Thus we may not be
able to guarantee that the q series of F∞ and F0 both vanish at the same time.

For the other Fc, the substitution

(21) τ → τ + 36mc
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takes qpN in the q-series of A0 to exp
[(

2πi
pN

)
36mc

]
qpN = ζc qpN , where ζ is some

root of unity. This transformation always sends A0 to Ac as functions. Likewise
this substitution sends B∞ to B0. Thus in these cases it is clear that if the q-series
of F0 vanishes, then so do those of the other Fc.

This leaves us only to sort out the problem we mentioned above for F∞. There
are two different methods that we can use to solve this problem, depending on the
signature N that we are working with. We will deal with each case as it arises.

All primes p which we can consider for N = 3 must not divide 6P = 216. These
are all congruent to 1, 5, 7 or 11 modulo 12. We will deal with each of these cases
separately.

I. For p ≡ 1 (mod 12)

From equation (16) we have k = 6 and l = 1. Thus Pc = (uvc)6 and Qc = (vc/u)
are permuted in precisely the same manner by TST and S3. The Fricke involution
always induces the sign +1 in this case. Thus the sets of functions

(22) Ac = (uvc)6 + 36/(uvc)6

(23) Bc = (vc/u) + (u/vc)

are permuted by Γ0(3) and the Fricke involution.

The q-series of F∞ and F0 are then always related in the appropriate way. We find
appropriate polynomials F (x, y) below.

II. For p ≡ 5 (mod 12)

In this case we have k = 2 and l = 3. The Fricke involution induces -1. Thus we
choose the definitions

(24) Ac = (uvc)2 + 32/(uvc)2

(25) Bc = (vc/u)3 − (u/vc)3.

The transformation (20), in this case, takes A∞ to A0 and B∞ to B0 as required
(since −(v∞/u)3 goes to (u/v0)3, etc.).

III. For p ≡ 7 (mod 12)

We have k = 3 and l = 2. The Fricke involution again induces -1. With k = 3
we initially try Ac = (uvc)3 − 36/(uvc)3, however (20) sends (uv∞)3 to −(v0u)3

sending A∞ to −A0, but sends (u/v∞)2 to (v0/u)2, i.e. B∞ to B0. This is the
first case where we need to alter our functions Ac and Bc so that the q-series obey
condition (vii) of the introduction.

The way that we avoid the problem is simply to raise Pc to the power of two. We
define

(26) Ac = (uvc)6 + 36/(uvc)6

(27) Bc = (vc/u)2 + (u/vc)2.

Now the Ac and Bc are permuted in the required manner, as are their q-series.

This is not the only possible solution to the problem, but it is the only solution which
we have found which always appears to lead to a modular equation for signature 3.

IV. For p ≡ 11 (mod 12)

We have k = 1 and l = 6, the Fricke involution inducing +1. We easily check that
the following functions and their q-series are permuted as required

(28) Ac = (uvc) + 3/(uvc)
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(29) Bc = (vc/u)6 + (u/vc)6.

We now deal with some small primes p and derive the q-series for the corresponding
A∞ and B∞ and determine a polynomial F (x, y) such that the q-series of F∞
vanishes up to and including the constant term, as required. These are our modular
equations. It will be convenient to express the various q-series with q = e2πiτ

replaced by a higher power of q in order to avoid fractional exponents. This does
not affect the resulting modular equations.

In addition, we denote our q-series by a leading power and a series of coefficients,
e.g. q−1 + 2− 4q2 + O(q3) will be written (q−1; 1, 2, 0,−4, . . .), to save space (and
the eyes).

For p = 5:

A∞(q3) = (q−1; 1,−2, . . .)

B∞(q3) = (q−1; 1, 3, . . .)

For p = 7:

A∞(q3) = (q−4; 1,−6, 9, 16,−66, . . .)

B∞(q3) = (q−1; 1, 2, 6, 6, 15, . . .)

For p = 11:

A∞(q3) = (q−1; 1,−1, 2, 4, 5, 6, . . .)

B∞(q3) = (q−5; 1, 6, 27, 92, 279, 756, . . .)

For p = 13:

A∞(q3) = (q−7; 1,−6, 9, 16,−66, 54, 98,−300, . . .)

B∞(q3) = (q−1; 1, 1, 3, 1, 3, 6, 6, 9, . . .)

For p = 17:

A∞(q3) = (q−3; 1,−2,−1, 4,−3, 0, 16, 10, 42, 86, 130, 230, 422, . . .)

B∞(q3) = (q−4; 1, 3, 9, 19, 42, 81, 155, 276, 485, 824, 1368, 2206, 3550, . . .)

Thus we have the modular equations

p = 5 : A = B − 5,

p = 7 : A = B4 − 14B3 + 45B2 + 56B − 250,

p = 11 : B = A5 + 11A4 + 51A3 + 121A2 + 144A + 66,

p = 13 : A = B7 − 13B6 + 45B5 + 52B4 − 493B3 + 351B2 + 1215B − 1404,

p = 17 : A4 = B3−17AB2 +34A2B +34A3−238B2−442AB−389A2 +1244B +
1428A− 1556.

Note that the first three of these modular equations are equivalent to modular equa-
tions arising from Ramanujan’s alternative cubic theory as recounted in equations
(7.22), (7.27) and (7.33) of [2].

6. Schläfli-type Modular Equations for Signature Five

The argument is similar to the signature three case. Here N = 5 and we calculate
that the Hauptmodul, which is of course invariant under Γ0(5), is u6. Also we have
SN = 6 and P = 30.

The group Γ0(5) is generated by S5, TST, S−3TS3 and S3TS−3. These are repre-
sented by matrices(

1 5
0 1

)
,

(
−1 0

1 −1

)
,

(
−3 −10

1 3

)
,

(
3 −10
1 −3

)
.
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The signs induced by the Fricke involution are
(

5
p

)
=
(

p
5

)
.

These signs clearly depend only on p modulo 5, whilst p′ will depend on p modulo
6. Thus we must break into cases modulo 30.

We must also check what the transformations

τ → τ/p and τ → τ + 30mc

do to the q-series of v∞ and v0, etc.

I. For p ≡ 1,19 (mod 30)

We have k = 3 and l = 1. The Fricke involution induces +1. Thus set

Ac = (uvc)3 + 53/(uvc)3

Bc = (vc/u) + (u/vc).

The q-series are permuted the appropriate way by the transformations above.

II. For p ≡ 7,13 (mod 30)

Here k = 3 and l = 1. The Fricke involution induces -1. But in this case, the first
transformation above takes uv∞ to −v0u, thus taking A∞ to −A0, whilst at the
same time it takes B∞ to B0. This is the same problem which we mentioned in
the signature three case. However the same technique we used there does not lead
to modular equations here (valid polynomials F (x, y) making the q-series of F∞
vanish do not always exist).

For this signature it appears that the correct technique is to adjust our signs so
that the Fricke involution induces a -1 when applied to each of the Ac and Bc

Ac = (uvc)3 + 53/(uvc)3

Bc = (vc/u) + (u/vc).
We then only take terms in our polynomial F (x, y) whose total orders are of the
same parity. This ensures that each of the Fc induce -1 when the Fricke involution
is applied to them.

Also the q-series of both A∞ and B∞ change sign together under the tranformations
listed above. Thus again the q-series of F∞ always vanishes with that of F0.

III. For p ≡ 11,29 (mod 30)

Here k = 1 and l = 3. The Fricke involution induces +1. So we choose

Ac = (uvc) + 5/(uvc)

Bc = (vc/u)3 + (u/vc)3.
The q-series are permuted appropriately by the transformations.

IV. For p ≡ 17,23 (mod 30)

Here k = 1 and l = 3. The Fricke involution induces -1. Again uv∞ becomes −v0u
sending A∞ to −A0 whilst sending B∞ to B0. Thus we choose

Ac = (uvc) + 5/(uvc)

Bc = (vc/u)3 + (u/vc)3.

We are again able to give examples of such modular equations for small p.

For p = 7 :

A∞(q5) = (q−4; 1, −3, 0, 5, 0, 3, −16, −3, 1, 49, . . .)

B∞(q5) = (q−1; 1, 1, 3, 2, 4, 6, 10, 14, 17, . . .)

For p = 11:
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A∞(q5) = (q−2; 1, −1, −1, 5, 7, 9, 15, 25, 30, 53, . . .)

B∞(q5) = (q−5; 1, 3, 9, 22, 51, 105, 212, 402, 744, 1326, 2317, . . .)

For p = 13 :

A∞(q5) = (q−7; 1,−3, 0, 5, 0, 3,−16, 0, 15, 0, 18,−48, 0, 42, 134, 413, 981,
2750, 6476, 13173, 26599, 49911, 93000, 165951, 289644, 492207, 821848, 1347750,
2177286, . . .)

B∞(q5) = (q−2; 1, 1, 2, 3, 6, 5, 9, 13, 19, 27, 33, 44, 60, 75, 102, 123, 159,
201, 255, 318, 393, 484, 605, 734, 913, 1091, 1334, 1615, 1950, . . .)

and the resulting modular equations are

p = 7 : A2 −B8 + 14AB3 + 43B6 − 70AB − 475B4 + 1325B2 = 0,

p = 11 : B2 −A5 − 11A2B − 11A4 − 110AB − 30A3 − 275B − 125A− 629 = 0,

p = 13; A4−B14 +26A3B3 +221A2B6 +624AB9 +274B12−78A3B−1066A2B4−
4264AB7−21267B10−1859A2B2−6760AB5 +516752B8 +11200A2 +62400AB3−
5189595B6 − 26000AB + 24476050B4 − 54513625B2 + 46962500.

The modular equations from here on, although able to be calculated, become some-
what unwieldy.

7. Schläfli-type Modular Equations for Signature Seven

For N = 7, the Hauptmodul is u4, SN = 4 and P = 28, which is even. The group
Γ0(7) is generated by S7, TST, S−5TS−3, S−3TS−5 represented by(

1 7
0 1

)
,

(
−1 0
1 −1

)
,

(
−5 14
1 −3

)
,

(
−3 14
1 −5

)
,

all with odd lower right entries, as required.

The signs induced by the Fricke involution are
(

7
p

)
. These depend on p modulo

28, whilst p′ depends on p modulo 4. Thus we break into cases modulo 28.

I. For p ≡ 1,9,25 (mod 28) Here k = 2 and l = 1. The Fricke involution induces
+1. We choose

Ac = (uvc)2 + 72/(uvc)2

Bc = (vc/u) + (u/vc).

II. For p ≡ 3,19,27 (mod 28)

Here k = 1 and l = 2. The Fricke involution induces +1. Thus we choose

Ac = (uvc) + 7/(uvc)

Bc = (vc/u)2 + (u/vc)2.

III. For p ≡ 5,13,17 (mod 28)

Here k = 2 and l = 1. The Fricke involution induces -1. We choose

Ac = (uvc)2 + 72/(uvc)2

Bc = (vc/u)− (u/vc).
The q-series of these are related in the correct way, with A∞ being taken to A0 and
B∞ to B0 (since (v∞/u) goes to −(u/v0) under the transformation τ → τ/7, etc.).

IV. For p ≡ 11,15,23 (mod 28)

Here k = 1 and l = 2. The Fricke involution induces -1. Again uv∞ becomes −v0u
sending A∞ to −A0 whilst B∞ is sent to B0. It turns out that this problem can be
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fixed by using the same method as for signature three. That is, we simply square
Pc. We choose

Ac = (uvc)2 + 52/(uvc)2

Bc = (vc/u)2 + (u/vc)2.

The relevant q-series for small primes p are now given.

For p = 3 :

A∞(q7) = (q−1; 1,−1, . . .)

B∞(q7) = (q−1; 1, 2, . . .)

For p = 5 :

A∞(q7) = (q−3; 1,−2,−1, 2, . . .)

B∞(q7) = (q−1; 1, 1, 1, 4, . . .)

For p = 11 :

A∞(q7) = (q−6; 1,−2,−1, 2, 1, 2,−2, 2,−6,−4, 5, 0, 57, 98, 24, 472, 969,
1780, 3186, 5312, 8869, 14216, 22550, 34962, 53782, 80842, 120785, 177576,
259172, 373692, 535135, . . .)

B∞(q7) = (q−5; 1, 2, 5, 10, 20, 36, 65, 108, 181, 290, 462, 708, 1088, 1632,
2425, 3546, 5143, 7370, 10484, 14758, 20662, 28646, 39492, 54024, 73561, 99428,
133823, 179054, 238515, 316062, 417166, . . .)

For p = 13 :

A∞(q7) = (q−7; 1,−2,−1, 2, 1, 2,−2, 2,−6,−4, 5, 2, 4,−4, 61, 84, 234,
500, 981, 1776, 3173, 5320, . . .)

B∞(q7) = (q−3; 1, 1, 2, 3, 5, 7, 10, 15, 22, 28, 39, 50, 70, 87, 119, 152, 196,
247, 317, 394, 499, 625, . . .)

The associated modular equations are

p = 3 : A = B − 3,

p = 5 : A = B3 − 5B2 + 3B − 5,

p = 11 : A5 − B6 + 22A4B + 187A3B2 + 726A2B3 + 1155AB4 + 396B5 + 22A4 +
308A3B+825A2B2−5808AB3−23688B4+250A3+990A2B−12936AB2−94908B3+
6776A2 + 60764AB + 221531B2 + 45665A + 135520B + 122850 = 0,

p = 13 : A3−B7 +13A2B2 +52AB4 +39B6− 39AB3− 345B5 +13A2 +117AB2−
65B4 + 195AB + 1299B3 − 121A− 1105B2 + 2255B − 1573 = 0.

8. Schläfli-type Modular Equations for Signature Thirteen

For N = 13, the Hauptmodul is u2, SN = 2 and P = 26, which is even. The group
Γ0(13) is generated by S13, TST, S−11TS7, S3TS9, S5TS−5, S7TS−11. Again it
is easy to check that these are represented by matrices with odd lower right entries.

The signs induced by the Fricke involution are
(

13
p

)
=
(

p
13

)
. These depend on p

modulo 13, whilst p′ depends on p modulo 2. Thus we break into cases modulo 26.

I. For p ≡ 1,3,9,17,23,25 (mod 26) Here k = 1 and l = 1. The Fricke involution
induces +1. Thus we choose

Ac = (uvc) + 13/(uvc)

Bc = (vc/u) + (u/vc).

II. For p ≡ 5,7,11,15,19,21 (mod 26) Here k = 1 and l = 1. The Fricke
involution induces -1. We easily see that A∞ is taken to −A0 whilst B∞ is taken to
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B0 by τ → τ/13. We again have the problem that we have previously mentioned.
In this case we again use the method which worked for signature five, i.e. we change
the signs from the expected -1 to +1 in the definition of Ac and Bc. That is, we
choose

Ac = (uvc) + 13/(uvc)
Bc = (vc/u) + (u/vc).

This again allows everything to permute as required, except that we again need to
choose our polynomials F (x, y) so that each of its terms has total order of the same
parity.

The relevant q-series are

For p = 3 :

A∞(q13) = (q−2; 1,−1,−1, . . .)

B∞(q13) = (q−1; 1, 1, 3, . . .)

For p = 5 :

A∞(q13) = (q−3; 1,−1,−1, 0, 0, 0, 14, 15, 26, 39, 63, 105, 155, . . .)

B∞(q13) = (q−2; 1, 1, 2, 3, 6, 5, 9, 13, 19, 27, 33, 44, 60, . . .)

For p = 7 :

A∞(q13) = (q−4; 1,−1,−1, 0, 0, 1, 0, 0, 14, 14, 26, 39, 63, 92, 140, 207, 300,
416, 586, 793, 1092, 1443, 1966, 2574, 3406, . . .)

B∞(q13) = (q−3; 1, 1, 2, 3, 5, 7, 12, 13, 20, 28, 39, 52, 70, 91, 117, 150, 196,
247, 317, 396, 503, 617, 774, 955, 1186, . . .)

The associated modular equations can now be determined.

p = 3 : A = B2 − 3B − 5,

p = 5 : A4−B6 +10A3B +45A2B2 +100AB3 +106B4−32A2−160AB−329B2 +
260 = 0,

p = 7 : A6 −B8 + 14A5B + 91A4B2 + 336A3B3 + 735A2B4 + 882AB5 + 463B6 −
50A4−448A3B−1736A2B2−3108AB3−2211B4 +625A2 +2450AB+2725B2 = 0.

Again we must stop due to the amount of space required to record modular equa-
tions of higher degree.

9. Schläfli-type Modular Equations of Degree Two

At this stage we note that there are not yet modular equations of degree two for
any of the signatures and no modular equation of degree three for signature five.
In this and the next section we deal with these cases separately, to remedy this
situation. Here we begin with degree two.

For a fixed signature N = 3, 5, 7 or 13 we introduce the following functions

Definition 9.0.17. Let

u(τ) = gN (τ) v∞(τ) = gN (2τ)

v0(τ) = gN (τ/2) v1(τ) = gN ((τ + N)/2).

We need to investigate the action of a set of generators for Γ0(N) on these func-
tions. We note that any generator of the form Sν′TSν can be represented by(

ν′ νν′ − 1
1 ν

)
and TST by

(
−1 0
1 −1

)
.

We choose the following generators for the respective Γ0(N)
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For N = 3: S3 and STS.

For N = 5: S5, TST , S−3TS3 and S3TS7.

For N = 7: S7, STS, S9TS−3 and S−3TS9.

For N = 13: S13, TST , S−11TS7, S3TS−17, S5TS−5, S7TS15, S−5TS−21 and
S9TS3.

We will investigate the effect of these generators on composite functions of the form
(uvc)2. Taking the square here has some advantages. One of these is that we do
not need to calculate any Jacobi symbols which arise when we use (2). It is an
especially useful simplification in the present case, since it will also turn out that
we are only interested in functions permuted up to sign.

Firstly we will investigate the action of the generators on the function (uv∞)2. For

such a generator A =
(

δ γ
β α

)
we note that

2Aτ =
δ(2τ) + (2γ)

(β/2)(2τ) + α
=

(2δ)(τ/2) + γ

β(τ/2) + (α/2)
=

(2δ)
(

τ+N
2

)
+ (γ −Nδ)

β
(

τ+N
2

)
+
(

α−Nβ
2

) .

There are two cases that will interest us:

In the first case, if β is even, we use the first expression for 2Aτ above. Note that
the only time this case occurs is for the generator A = SN , so that plugging in the
values for α, β, γ, δ we have

v∞
(
SNτ

)
= ν(1, 0, 2N, 1) v∞(τ).

Thus using our expression (2) for ν we have that

(uv∞)2
(
SNτ

)
=
(
e−

πi
12 (N−1)(1+2)uv∞(τ)

)2

= ±(uv∞)2(τ)

the sign depending on whether N = 5, 13 or N = 3, 7 respectively.

The second case of interest is when β is odd and α is odd, and (α − βN)/2 is an
odd integer (something we easily check for the other transformations listed above).
In this case, we use the third expression for aAτ above.

Firstly we consider the transformation of v∞. As usual, our expression (2), used
in conjunction with the third expression for 2Aτ above, will yield a factor involv-
ing ν(α′, β′, γ′, δ′) where the α′, β′, γ′, δ′ are the coefficients that one has in that
expression. To save space, we concentrate on that part of the index of this factor,
of the form

µ′(α′, β′, γ′, δ′) = α′(γ′/N + β′) + (α′2 − 1)β′δ′.

We also look at the corresponding expression µ(α, β, γ, δ) obtained from the factor
ν(α, β, γ, δ) for the transformation of u.

In considering the transformation of (uv∞)2 we are thus interested in the expression
K = 2(µ + µ′)(α, β, γ, δ) where clearly we set α′ = (α − Nβ)/2, β′ = β, γ′ =
γ −Nδ, δ′ = 2δ as we have just explained. This expression is precisely

K = 2α(γ/N + 1) + 2(α2 − 1)δ + (α−N)(γ/N − δ + 1) + ((α−N)2 − 4)δ

since β is always 1 in the transformations we are interested in.

Now since (N − 1) | 24 for N = 3, 5, 7 and 13, then SN = 24/(N − 1). Thus we are
specifically interested in this expression K modulo SN = 12, 6, 4 or 2 respectively.
Thus we need to look at our expression K modulo 3 for N = 3 and 5, modulo 4 for
N = 3 and 7 and modulo 2 for N = 5 and 13.
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Since αδ − βγ = 1 and β = 1 we make frequent use of the identity γ = αδ − 1. We
also note that N |γ = αδ − 1, α and δ are always odd, and thus γ is always even.

Working modulo 4 for N = 3, 7 ≡ −1 (mod 4) we have

K ≡ −2α(γ + 1) + 2(α2 − 1)δ + (α + 1)(−γ − δ + 1) + ((α + 1)2 − 4)δ
≡ αγ − α− α2δ − 2δ + αδ − γ + 1 ≡ −2α− 2δ + 2 ≡ 2 (mod 4).

Working modulo 2 for N = 5, 11 we have

K ≡ (α− 1)(γ − δ + 1) + (α− 1)2δ ≡ 0 (mod 2).

Working modulo 3 for N = 3 we have

K ≡ −αδ (mod 3).

But 3 = N |αδ − 1 so M ≡ −1 (mod 3).

Modulo 3 for N = 5 we have

K ≡ −2αδ − γ − 2 ≡ −1 (mod 3).

So in all cases K ≡ 2 (mod SN ).

Next we look at the action of all the generators on (uv0)2. It is clear that SN

always takes this function to ζ−2
SN

(uv1)2.

Now we consider the action of the other transformations. We note
Aτ

2
=

δ(τ/2) + (γ/2)
(2β)(τ/2) + α

.

In a manner similar to the argument above, we look at the following expression
modulo SN

M = 2α(γ/N + 1) + 2(α2 − 1)δ + α(γ/N + 4) + 4(α2 − 1)δ.

Modulo 4 this clearly becomes

M ≡ γ ≡ αδ − 1 ≡ 0 (mod 4)

by checking each of the individual transformations listed above for N = 3 and 7.

Modulo 2 the expression becomes for N = 5 and 13

M ≡ Nαγ ≡ 0 (mod 2).

Finally we have for N = 3 and 5 that M ≡ 0 (mod 3).

Thus in all cases M ≡ 0 (mod SN ).

Finally we investigate the effect of our transformations on (uv1)2. It is clear that
SN takes this expression to ζ−4

SN
(uv0)2.

For the other cases we note

Aτ + N

2
=

(
δ+βN

2

)
(2τ) + (γ + αN)

β(2τ) + (2α)
.

This represents a transformation of 2τ by an element of Γ0(N), but we note that
2α is not odd. Thus we decompose the transformation into two others in Γ0(N) of
the required form(

δ+βN
2 γ + αN
β 2α

)
=

(
δ+βN

2 γ + αN −N
(

δ+βN
2

)
β 2α−Nβ

)(
1 N
0 1

)
.
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Here the relevant expression will be

P = 2α(γ/N − 1) + 2(α2 − 1)δ

+ (2α−N)(2γ/N + 2α− (δ + N)− 2) + ((2α−N)2 − 1)(δ + N) + 2.

Firstly modulo 4, for N = 3, 7 ≡ −1 (mod 4)

P ≡ −2α− 2αN + N(δ + N) + 2N + 2 ≡ −δ + 1 ≡ 0 (mod 4)

checking all cases for N = 3, 7.

Clearly P ≡ 0 (mod 2) in all relevant cases.

Finally, modulo 3 for N = 3 we have

P ≡ α2 − 2αδ + 2 ≡ 1 (mod 3),

and for N = 5
P ≡ −αδ − 2γ + 1 ≡ 0 (mod 3).

Thus again, P ≡ 0 (mod SN ) in all cases, except for N = 3 where we have
P ≡ 4 (mod SN ).

Thus we have enough information to determine what roots of unity appear when we
apply the various transformations to our functions (uvc)2. However, some of these
roots of unity are inconvenient to work with. It is possible to obtain far simpler
ones by modifying the definition of the function v1. This will only affect the roots
of unity that appear in transformations that take (uv1)2 to (uv0)2 and vice versa,
or (uv1)2 to (uv∞)2 and vice versa.

We change our definition to the following

v1(τ) = ζ−1
SN

gN ((τ + N)/2).

This has the effect of changing the root of unity that appears when (uv0)2 is trans-
formed by SN , to 1, and the root of unity appearing when (uv1)2 is transformed
by SN , to ζ6

SN
. This is -1 in the cases N = 3, 7 and 1 in the cases N = 5, 13. In

a similar way, the roots of unity appearing in the transformations between (uv∞)2

and (uv1)2 are now ±1 in the cases N = 3, 7, cube roots of unity for N = 5 and
always 1 for N = 13.

We now combine this information with the information we had already obtained for
the other roots of unity (which have not changed as a result of the new definition).
This allows us to obtain a set of functions Pc which are invariant up to sign under all
relevant transformations. In addition, using the fact that uSN is always completely
invariant under all relevant transformations, we can construct further functions Qc

which are also permuted in the same way and with the same signs as the Pc.

For N = 3 choose Pc = (uvc)2 and Qc = (u/vc)6.

For N = 5 choose Pc = (uvc)3 and Qc = (u/vc)3.

For N = 7 choose Pc = (uvc)2 and Qc = (u/vc)2.

For N = 13 choose Pc = (uvc) and Qc = (u/vc).

Our aim now, is to construct functions Ac and Bc permuted up to sign by Γ0(N)
and by the Fricke involution. Thus we look at the action of the latter.

Clearly we have

v∞(−N/τ) = gN (−2N/τ) =
√

N/gN (τ/2) =
√

N/v0(τ).

For the action on v1 we solve
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(
1 N
0 2

)(
0 −N
1 0

)(
τ
1

)
=
(

0 −N
1 0

)(
δ γ
β α

)(
1 ±N
0 2

)
.

We obtain

(30) α = (1±N)/2, β = −1, γ = ∓N and δ = 2.

For N = 3, 7 we pick the negative sign in the third matrix on the right, otherwise
we pick the positive sign, so that α is always odd. If we pick the negative sign,
the third matrix on the right hand side represents (τ −N)/2 which we express as
S−N ((τ + N)/2). This extra transformation by S−N introduces an additional root
of unity, i.e. ζSN

.

Ignoring this additional complication for now, the roots of unity that we need to
consider are(

N

|(1±N)/2|

)
ν((1±N)/2,−1,∓N, 2) = ζ

(±1−2+N±3N+N2)/2
SN

,

from applying (2) to (30). Evaluating these and factoring in the extra ζSN
(for

N = 3, 7) that we ignored, we obtain ζSN
for N = 3, −ζ22

SN
= −ζ4

SN
for N = 5,

ζ17
SN

= ζSN
for N = 7 and −ζ110

SN
= −1 for N = 13.

Now bearing in mind the definition of v1 and that after applying the Fricke invo-
lution the roots of unity above end up in the denominator, we see that applying
the Fricke involution to v1 yields the roots of unity ζ−3

SN
for N = 3, −1 for N = 5,

ζ−3
SN

for N = 7 and −1 for N = 13. In all cases we see that the Fricke involution
induces a -1 when transforming any of the Pc or Qc defined above.

Next we note that in every case the transformation τ → τ/2 sends the coefficients
of the q-series of P∞ to those of P0 and those of Q∞ to those of Q0, whilst the
transformation τ → τ + N sends P0 to P1 and Q0 to Q1.

Putting all this together

For N = 3 choose Ac = Pc + 32/Pc and Bc = Qc + 1/Qc.

For N = 5 choose Ac = Pc + 33/Pc and Bc = Qc + 1/Qc.

For N = 7 choose Ac = Pc + 32/Pc and Bc = Qc + 1/Qc.

For N = 13 choose Ac = Pc + 3/Pc and Bc = Qc + 1/Qc.

Now the Ac and Bc are permuted up to sign by Γ0(N) and by the Fricke involution.
Because of the possibility of a sign change, we must construct the polynomial F (x, y)
only with terms whose total orders have the same parity. This process also preserves
the coefficients of the q-series of the Fc under the transformations listed above as
required.

We now compute the relevant q-series.

For N = 3

A0(q6) = (q−1; 1, 0, . . .)

B0(q6) = (q−1; 1, 0, . . .)

For N = 5

A∞(q10) = (q−3, 1, 0,−3, 0, . . .)

B∞(q10) = (q−1; 1, 0, 4, 0, . . .)

For N = 7

A∞(q14) = (q−3, 1, 0,−2, 0, . . .)
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B∞(q14) = (q−1; 1, 0, 3, 0, . . .)

For N = 13

A∞(q26) = (q−3, 1, 0,−1, 0, . . .)

B∞(q26) = (q−1; 1, 0, 2, 0, . . .)

These yield the modular equations

N = 3, p = 2 : A = B

N = 5, p = 2 : A = B3 − 15B

N = 7, p = 2 : A = B3 − 11B

N = 13, p = 2 : A = B3 − 7B.

upon comparing q-series.

10. A Modular Equation of Signature Five, Degree Three

In order to obtain the last outstanding modular equation we define the functions

Definition 10.0.18.

u(τ) = h1(τ), v∞(τ) = h1(3τ), v0(τ) = h1(τ/3),

v1(τ) = h1((τ + 5)/3), v2(τ) = h1((τ + 10)/3),
where h1(τ) is the function of signature 5 defined in section 2.

We choose the following generators for Γ0(5)

S5, TST, S2TS8, S8TS2

where again we think of Sv′TSv as being represented by
(

ν′ νν′ − 1
1 ν

)
, etc.

Firstly we determine the action of S5 on our functions. This can be done easily
by referring to the expressions for the modular transformations of the functions of
section 2. We construct the following table

u v∞ v0 v1 v2

τ → τ + 5 ζ−1
6 u −v∞ v1 v2 ζ−1

6 v0

In particular, if we apply the transformation S5 to (uvc)2 for the various subscripts
c the root of unity that appears is ζ−1

3 for (uv∞)2, (uv0)2 and (uv1)2, and ζ3 for
(uv2)2.

Now we deal with the three transformations that remain. Firstly we apply them to
v∞. We note that if the transformation being applied is given by the matrix

A =
(

δ γ
β α

)
,

then the transformation of the argument of v∞ = h1(3τ), by A, can be expressed

3Aτ =
(3δ)

(
τ+5
3

)
+ (γ − 5δ)

β
(

τ+5
3

)
+
(

α−5β
3

) .

Note that for each of the transformations we are considering, α− 5β is divisible by
3. It is also easy to calculate that the action of TST, S2TS8 and S8TS2 on u gives
ζ6 u, ζ−1

3 u and ζ−1
3 u respectively. We will denote the roots of unity that appear

here by ζu in each case.
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We are now in a position to calculate

(31) (uv∞)(sv′TSv)2 = ζ2
u ν5((α− 5β)/3, β, γ − 5δ, 3δ)2 (uv1)(τ)2.

Examining the expression for ν5 as given by theorem (4.0.11) we see that the first

part of ν2
5 has the form

(
e−

πi
12 (N−1)

)2

= ζ−1
3 . Thus we are only interested in the

rest of the exponent of ν5((α− 5β)/3, β, γ − 5δ, 3δ) modulo 3. But this is given by

α− 5β

3

(
γ − 5δ

5
+ β

)
+

((
α− 5β

3

)2

− 1

)
3βδ ≡ α− 5

3
(1− δ) (mod 3),

since β = 1, 1/5 ≡ 2 (mod 3), 3|α− 5 and 3|γ for all of the transformations we are
interested in.

In all cases we see that 1 − δ ≡ −1 (mod 3) and so in summary we see that the
root of unity appearing on the right side of (31) is ζ−1

3 for TST , S2TS8 and 1 for
S8TS2.

We perform a similar computation for the transformation of (uv0)2 by each of our
transformations. We write

Aτ

3
=

δ(τ/3) + (γ/3)
(3β)(τ/3) + α

.

For all our transformations, 3|γ, and so we have

(32) (uv0)(Sv′TSv)2 = ζ2
u ν5(α, 3β, γ/3δ)2 (uv0)2.

We examine the appropriate part of the exponent of ν2
5 modulo 3.

α(γ/15 + 3β) + (α2 − 1)3βδ ≡ αγ/15 (mod 3).

Thus the root of unity appearing on the right side of (32) is ζ3 for TST , and ζ−1
3

for S2TS8 and S8TS2.

Now for the transformation of (uv1)2 we write

Aτ + 5
3

=
δ
(

τ+10
3

)
+ (γ−10δ+5)

3

(3β)
(

τ+10
3

)
+ (α− 10β)

.

For all three transformations we have 3|(γ − 10δ + 5) and so

(33) (uv1)(sv′TSv)2 = ζ2
u ν5(α− 10β, 3β, (γ − 10δ + 5)/3, δ)2 (uv2)2.

Again examining the appropriate part of the exponent of ν2
5 modulo 3 we obtain

(α− 10β)
(

γ − 10δ + 5
15

+ 3β

)
+ ((α− 10β)2 − 1)3βδ

≡ (α− 1)
(

γ − 10δ + 5
15

)
(mod 3).

However in all cases α ≡ 2 (mod 3) and so this becomes (γ− 10δ +5)/15 (mod 3).

Evaluating, we find that the root of unity on the right side of (33) is 1 for TST , ζ3

for S2TS8 and ζ−1
3 for S8TS2.

Finally we transform (uv2)2. We write

Aτ + 10
3

=

(
δ+10β

3

)
(3τ) + (γ + 10α)

β(3τ) + (3α)
.
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In each case 3|(δ + 10β) and so

(34) (uv2)(Sv′TSv)2 = ζ2
u ν5(3α, β, γ + 10δ, (δ + 10β)/3)2 (uv∞)2.

The appropriate part of the exponent is

3α

(
γ + 10α

5
+ β

)
+

(9α2 − 1)β(δ + 10β)
3

≡ −δ + β

3
(mod 3).

Thus the root of unity on the right of (34) is ζ3 for TST , ζ−1
3 for S2TS8 and ζ3 for

S8TS2.

It is clear from these computations that the values Pc = (uvc)3 are all permuted
up to sign by all the transformations we have considered. Since u6 is also invariant
under all these transformations then the values Qc = (vc/u)3 are all permuted up
to sign by these transformations in exactly the same way and with the same signs
as the Pc.

We now examine the action of the Fricke involution, τ → −5/τ , on our functions.
We know from theorem (4.0.16) that it sends the function u to

√
5/u. We use this

to determine the action on the other functions.

Clearly
v∞(−5/τ) = u(−15/τ) =

√
5/u(τ/5) =

√
5/v0(τ).

For the action on v1 we solve(
1 5
0 3

)(
0 −5
1 0

)(
τ
1

)
=
(

0 −5
1 0

)(
δ γ
β α

)(
1 −10
0 3

)(
τ
1

)
.

Solving, we obtain

α = −3, β = −1, γ = 10, δ = 3.

The second matrix on the right then represents a linear transformation and con-
tributes the following root of unity(

5
3

)
e−

πi
3 [−3(10/5−1)+(32−1)(−3)] = 1.

Thus we can see that v1 is sent to
√

5/(ζ6 v1), the ζ6 appearing since we need to
change the argument (τ − 10)/3 to that of v1, i.e. (τ + 5)/3.

In particular, we see that the Fricke involution takes v3
1 to −(

√
5/v1)3.

For the action on v2 we solve(
1 10
0 3

)(
0 −5
1 0

)(
τ
1

)
=
(

0 −5
1 0

)(
δ γ
β α

)(
1 10
0 3

)(
τ
1

)
.

Solving, we obtain

α = 7, β = −2, γ = −10, δ = 3.

The linear transformation contributes the root of unity(
5
7

)
e−

πi
3 [7(−10/5−2)+(72−1)(−6)] = ζ6

Thus again we see that v3
2 is taken to −(

√
5/v2)3.

We see that the action of the Fricke involution is not consistent across all our
functions. The best that we can do without affecting our analysis of the actions
of the modular transformations on the functions is to adjust the definitions of the
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functions v1 and v2 by some 6-th root of unity. However this does not help us in
removing the inconsistency that we have here.

The simplest solution to this problem appears to be to define

Ac = (uvc)3 + 53/(uvc)3

Bc = (vc/u)3 + (u/vc)3

and to construct a polynomial F (x, y) in x = A∞ and y = B∞ whose q-series
vanishes up to and including the constant term but where all monomials have even
total degree. Now when factors of -1 are induced by the Fricke involution they
occur in pairs and cancel out.

The relevant q-series are

A∞(q5) = (q−2; 1,−3, 0, 2, 134, . . .)

B∞(q5) = (q−1; 1, 3, 10, 16, 42, . . .)

from which we obtain the modular equation

N = 5, p = 3 : A2 −B4 + 18AB + 85B2 = 0.

11. Evaluation of an Eta Quotient Using Modular Equations

In this final section we give a very simple example of application of the modular
equations we have developed. We explicitly evaluate a specific quotient of the
Dedekind eta function. Evaluation of such quantities is important in obtaining
explicit generators of various number fields in explicit class field theory (see [3] for
further details).

Our example will come from the functions of signature three. In particular we will
make use of the modular equation of degree five for this signature.

We make the specific assignment τ = 1− 1/
√
−5. We note that 5τ = 5− 5/

√
−5 =

5 +
√
−5.

Plugging this value of τ into the modular equation of degree five and signature
three we will end up with a polynomial relation between

g1(τ) = g1(1− 1/
√
−5) = ζ−1

12 g2(−1/
√
−5) = ζ−1

12 g3(
√
−5)

and
g1(5τ) = g1(5 +

√
−5) = ζ−2

12 g3(
√
−5).

Letting u be the first of these value and v the second, the appropriate modular
equation yields

(uv)2 + 9/(uv)2 − (v/u)3 + (u/v)3 + 5 = 0.

In other words
−g3(

√
−5)4 − 9/g3(

√
−5)4 + 2i + 5 = 0,

Finally if we let x = g3(
√
−5)4 then rearranging and squaring the previous equation

yields the following irreducible polynomial expression

x4 − 10x3 + 47x2 − 90x + 81 = 0.

Noting that

x = g3(
√
−5)4 =

η((
√
−5 + 2)/3)4

η(
√
−5)4

,

we see that we have completed an evaluation of a non-trivial eta quotient.
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