
2. ETA EVALUATIONS USING WEBER FUNCTIONS

Introduction

So far we have seen some of the methods for providing eta evaluations that appear
in the literature and we have seen some of the interesting properties of eta quotients
and how they relate to special values of L-series.

However all the methods we have seen so far have certain limitations. Whilst they
may tell us that our eta quotients are units and which number fields they lie in
or tell us that they relate to such and such an L-series or even give various Galois
actions on them, the methods still do not tell us explicitly which units they are.

One way of specifying units precisely is to give minimum polynomials for them.
The methods that we demonstrate over the next few pages do precisely that.

In our earlier pages we also noted that many of the existing methods put severe
limitations on the class numbers of the underlying imaginary quadratic number
fields from which the arguments of our eta evaluations are taken. In this chapter
we will overcome this limitation and provide evaluations where the class number is
an odd prime and not necessarily 3.

We start by giving a short summary of the work of Weber who, using modular
equations for his Weber functions, was able to provide various eta evaluations at
certain quadratic irrationals. His techniques do not have a limitation on the class
number. Many of the evaluations that appear in the tables at the back of his
Lehrbuch der Algebra [2] have class numbers which are not a power of two. However
Weber’s methods do have other limitations.

Firstly Weber can only evaluate eta quotients which are derived from his Weber
functions. Secondly he limits himself mostly to evaluations at values ω =

√
−m for

a positive integer m.

In numerous cases we manage to overcome the second limitation and provide eval-
uations at other quadratic irrationals. This can only be done because of a number
of ‘tricks’ which Weber could not have employed, mainly due to the fact that com-
puters did not exist in his day to provide the necessary numerical insight required
to ‘guess’ solutions to various equations.

Despite this educated guesswork our methods are worth recording since they seem
to work in more cases than one would initially expect and the information that is
guessed is only slight and easily follows once the final result is proved. Thus, in
this chapter, we are able to present quite a number of new explicit eta evaluations
where the class number is five and make progress towards evaluations where the
class number is seven.

We do however limit ourselves here to evaluations involving the Weber functions.
In later chapters, after an examination of Weber’s method for obtaining modular
equations, we generalise these functions and their modular equations and this allows
us to provide further eta evaluations which Weber could not provide. Strangely
there we do not need any numerical information to ‘guess’ solutions as we do in
this chapter.
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38 2. ETA EVALUATIONS USING WEBER FUNCTIONS

1. Weber’s Own Evaluations

Weber himself provides numerous eta evaluations. He is usually interested however
in evaluating one of his function f or f1 at

√
−m for some natural number m.

In §128 of his Lehrbuch [2] he uses previously calculated values of the function
γ2(ω) = 3

√
j(ω) and the equation

u3 − γ2(ω)u− 16 = 0

which has roots f(ω)8, −f1(ω)8 and −f2(ω)8 to calculate minimum polynomials for
f(ω) at certain values of ω.

However this method works only for the situations where one can explicitly calculate
the value γ2(ω) and where it has a nice value, such as an integer. In fact this happens
for ω =

√
−p, where p is a prime or 1 and a discriminant with class number one.

Thus Weber calculates minimum polynomials for f(
√
−p) when p = 1, 3, 7, 11, 19,

43, 67 and 163. He also calculates f1(
√
−2) in a similar way.

In §129, by using transformations of second order (essentially derived from the
identity f1(2ω)f2(ω) =

√
2) Weber is able to use the above results to compute

values of f1(
√
−m) for the composite values m = 4, 8, 12, 16, 28 and 32.

By §130 Weber has realised that he can use both the Schläfli modular equations
and his modular equations of irrational form to obtain Weber function evaluations.
We discuss both kinds of modular equation and the derivations Weber gives for
them in a later chapter.

For the reader not yet familiar with these, a Schläfli modular equation provides a
polynomial relationship between u = f(ω) and v = f(nω) or between u = f1(ω) and
v = f1(nω), usually where n is prime. These modular equations can be exploited
by setting ω =

√
−m for some integer m so that we have a polynomial relationship

between f(
√
−m) and f(

√
−n2m), etc.

This method is particularly useful for cases where the value of f(
√
−m) (or f1(

√
−m))

is known and is a nice value such as a root of an integer. This is certainly the case
for m = 1, 2, 3, 4 or 7. With this technique Weber is able to compute the values
f(
√
−n2m) where n2m = 9, 25, 27, 49, 63, 75 and 175, and he computes f1(

√
−n2m)

where n2m = 18, 36, 50 and 100.

There are of course higher values of n2m for which this technique works but one
sees the limited applicability of it due to its reliance on a known simple value being
given for f(

√
−m).

Next Weber makes use of the fact that
√
−m/m = −1/

√
−m. It is easy to see that

if one sets ω =
√
−m/m then

f(ω) = f(−1/
√
−m) = f(

√
−m) = f(mω).

Using this information, a Schläfli modular equation of degree m involving f(ω) and
f(mω) becomes a minimum polynomial for f(

√
−m) once we set ω =

√
−m/m in it.

Using this method Weber obtains the additional evaluations f(
√
−m) for the values

m = 5, 13 and 17.

Next Weber takes ω to be a root of 2x2 +2rx+n where n is odd and r any integer.
This has as root ω = (−r +

√
−m)/2 where m = 2n− r2.

Of particular importance is the fact that −n/ω = r +
√
−m.

The idea is to consider the modular equation of degree n relating f2(ω) and f2(ω/n).
A simple calculation shows that these have the values exp(−rπi/24)

√
2/x and
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exp(−rπi/24)x respectively where x = f1(
√
−m) or x = f(

√
−m) depending on

whether r is odd or even.

Weber gives a bewildering array of values m and n for which this method works.
He uses it to calculate f(

√
−13) and f1(

√
−m) for m = 10, 22 and 26.

Lastly Weber sets ω to be the root (−r +
√
−m)/(2n) of 2nx2 + 2rx + n where

m = 2n2 − r2. This time he considers the values f2(ω), f2(ω/n) and f2(nω).

Again depending on whether r is odd or even the last two of these can both be
expressed in terms of x = f1(

√
−m) or x = f(

√
−m).

Combining two Schläfli modular equations of degree n in an obvious way one can
then eliminate f2(ω) leaving only a relation between f2(ω/n) and f2(nω). This leaves
of course an equation involving only the expression x.

Weber uses this technique to evaluate f(
√
−41).

Now comes Weber’s §131 where he makes use of the modular equations of irrational
form. These are modular equations that involve all three of his Weber functions f,
f1 and f2.

For example, consider Weber’s modular equations of degree n ≡ 7 (mod 8) of this
form. They are polynomial relations between functions of the form

2A = f(ω)f(nω) + (−1)
n+1

8 (f1(ω)f1(nω) + f2(ω)f2(nω))

and
B =

2
f1(ω)f1(nω)

+
2

f2(ω)f2(nω)
+ (−1)

n+1
8

2
f(ω)f(nω)

.

Now one sets ω = −1/
√
−n so that nω =

√
−n. We set

√
2x = f(

√
−n). We also

note that f1(ω)f1(nω) becomes f2(
√
−n)f1(

√
−n) =

√
2/f(

√
−n) = 1/x, etc. In fact

we have
A = x2 + (−1)

m+1
8 /x and B = 4x + (−1)

m+1
8 /x2,

(where we correct a probable typographical error at this point in Weber).

In other words the modular equation of irrational form, being a polynomial re-
lationship between the functions A and B, induces a polynomial equation in the
single value x which when factored provides a minimal polynomial for the value
x = f(

√
−n)/

√
2.

This method allows Weber to obtain new evaluations for f(
√
−n) where n = 23, 31,

47 and 71.

We mention one final method of Weber’s involving his modular equations of irra-
tional form. His idea is somewhat limited in that it applies to a modular equation
where the function B does not appear. In the expression for A he picks the value
of ω so that the term involving f2(ω)f2(ω/n) becomes a constant. The remaining
terms involving f and f1 he evaluates by making use of the following identity of
degree 2 which he also derives in §131

f(ω)4f(2ω)4 + f1(ω)4f2(2ω)4 = f2(ω)6 + 8/f2(ω)6.

The reason that he can make use of this identity is that he picks ω very carefully. He
sets ω = (−r+

√
−m)/2 a root of 2x2 +2rx+n for some integer r and m = 2n−r2.

The crucial benefit of this is that 2ω = −n/ω − 2r making the terms on the left
hand side of the degree two identity equal to some power of the terms involving f
and f1 of his modular equation of irrational form.

So after taking the appropriate power of his modular equation and substituting
in this degree two identity Weber ends up with an expression containing only the
value f2(ω) and various constants. But depending on whether or not r is even f2(ω)
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is, up to some constant factors, either f(
√
−m) or f1(

√
−m). Thus one obtains a

polynomial eqution in one of these two values.

Weber is able to use this process to obtain an evaluation of f1(
√
−46), since he can

set m = 46, n = 23 and r = 0.

There is another method which Weber gives in §131, however it makes use of his
theory of modular equations of composite degree which we do not examine, so we
omit a description of this method. It allows Weber to evaluate f(

√
−39).

2. New Class Number Five Evaluations Using Weber Functions

2.1. Discriminant -47. We will calculate numerous eta quotients explicitly with
arguments in the imaginary quadratic field of discriminant d = −47. Of special
importance to us is the eta quotient

∣∣∣f1 (
1+

√
−47

2

)∣∣∣ which is related to the unit m1

of the previous chapter. This value is very easy to compute. However we will also
calculate other eta quotients where the discriminant is −47, which are not so easy
to get at, such as the unit m2 of the last chapter.

Throughout this section we make extensive use of the Weber function identities
mentioned in the previous section and in addition we make use of the following fact
without comment

f1

(
b +

√
−d

2a

)
= f1

(
−b +

√
−d

2a

)
,

where the bar denotes the complex conjugate and the arguments are quadratic irra-
tionals. A similar result holds for the function f2. These identities follow straight-
forwardly from the definition of the Weber functions and the q-series expression for
the eta function.

Firstly we begin with Weber’s own evaluation of x = |f(
√
−47)|/

√
2. In his Lehrbuch

[2] he states in the tables at the end that x satisfies the polynomial equation
x5 − x3 − 2x2 − 2x− 1.

But we notice that∣∣∣∣f2 (
1 +

√
−47

2

)∣∣∣∣ =
√

2/|f1(1 +
√
−47)| =

√
2/|f(

√
−47)|.

Thus we can calculate this value from the known value which Weber calculates.

Next we notice that∣∣∣∣f (1 +
√
−47

2

)∣∣∣∣ =
∣∣∣∣f1 (

−1 +
√
−47

2

)∣∣∣∣ =
∣∣∣∣f1 (

1 +
√
−47

2

)∣∣∣∣ .

But now from f f1f2 =
√

2 we calculate that∣∣∣∣f1 (
1 +

√
−47

2

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f2 (

1 +
√
−47

2

)∣∣∣∣ = |f(
√
−47)|.

Thus we have that x =
∣∣∣f1 (

1+
√
−47

2

)∣∣∣2 /
√

2 also satisfies x5−x3−2x2−2x−1 = 0.

This immediately gives us an evaluation of the unit m1 of the last chapter for this
discriminant.

Next we notice that∣∣∣∣f2 (
1 +

√
−47

4

)∣∣∣∣ =
√

2
/ ∣∣∣∣f1 (

1 +
√
−47

2

)∣∣∣∣ .
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This value is one that we know. In fact we see that

(1) y =
∣∣∣∣f2 (

1 +
√
−47

4

)∣∣∣∣2 /
√

2 satisfies y5 + 2y4 + 2y3 + y2 − 1 = 0.

What we will do now is relate this known value to
∣∣∣f1 (

1+
√
−47

4

)∣∣∣2 /
√

2 using a
modular equation of degree three for Weber functions. In fact we will show later
that this value is precisely the unit 1/m2 for the discriminant d = −47 which we
spoke about in the last chapter.

This is done as follows. Firstly we find

f1

(
−1 +

√
−47

4

)
= f2

(
1 +

√
−47

12

)
,

and

f2

(
−1 +

√
−47

4

)
= f1

(
1 +

√
−47

12

)
.

The arguments which appear here differ in pairs by a factor of three.

We also note that

f

(
−1 +

√
−47

4

)
= f

(
1 +

√
−47

12

)
.

The type of modular equation which we will use is that of irrational form spoken
of by Weber in §75 of [2]. The degree three equation of this kind is

f(ω)2f(3ω)2 = f1(ω)2f1(3ω)2 + f2(ω)2f2(3ω)2.

If we substitute in the value ω = 1+
√
−47

12 then this becomes

|f(3ω)|4 = f2(3ω)2f1(3ω)2 + f1(3ω)2f2(3ω)2,

where we use the fact that f f1f2 =
√

2 to see that f(ω) and f(3ω) are conjugates.

We wish to do away with the asymmetry on the right hand side of this equation.
This we can do by repeatedly squaring the equation and rearranging so that all the
asymmetry remains on the right hand side. After doing this twice (always replacing
|f1(3ω)f2(3ω)| with |f1(3ω)| wherever it occurs) we obtain

|f(3ω)|16 + 32/|f(3ω)|8 − 16|f(3ω)|4 = f1(3ω)8f2(3ω)8 + f2(3ω)8f1(3ω)8

= f1(3ω)8(f(3ω)8 − f1(3ω)8) + f2(3ω)8(f(3ω)8 − f2(3ω)8)

= −|f1(3ω)|16 − |f2(3ω)|16 + |f(3ω)|16.

In other words we have shown

16|f(τ)|4 − 32/|f(τ)|8 = |f1(τ)|16 + |f2(τ)|16,

where τ = 1+
√
−47

4 . Then letting a = |f(τ)|, b = |f1(τ)| and c = |f2(τ)| so that
abc =

√
2 we see that

64/(bc)4 − 2(bc)8 = b16 + c16,

which after rearranging and taking the square root becomes

8/(bc)2 = b8 + c8.

It seems logical to now set l = a2, m = b2/
√

2 and n = c2/
√

2, since these are the
actual units we will be dealing with. Now lmn = 1 and the equation above has
become the very elegant identity

(2) m5n + n5m = 1.
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But the value n is precisely the value given in the equation (1) above. Therefore
we only need to solve the previous equation in order to obtain the eta evaluation
for m.

At this point we happen to notice numerically that l = n + 1. Thus from lmn = 1
we have that 1/m = n(n + 1).

Substituting this value into the equation (2) and making use of the fact that f(n) =
0 where f(x) is the minimum polynomial for n we find that this value of m is indeed
a root. Since the polynomial (2) only has one real root we must have the correct
value for m.

Now from the minimal polynomial f(x) for the value n we have that

4 + n = 4f(n) + 4 + n.

After expanding this out, the right hand side is divisible by n. Dividing through
by n we obtain

4/n + 1 = 4n4 + 8n3 + 8n2 + 8n + 1.

Now the right hands side of this equation is a square. Thus we have√
4/n + 1 = 2n2 + 2n + 1 = 2/m + 1.

In other words, m = 2

−1+
√

4/n+1
. Expanding this out leads to n = m2/(m + 1).

If we plug this into (2) and factorise we obtain a minimum polynomial for m (it is
the only factor of degree 5).

We find in this way that m has minimum polynomial x5 + x4 + x3 − x2 − 2x− 1.

Now as we mentioned earlier this value is in fact the unit 1/m2 spoken of in the
previous chapter. This can be proved as follows

m2 = h(2, 1, 6)2/h(3, 1, 4)2 =

√
3
2

∣∣∣∣η((1 +
√
−47)/4)

η((1 +
√
−47)/6)

∣∣∣∣2

=

√
3
2

∣∣∣∣∣∣ η((1 +
√
−47)/4)√

−i(−1 +
√
−47)/8 η((−1 +

√
−47)/8)

∣∣∣∣∣∣
2

=
√

2
/
|f1((1 +

√
−47)/4)|2,

which is the inverse of the value we have calculated above.

We can continue from our last evaluation and obtain further interesting ones.
Firstly we see that∣∣∣∣f1 (

1 +
√
−47

4

)∣∣∣∣ =
∣∣∣∣f2 (

−1 +
√
−47

12

)∣∣∣∣ =
√

2
/ ∣∣∣∣f1 (

−1 +
√
−47

6

)∣∣∣∣
Thus z =

∣∣∣f1 (
1+

√
−47

6

)∣∣∣2 /
√

2 satisfies z5 + 2z4 + z3 − z2 − z − 1 = 0.

Now we do an interesting side calculation. We have∣∣∣∣f (1 +
√
−47

6

)∣∣∣∣ =
∣∣∣∣f1 (

−5 +
√
−47

6

)∣∣∣∣ =
√

2
/ ∣∣∣∣f2 (

−5 +
√
−47

12

)∣∣∣∣
=
√

2
/ ∣∣∣∣f1 (

5 +
√
−47

6

)∣∣∣∣ =
√

2
/ ∣∣∣∣f (−1 +

√
−47

6

)∣∣∣∣ =
√

2
/ ∣∣∣∣f (1 +

√
−47

6

)∣∣∣∣ .

Thus we have
∣∣∣f ( 1+

√
−47

6

)∣∣∣2 =
√

2. Combining this with |f f1f2|2 = 2 we find∣∣∣∣f2 (
1 +

√
−47

6

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−47

6

)∣∣∣∣2 ,
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Eta Evaluations (d = −47) Minimum Polynomial

|f(
√
−47)|/

√
2 = 1

/ ∣∣∣f2 (
1+

√
−47

2

)∣∣∣ x5 − x3 − 2x2 − 2x− 1

=
∣∣∣f1 (

1+
√
−47

2

)∣∣∣2 /
√

2 =
√

2
/ ∣∣∣f2 (

1+
√
−47

4

)∣∣∣2∣∣∣f1 (
1+

√
−47

4

)∣∣∣2 /
√

2 =
√

2
/ ∣∣∣f1 (

1+
√
−47

6

)∣∣∣2 x5 + x4 + x3 − x2 − 2x− 1

=
∣∣∣f2 (

1+
√
−47

6

)∣∣∣2 = 2
/ ∣∣∣f1 (

1+
√
−47

3

)∣∣∣2∣∣∣f ( 1+
√
−47

6

)∣∣∣2 x2 − 2

Table 2.1

and therefore satisfies the polynomial equation x5 + x4 + x3 − x2 − 2x− 1 = 0.

However since
∣∣∣f2 (

1+
√
−47

6

)∣∣∣ =
√

2
/ ∣∣∣f1 (

1+
√
−47

3

)∣∣∣ we have that

z =
∣∣∣∣f1 (

1 +
√
−47

3

)∣∣∣∣2 /2 satisfies z5 + 2z4 + z3 − z2 − z − 1 = 0.

We summarise the eta evaluations that we have completed for the discriminant
d = −47 in the above table.

2.2. Discriminant -79. We move on to the next discriminant of class number 5
which is d = −79. Here we particularly wish to evaluate the quantities

m1 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−79

2

)∣∣∣∣2 and m2 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−79

4

)∣∣∣∣2 .

Recall that the second of these quantities was not even proved to be a unit in the
previous chapter. However this will be obvious from its evaluation which we will
obtain shortly.

Unfortunately Weber does not compute x = |f(
√
−79)|/

√
2, however Ramanujan

has essentially calculated it. According to the table of class invariants of 34.2 of [1]
it satisfies the equation x5 − 3x4 + 2x3 − x2 + x− 1 = 0.

Now we note that∣∣∣∣f2 (
1 +

√
−79

2

)∣∣∣∣ =
√

2/
∣∣f1 (

1 +
√
−79

)∣∣ =
√

2/|f(
√
−79)|.

Also we have∣∣∣∣f (1 +
√
−79

2

)∣∣∣∣ =
∣∣∣∣f1 (

−1 +
√
−79

2

)∣∣∣∣ =
∣∣∣∣f1 (

1 +
√
−79

2

)∣∣∣∣ .

Therefore from f f1f2 =
√

2 we find that

x =
∣∣∣∣f1 (

1 +
√
−79

2

)∣∣∣∣2 /
√

2 satisfies x5 − 3x4 + 2x3 − x2 + x− 1 = 0

Also we have ∣∣∣∣f2 (
1 +

√
−79

4

)∣∣∣∣ =
√

2
/ ∣∣∣∣f1 (

1 +
√
−79

2

)∣∣∣∣ .

Thus in particular

y =
∣∣∣∣f2 (

1 +
√
−79

4

)∣∣∣∣2 /
√

2 satisfies y5 − y4 + y3 − 2y2 + 3y − 1 = 0.
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We now relate this value to another via a modular equation of degree 5. Firstly we
have

f2

(
−1 +

√
−79

4

)
= f1

(
1 +

√
−79

20

)
and

f1

(
−1 +

√
−79

4

)
= f2

(
1 +

√
−79

20

)
and

f

(
−1 +

√
−79

4

)
= f

(
1 +

√
−79

20

)
.

We employ Weber’s modular equation of irrational form of degree 5. This is given
in §75 of [2] as

(3) 8 = f(ω)4f(5ω)4 − f1(ω)4f1(5ω)4 − f2(ω)4f2(5ω)4.

Once we substitute the particular value ω = 1+
√
−79

20 this can be written

8 = |f(5ω)|8 − f2(5ω)4f1(5ω)4 − f1(5ω)4f2(5ω)4.

We apply the same technique as we did for d = −47, putting the asymmetric parts
to one side and squaring. Doing this just once we obtain

|f(5ω)|16 − 16|f(5ω)|8 + 64 = f2(5ω)8f1(5ω)8 + f1(5ω)8f2(5ω)8 + 2|f1(5ω)f2(5ω)|8

= f2(5ω)8(f(5ω)8 − f2(5ω)8) + f1(5ω)8(f(5ω)8 − f1(5ω)8) + 32/|f(5ω)|8

= |f(5ω)|16− |f1(5ω)|16− |f2(5ω)|16 + 32/|f(5ω)|8.

So writing l = |f(5ω)|2, m = |f1(5ω)|2/
√

2 and n = |f2(5ω)|2
√

2 so that lmn = 1 we
have

16/(mn)4 − 64 = 16m8 + 16n8 − 32(mn)4.

But adding 64(mn)4 to both sides we end up with a square on the left and the right

(8(mn)2 − 4/(mn)2)2 = (4m4 + 4n4)2.

It is not hard to determine that the correct square root to take is

1/(mn)2 − 2(mn)2 = m4 + n4

which after rearranging again and taking the correct square root gives

1/(mn) = m2 + n2,

that is

(4) m3n + mn3 = 1.

Now we happen to note numerically that 1/n = m + 1. Substituting this into the
previous equation and taking the resulting expression modulo the known minimum
polynomial for n we see that this indeed gives a root of the equation (4). Since the
equation only has one real root, this must be it.

Now we know the minimum polynomial for n. We can easily calculate the minimum
polynomial for 1/n from it and for 1/n−1 for that. But this must be the minimum
polynomial for m.

Thus we have that m =
∣∣∣f1 (

1+
√
−79

4

)∣∣∣2 /
√

2 satisfies m5 +2m4−3m2−2m−1 = 0.
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Eta Evaluations (d = −47) Minimum Polynomial

|f(
√
−79)|/

√
2 = 1

/ ∣∣∣f2 (
1+

√
−79

2

)∣∣∣ x5 − 3x4 + 2x3 − x2 + x− 1

=
∣∣∣f1 (

1+
√
−79

2

)∣∣∣2 /
√

2 =
√

2
/ ∣∣∣f2 (

1+
√
−79

4

)∣∣∣2∣∣∣f1 (
1+

√
−79

4

)∣∣∣2 /
√

2 =
√

2
/ ∣∣∣f2 (

1+
√
−79

8

)∣∣∣2 x5 + 2x4 − 3x2 − 2x− 1

=
∣∣∣f1 (

1+
√
−79

8

)∣∣∣2∣∣∣f ( 1+
√
−79

8

)∣∣∣2 x2 − 2

Table 2.2

There are a few more evaluations that we can complete with this information.
Firstly ∣∣∣∣f2 (

1 +
√
−79

8

)∣∣∣∣ =
√

2
/ ∣∣∣∣f1 (

1 +
√
−79

4

)∣∣∣∣ .

In other words z =
∣∣∣f2 (

1+
√
−79

8

)∣∣∣2 /
√

2 satisfies z5 + 2z4 + 3z3 − 2z − 1 = 0.

However we now compute∣∣∣∣f (1 +
√
−79

8

)∣∣∣∣ =
∣∣∣∣f1 (

−7 +
√
−79

8

)∣∣∣∣ =
√

2
/ ∣∣∣∣f2 (

−7 +
√
−79

16

)∣∣∣∣
=
√

2
/ ∣∣∣∣f1 (

7 +
√
−79

8

)∣∣∣∣ =
√

2
/ ∣∣∣∣f (−1 +

√
−79

8

)∣∣∣∣ =
√

2
/ ∣∣∣∣f (1 +

√
−79

8

)∣∣∣∣ .

Thus we have that ∣∣∣∣f (1 +
√
−79

8

)∣∣∣∣2 =
√

2.

Thus combining this with the above we have that∣∣∣∣f1 (
1 +

√
−79

8

)∣∣∣∣2 satisfies x5 + 2x4 − 3x2 − 2x− 1 = 0.

We summarise some of the evaluations we have obtained for d = −79 in the table
above.

2.3. Discriminant -103. Again similar techniques work for d = −103 also of class
number 5. Firstly we wish to evaluate the expression

m1 =
√

2
∣∣∣∣η((1 +

√
−103)/2)

η((1 +
√
−103)/4)

∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−103

2

)∣∣∣∣2
=
√

2
/ ∣∣∣∣f (−1 +

√
−103

2

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f (1 +

√
−103

2

)∣∣∣∣2 .

However since both of the last expressions in the two rows of this equation are the
same, then from f f1f2 =

√
2 we see that these expressions are equal to the value∣∣∣∣f2 (

1 +
√
−103

2

)∣∣∣∣ =
√

2
/ ∣∣f1 (

1 +
√
−103

)∣∣ =
√

2
/ ∣∣f(√−103)

∣∣ .

Now this evaluation is strangely not made in either [2] or [1], however there does
not seem to be any reason why it could not be calculated using Weber’s method
providing one accepts the use of a computer to calculate the q-series involved. We
cheat of course and simply ask Pari to provide us with the minimum polynomial
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using its algdep() function. It does not take long to determine that m1 has minimum
polynomial x5 + 2x4 + 3x3 + 3x2 + x− 1.

Now it will be convenient to write m1 in a slightly different form. From the first
equation for m1 above we see that

m1 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−103

2

)∣∣∣∣2 =
∣∣∣∣f2 (

1 +
√
−103

4

)∣∣∣∣2 /
√

2.

For consistency we will denote this unit by n for consistency with the earlier cases
we dealt with.

Now we also wish to calculate the value m2 for the discriminant d = −103. In fact
we have

1/m2 =
∣∣∣∣η((3 +

√
−103)/8)

η((1 +
√
−103)/4)

∣∣∣∣2 /
√

2 =
∣∣∣∣η((−3 +

√
−103)/8)

η((−3 +
√
−103)/4)

∣∣∣∣2 /
√

2

=
∣∣∣∣f1 (

−3 +
√
−103

4

)∣∣∣∣2 /
√

2 =
∣∣∣∣f (1 +

√
−103

4

)∣∣∣∣2 /
√

2.

Again for consistency we denote this value by l. Of course we also denote

m =
∣∣∣∣f1 (

1 +
√
−103

4

)∣∣∣∣2 ,

so that lmn = 1.

We happen to notice numerically that l = n + 1.

Now in order to make use of a modular equation we must the values l, m and n

in terms of values with argument τ = 3+
√
−103

28 . In fact by making simple transfor-
mations of the expressions above we find that m = |f(7τ)|2, n = |f2(7τ)|2/

√
2 and

l = |f1(7τ)|2/
√

2.

Now we note that

f(τ) = f

(
3 +

√
−103

28

)
= f

(
−3 +

√
−103

4

)
= f(7τ).

Similarly we find that

f1(τ) = f2(7τ), f2(τ) = f1(7τ).

Now the appropriate modular equations is Weber’s modular equation of irrational
form of degree 7. This is given by Weber in §75 of [2] as

f(τ)f(7τ)− f(τ)f(7τ)− f1(τ)f1(7τ) = 0,

which, for the specific value of τ that we have chosen, becomes

f(7τ)f(7τ)− f2(7τ)f1(7τ)− f1(7τ)f2(7τ) = 0.

We remove the asymmetry from this equation as we did in earlier cases by repeatedly
putting all the asymmetric terms on one side of the equation and squaring until all
the asymmetric terms contain 8-th powers. These we replace in exactly the same
manner as before and we finally end up with

(l4 + n4)2 = 8/m + m5 − 5m2.

Of course we can use the expression lmn = 1 to change this equation so that it is
only in terms of two of the values l, m and n.
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Eta Evaluations (d = −103) Minimum Polynomial
√

2
/ ∣∣∣f1 (

1+
√
−103
2

)∣∣∣2 =
√

2
/ ∣∣f (√−103

)∣∣ x5 + 2x4 + 3x3 + 3x2 + x− 1

=
∣∣∣f2 (

1+
√
−103
4

)∣∣∣ /
√

2∣∣∣f1 (
3+

√
−103
4

)∣∣∣2 /
√

2 =
∣∣∣f ( 1+

√
−103
4

)∣∣∣2 /
√

2 x5 − 3x4 + 5x3 − 4x2 + x− 1

Table 2.3

Firstly we subtract 4/m4 = 4l4m4 from each side and multiply through by m4.
After rearranging we obtain

m4(l4 + n4)2 = (m3 − 1)(m3 − 2)2.

Dividing through by m9 and using 1/m = ln we obtain

(ln)5(l4 − n4)2 = (1− (ln)3)(1− 2(ln)3)2.

By putting l = n + 1 into this and using the minimum polynomial for n which we
know, we see that indeed l = n + 1 is a root of this equation.

However, if instead we substitute n = l−1 then we end up with a polynomial which l
satisfies. It has only two quintic factors (and some irrelevant factors of lower degree).
One of these quintic factors we recognize as the minimum polynomial of −n. Since
l cannot equal −n (otherwise l and n would be rational) and since −n is the only
real root of this quintic factor then l must have the other quintic factor as minimum
polynomial. That is l satisfies the quintic equation l5 − 3l4 + 5l3 − 4l2 + l− 1 = 0.

We summarise these eta evaluations in Table 2.3.

2.4. Discriminant -127. Finally for class number five we look at the discriminant
d = −127. The process for this discriminant is very similar to that for d = −79
so we simply summarise the steps involved. Firstly we wish to evaluate the unit
which we call m1 in the last chapter. It has the value

m1 =
√

2
∣∣∣∣η((1 +

√
−127)/2)

η((1 +
√
−127)/4

∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−127

2

)∣∣∣∣2
=
√

2
/ ∣∣∣∣f (1 +

√
−127

2

)∣∣∣∣2 =
√

2
/ ∣∣f(√−127)

∣∣ .

But this is also equal to
∣∣f2((1 +

√
−127)/4)

∣∣2 /
√

2.

Likewise we find that the unit m2 is given by

1/m2 =
∣∣∣∣η((1 +

√
−127)/8)

η((1 +
√
−127)/4

∣∣∣∣2 /
√

2 =
∣∣∣∣f1 (

1 +
√
−127

4

)∣∣∣∣2 /
√

2.

We call the first of these values above n, the second m and to be consistent with
what has gone before we denote

l =
∣∣∣∣f (1 +

√
−127

4

)∣∣∣∣2 ,

so that as usual lmn = 1.

Again neither Weber nor Ramanujan/Berndt evaluate
∣∣f(√−127)

∣∣, however we be-
lieve that Weber’s method can still be applied. We ourselves ask Pari to do the
evaluation numerically which has that n satisfies n5 − n4 − 2n3 + n2 + 3n− 1 = 0.
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Eta Evaluations (d = −127) Minimum Polynomial
√

2
/ ∣∣∣f1 (

1+
√
−127
2

)∣∣∣2 =
√

2
/ ∣∣f (√−127

)∣∣ x5 − x4 − 2x3 + x2 + 3x− 1

=
∣∣∣f2 (

1+
√
−127
4

)∣∣∣ /
√

2∣∣∣f1 (
1+

√
−127
4

)∣∣∣2 /
√

2 x5 − x3 − 4x2 + 4x− 1 = 0

Table 2.4

Again we happen to notice numerically that m = 1/l + 1 (we must by now suspect
some kind of general relation of this form for class number five at least when the
Weber functions are involved, though we still do not have a specific conjecture and
certainly no idea of a proof of such a result).

Even better we notice that n + 1/m = 1. Thus if this result were proved, from the
minimal polynomial for n by substituting n = 1 − 1/m we can obtain a minimal
polynomial for m.

However as usual, to verify that the result is indeed true we go via a modular
equation. We write

m =
∣∣∣∣f1 (

−7 +
√
−127

4

)∣∣∣∣2 /
√

2, n =
∣∣∣∣f2 (

−7 +
√
−127

4

)∣∣∣∣2 /
√

2, etc.

Now we can make use of the modular equation of degree 11, since

f2

(
−7 +

√
−127

4

)
= f1

(
7 +

√
−127

44

)
, f1

(
−7 +

√
−127

4

)
= f2

(
7 +

√
−127

44

)
,

and so on.

In a manner similar to our previous arguments, the modular equation for degree 11
becomes

f(11τ)2f(11τ)2 − f2(11τ)2f1(11τ)2 − f1(11τ)2f2(11τ)2 = 4,

for the value τ = (7 +
√
−127)/44.

After twice putting the asymmetric part on one side of the equation and squaring
we obtain

l6 − 6l4 + 17l2 − 24 + 16/l2 − 2/l4 = m8 + n8.

After rearranging we can take the square root

l4 − 3l2 + 4 = l(m4 + n4).

Now we replace l with 1/(mn), multiply through by (mn)4 and we have

4(mn)4 − 3(mn)2 + 1 = (mn)3(m4 + n4).

Substituting in m = 1/(1−n) and using the minimum polynomial for n we see that
this is indeed a root of the equation. As usual we prove that our relation between
m and n holds.

Finally substituting n = 1−1/m into this equation gives us a minimum polynomial
for m after rearranging and factorizing. In fact the resulting expression has only
one quintic factor so we find that m satisfies m5 −m3 − 4m2 + 4m− 1 = 0. Again
we summarise our evaluations in a table. This is Table 2.4 above.
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3. Other Discriminants and Class Numbers

Unfortunately our run of luck with class number five now comes to an end. The next
two fundamental discriminants with this class number are d = −131 and d = −179.
However the units that are associated with these discriminants are no longer Weber
function eta quotients.

It seems that we need some new sets of functions which are eta quotients similar
to the Weber function but where the arguments of the numerator and denominator
differ by a factor of 3, 5 or even 7. In a later chapter we find exactly such sets of
functions and find that they satisfy modular equations. Using these we are able to
provide new evaluations which the Weber functions do not provide.

Another direction we would like to take things is to higher class numbers. The first
discriminant of class number seven is d = −71. There are now three units which
we would like to evaluate

m1 =
√

2
∣∣∣∣η((1 +

√
−71)/2)

η((1 +
√
−71)/4)

∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

1 +
√
−71

2

)∣∣∣∣2
=

∣∣∣∣f2 (
1 +

√
−71

4

)∣∣∣∣2 /
√

2 =
∣∣∣∣f2 (

3 +
√
−71

4

)∣∣∣∣2 /
√

2,

m2 =
√

2
∣∣∣∣η((1 +

√
−71)/4)

η((3 +
√
−71)/8)

∣∣∣∣2 =
√

2
/ ∣∣∣∣f (−1 +

√
−71

4

)∣∣∣∣2
=
√

2
/ ∣∣∣∣f (1 +

√
−71

4

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

3 +
√
−71

4

)∣∣∣∣2 .

and

m3 =

√
4
3

∣∣∣∣η((3 +
√
−71)/8)

η((1 +
√
−71)/6)

∣∣∣∣2 =

√
4
3

∣∣∣∣η((−5 +
√
−71)/8)

η((−5 +
√
−71)/6)

∣∣∣∣2
=
√

2
∣∣∣∣ η((5 +

√
−71)/8)

η((5 +
√
−71)/16)

∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

5 +
√
−71

8

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f (3 +

√
−71

8

)∣∣∣∣2
The first of these units can be expressed in terms of

∣∣f(√−71)
∣∣. Firstly we note

that ∣∣∣∣f1 (
1 +

√
−71

2

)∣∣∣∣ =
∣∣∣∣f (1 +

√
−71

2

)∣∣∣∣ ,

and so ∣∣∣∣f2 (
1 +

√
−71

2

)∣∣∣∣ =
√

2
/ ∣∣∣∣f1 (

1 +
√
−71

2

)∣∣∣∣2 = m1.

But now
m1 =

√
2/

∣∣f1 (
1 +

√
−71

)∣∣ =
√

2/
∣∣f(√−71)

∣∣ .

But Weber has computed this last value in the tables at the end of his Lehrbuch [2].
We see in fact that m1 has minimum polynomial x7 +x6−x5−x4−x3 +x2 +2x−1.

Now we wish to relate m1 and m2 with a modular equation of degree 5. We note
that

f1

(
−3 +

√
−71

4

)
= f2

(
3 +

√
−71

20

)
, etc.
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The modular equation of degree five has already been given as equation (3) and it
must lead to the same relation (4) as before except that this time we note that it
must relate m1 with 1/m2, i.e.

(5) m3
1/m2 + m1/m3

2 = 1.

Numerically we note that m1 = 1−m2 − 1/m2 + 1/m2
2. Substituting this in gives

a prospective minimal polynomial for m2, which is x7 − 2x6 + 4x5 − 4x4 + 5x3 −
4x2 + 2x− 1.

Forget our original definition of m2 for a moment and define it to be the (only) real
root of this polynomial. But if this is so then 1/m2 = m6

2 − 2m5
2 + 4m4

2 − 4m3
2 +

5m2
2 − 4m2 + 2. We square this to obtain a similar expression for 1/m2

2.

Now we plug these into m′
1 = 1−m2−1/m2+1/m2

2 and reduce modulo the minimal
polynomial for m2. We obtain m′

1 = m6
2 − m5

2 + 2m4
2 + m2

2 − 1. Now m′
1 is real

and we easily verify that it satisfies the minimal polynomial for m1. Thus it in fact
equals m1.

Thus we have proven that m1 = 1−m2 − 1/m2 + 1/m2
2 where m2 is the real root

of x7 − 2x6 + 4x5 − 4x4 + 5x3 − 4x2 + 2x− 1.

But since this really is only the purported m2 let us now denote it m′
2. Thus we

have a proven expression for m1 in terms of m′
2. Plugging this into (5) we obtain

a proven expression for m2 in terms of m′
2. Since m2 is determined uniquely by

this equation it is sufficient to show that m2 = m′
2 is a solution. This we do, thus

showing that m2 and m′
2 are one and the same.

It is easy to see that these evaluations are not as easy as the class number five ones.
The situation does not improve much for the unit m3.

From the definitions above, we see that m3 is equal to

√
2

/ ∣∣∣∣f1 (
5 +

√
−71

8

)∣∣∣∣2 =
√

2
/ ∣∣∣∣f1 (

11 +
√
−71

8

)∣∣∣∣2
whilst m2 becomes the value

√
2

/ ∣∣∣∣f1 (
3 +

√
−71

4

)∣∣∣∣2 =
∣∣∣∣f2 (

3 +
√
−71

8

)∣∣∣∣2 /
√

2 =
∣∣∣∣f2 (

11 +
√
−71

8

)∣∣∣∣2 /
√

2.

But now we note that

f2

(
−11 +

√
−71

8

)
= f2

(
11 +

√
−71

24

)
, etc.

Therefore we can use the modular equation of degree three.

After a struggle similar to that above we find that m3 has minimum polynomial
x7 + x6 + 2x5 + 2x4 + x3 − 2x2 − 3x− 1.

4. Conclusion

We have been able to evaluate eta quotient units when the class number is five,
by making use of interesting numerical coincidences. This works for the first four
discriminants of class number five and it is interesting to note that it is the modular
equations of degree 3, 5, 7 and 11 which are employed, in that order, for these cases.

After this we run into trouble expressing our eta units in terms of Weber functions.
This gives the impetus for our development of generalizations of the Weber functions
and their modular equations, which are described in the later chapters.
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For class number seven, things are not so simple. It may be possible to do better
by using our higher level Weber functions of later chapters. We defer a further
discussion of eta quotient evaluations until then.

Over the next few chapters we look at Weber’s development of modular equations
for his Weber functions and we finally generalize these and their modular equa-
tions in preparation for further evaluation work. This generalization of the Weber
functions will in fact be the workhorse of this document and represents the most
significant part of the research that we undertake.

For the next chapter however we include a short (light) article written for the
Australian Mathematical Society Gazette which recapitulates in succinct form the
motivations which lead to the later work, as just described.
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