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Abstract

We extend the notion of what it means for a complete Ricci flow to have a
given initial metric, and consider the resulting well-posedness issues that arise in
the 2D case. On one hand we construct examples of nonuniqueness by showing that
surfaces with cusps can evolve either by keeping the cusps or by contracting them.
On the other hand, by adding a noncollapsedness assumption for the initial metric,
we establish a uniqueness result.

1 Introduction

A complete Ricci flow (M, g(t)) is a smooth family of complete Riemannian metrics on
a manifoldM, for t within some interval in R, which satisfies Hamilton’s nonlinear PDE

∂

∂t
g(t) = −2 Ric[g(t)]. (1.1)

In the case that M is two-dimensional, the flow preserves the conformal class of the
metric and can be written

∂

∂t
g(t) = −2Kg(t),

where K is the Gauss curvature of g(t). In this case, we may take local isothermal
coordinates x and y, and write the flow g(t) = e2u(dx2 + dy2) for some locally-defined
scalar time-dependent function u which will then satisfy the local equation

∂u

∂t
= e−2u∆u = −K. (1.2)

Returning to the case that M is of arbitrary dimension, Hamilton [7] and Shi [10] de-
veloped an existence theory for this equation when a complete bounded-curvature initial
metric g0 was specified. In other words, they found a complete bounded-curvature Ricci
flow g(t) for t ∈ [0, T ] (some T > 0) with g(0) = g0. Hamilton [7] and Chen-Zhu [2]
proved that this flow is unique within the class of complete bounded-curvature Ricci
flows.

In this paper we consider existence and particularly uniqueness issues when we drop
the restriction that the complete Ricci flows have bounded curvature, and generalise the
notion of initial metric as follows.

Definition 1.1. We say that a complete Ricci flow (M, g(t)) for t ∈ (0, T ] has a complete
Riemannian manifold (N , g0) as initial condition if there exists a smooth map ϕ : N →
M, diffeomorphic onto its image, such that

ϕ∗(g(t))→ g0
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smoothly locally on N as t ↓ 0.

In practice, we will be interested in the case that (N , g0) has bounded curvature but g(t)
is allowed to have curvature with no uniform upper bound. In this way, M and N may
not be diffeomorphic since parts of M may be shot out to infinity as t ↓ 0 resulting in a
change of topology in the limit.

This generalised notion of initial condition permits some new types of solution which do
not fit into the classical framework. In particular, we show that a bounded-curvature
Riemannian surface with a hyperbolic cusp need not be obliged to flow forwards in time
retaining the cusp (as in Shi’s solution) but can add in a point at infinity, removing the
puncture in the surface, and let the cusp contract in a controlled way. More generally
we have:

Theorem 1.2. Suppose M is a compact Riemann surface and {p1, . . . , pn} ⊂ M is a
finite set of distinct points. If g0 is a complete, bounded-curvature, smooth, conformal
metric on N := M\{p1, . . . , pn} with strictly negative curvature in a neighbourhood of
each point pi, then there exists a Ricci flow g(t) on M for t ∈ (0, T ] (for some T > 0)
having (N , g0) as initial condition in the sense of Definition 1.1. We can take the map
ϕ there to be the natural inclusion of N in M.

Moreover, the cusps contract logarithmically in the sense that for some C < ∞ and all
t ∈ (0, T ] sufficiently small, we have

1

C
(− ln t) ≤ diam(M, g(t)) ≤ C(− ln t). (1.3)

Furthermore, the curvature of g(t) is bounded below uniformly as t ↓ 0.

Thus a specific example of nonuniqueness would be when the Riemann surface M is a
torus T 2, we remove one point to give N , and let g0 be the unique complete confor-
mal hyperbolic metric on N . One Ricci flow continuation would be the homothetically
expanding one (which coincides with the solution constructed by Shi) but another con-
tinuation would see the cusp contract with the subsequent Ricci flow living on the whole
torus M.

One characteristic of these nonuniqueness examples is that the initial condition (N , g0)
does not have a lower bound for its injectivity radius, or equivalently that one can find
unit balls of arbitrarily small area. In fact, we will see in a corollary to the following
theorem that this is a necessary condition for nonuniqueness.

Theorem 1.3. Suppose that (N , g0) is a complete Riemannian surface with bounded
curvature which is noncollapsed in the sense that for some r0 > 0 we have

Volg0(Bg0(x, r0)) ≥ ε > 0 (1.4)

for all x ∈ N . If (M, g(t)) is a complete Ricci flow for t ∈ (0, T ] (some T > 0) which has
(N , g0) as initial condition in the sense of Definition (1.1), then (M, g(t)) has uniformly
bounded curvature over some time interval (0, δ] (some δ ∈ (0, T ]). Moreover, the ϕ from
Definition (1.1) must be a diffeomorphism (i.e. also surjective) and g(t) can be extended
smoothly down to t = 0 on the whole of M by setting g(0) := ϕ∗g0.

The proof of this theorem uses the work of Chen [3], which in turn uses the work of
Perelman [9]. It is possible to prove a variant of this result which is applicable to Ricci
flows on higher-dimensional manifolds, albeit with slightly stronger hypotheses (see [16]).
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Corollary 1.4. With (N , g0) as in the theorem above, if for i = 1, 2 we have complete
Ricci flows (Mi, gi(t)) for t ∈ (0, Ti] (some Ti > 0) with (N , g0) as initial condition,
then these two Ricci flows must agree over some nonempty time interval t ∈ (0, δ] in the
sense that there exists a diffeomorphism ψ : M1 → M2 with ψ∗(g2(t)) = g1(t) for all
t ∈ (0, δ].

Despite the nonuniqueness implied by Theorem 1.2, that construction throws up a quite
different uniqueness issue: Does there exist more than one flow which does the same job
of contracting the cusps? The next result shows that there does not.

Theorem 1.5. In the situation of Theorem 1.2 (in which ϕ is the natural inclusion of N
into M) if g̃(t) is a smooth Ricci flow onM for some time interval t ∈ (0, δ) (δ ∈ (0, T ])
such that g̃(t) → g0 smoothly locally on N as t ↓ 0 and the Gauss curvature of g̃(t) is
uniformly bounded below, then g̃(t) agrees with the flow g(t) constructed in Theorem 1.2
for t ∈ (0, δ).

Returning to Theorem 1.2, one can ask at what rate the curvature of g(t) must blow up
in the limit t ↓ 0. General theory tells us that this sort of behaviour cannot occur if the
curvature blows up no faster than C/t ([11], [3]). By analogy with the terminology of
Hamilton for blow up rates [8], we might say then that we have a ‘Type II(c) singularity’
meaning that

lim sup
t↓0

[
t sup
M
|Rm(·, t)|

]
=∞.

In fact, a rough asymptotic analysis of a contracting cusp in the rotationally symmetric
case, modelled by a hyperbolic cusp capped off by an appropriately scaled cigar soliton,
suggests that the curvature blows up at a rate C/t2.

Finally, we point out that Theorem 1.2 provides an answer to Perelman’s question [9,
§10.3] of whether the volume ratio hypothesis is necessary in his pseudolocality theorem:
It is. More elementary examples can also be constructed ([13]).

The paper is organised as follows. In Section 2 we prove Theorem 1.3 and its Corollary
1.4. In Section 3 we derive a selection of estimates for metrics on punctured discs, and
use them to construct useful barriers and prove useful estimates for Ricci flow, with the
key tool being Lemma 3.3. This technology is then used to prove Theorem 1.2. Finally,
in Section 4, we prove the uniqueness assertion of Theorem 1.5.

Acknowledgements: This work was supported by The Leverhulme Trust. Parts of this
work were carried out when the author was visiting the Max Planck Albert Einstein Insti-
tute, Golm, and the Free University, Berlin, and he would like to thank Gerhard Huisken
and Klaus Ecker for their hospitality. Thanks also to Gregor Giesen for discussions on
the paper [3].

2 Noncollapsed initial metrics

In this section we prove Theorem 1.3 and its Corollary 1.4. The proof will extend slightly
the uniqueness result in the work of Chen [3], which appeals strongly to the remarkable
properties of the distance function on a Ricci flow discovered by Perelman [9] in order to
prove the following curvature estimate.

Proposition 2.1. (Chen [3, Proposition 3.9], cf. Perelman [9, §10.3].) Let M be a
surface and g(t) a smooth Ricci flow on M for t ∈ [0, T ]. Suppose that x0 ∈ M and
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r0 > 0, and that Bg(t)(x0, r0) ⊂⊂M for all t ∈ [0, T ]. If

|R[g(0)]| ≤ r−2
0 on Bg(0)(x0, r0) and Volg(0)(Bg(0)(x0, r0)) ≥ v0r

2
0

for some v0 > 0, then there exists δ > 0 depending on v0 such that

|R[g(t)]| ≤ 2r−2
0 on Bg(t)

(
x0,

r0

2

)
for all t ∈ [0, T ] with t ≤ δr2

0.

Proof. (Theorem 1.3.) First note that by the Bishop-Gromov comparison theorem, we
may reduce r0 to any smaller positive value and still have the noncollapsedness condition
(1.4) for some new, possibly smaller, positive value of ε. In particular, by making such a
reduction we may assume also that |R[g0]| ≤ 1

2r
−2
0 thoughout N .

We now set v0 = ε
2r
−2
0 and attempt to apply Proposition 2.1 to (M, g(t)). Since (N , g0)

is the initial condition for (M, g(t)), we see that for all x0 ∈ M, and sufficiently small
t0 > 0 (depending on x0) we have

|R[g(t0)]| ≤ r−2
0 on Bg(t0)(x0, r0) and Volg(t0)(Bg(t0)(x0, r0)) ≥ ε

2
= v0r

2
0.

Keeping in mind that we may take t0 > 0 arbitrarily small, Proposition 2.1 then implies
that

|R[g(t)]| ≤ 2r−2
0 on Bg(t)

(
x0,

r0

2

)
for all t ∈ (0, T ] with t ≤ δr2

0. Since x0 was arbitrary, we have established the required
uniform curvature bound for g(t).

The uniform curvature bound is then enough to force ϕ to be a diffeomorphism. Indeed,
if we suppose that ϕ is not surjective, then we can pick y ∈ M outside its image. We
can then take any smooth immersed curve γ : [0, 1] → M so that γ(0) lies within the
image of ϕ and γ(1) = y. By truncating and reparametrising the curve, and adjusting
y, we may assume that γ(s) lies in the image of ϕ precisely for s ∈ [0, 1) and y = γ(1).
Therefore there must exist a smooth curve σ : [0, 1)→ N such that ϕ(σ(s)) = γ(s) for all
s ∈ [0, 1) and which converges to infinity in the sense that for every compact subset Ω of
N , we have σ(s) /∈ Ω for s ∈ [0, 1) sufficiently close to 1. In particular, the curve σ must
have infinite length with respect to g0. By Definition 1.1, for any M > 0, the length of
γ with respect to g(t) must then be at least M for t > 0 sufficiently small depending on
M .

However, the curve γ has some finite length with respect to each of the metrics g(t), and
by virtue of the uniform curvature bound, these lengths are uniformly bounded above by
some number L, say (see for example [14, Lemma 5.3.2]). This is a contradiction, and
we have concluded that ϕ must be a diffeomorphism.

The fact that g(t) can be extended smoothly down to t = 0 then follows directly from
Definition 1.1.

Proof. (Corollary 1.4.) By Theorem 1.3, both of the Ricci flows g1(t) and g2(t) can be
extended to t = 0 and then have uniformly bounded curvature over some nonempty time
interval [0, δ]. If we let ϕ1 : N →M1 and ϕ2 : N →M2 be the maps from Definition 1.1
corresponding to g1(t) and g2(t) respectively – which are diffeomorphisms in this case –
then g0 = ϕ∗1(g1(0)) = ϕ∗2(g2(0)), and so ψ := ϕ2 ◦ (ϕ−1

1 ) is an isometry from (M1, g1(0))
to (M2, g2(0)). Thus g1(t) and ψ∗(g2(t)) are both complete bounded-curvature Ricci
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flows, for t ∈ [0, δ], which agree at t = 0 and are thus identical by the uniqueness result
of Chen-Zhu [2], or (more simply in this two-dimensional situation) by the uniqueness
implied by [5, Theorem 4.2].

3 Flows contracting cusps

3.1 Metrics on the punctured disc

We will require some asymptotic information about metrics on the two-dimensional punc-
tured disc D\{0} which are complete with negative curvature near the puncture.

We will be working on D\{0} either with respect to the standard complex coordinate
z = x+ iy, sometimes appealing to the corresponding standard polar coordinates (r, θ),
or with respect to the cylindrical coordinates (s, θ), where s = − ln r. Note that (s, θ)
coordinates are conformally equivalent to the original (x, y) coordinates, and changing
coordinates (x, y) to (s, θ) changes the conformal factor according to

|dz|2 = dx2 + dy2 = r2(ds2 + dθ2). (3.1)

With this notation, the complete conformal hyperbolic metric on D\{0} can be written
e2v(ds2 + dθ2) where v = − ln s (for s > 0).

Lemma 3.1. If g0 = e2a|dz|2 is any smooth conformal metric on the punctured disc
D\{0} with Gauss curvature bounded above by −1 (with g0 not necessarily complete) and
H = [r ln r]−2|dz|2 is the complete conformal hyperbolic metric on D\{0}, then g0 ≤ H,
or equivalently

a ≤ −ln[r(− ln r)]. (3.2)

Moreover, if g(t) = e2u(t)|dz|2 is any smooth Ricci flow on D (t ∈ [0, T ]) with g(0) ≤ g0

then

u ≤ −ln[r(− ln r)] +
1

2
ln(1 + 2t). (3.3)

Proof. With respect to (s, θ) coordinates as introduced at the start of Section 3.1, the
conformal factor

v0 := − ln s

gives rise to the complete hyperbolic metric on (0,∞) × S1. Moreover, for δ > 0 the
conformal factor

vδ := − ln

[
sin(δ(s− δ))

δ

]
defines the complete hyperbolic metric over the range s ∈ Iδ := (δ, πδ +δ). It is elementary
to see that this conformal factor must be pointwise at least as large as the conformal
factor w of any other conformal metric on Iδ × S1 with Gauss curvature no higher than
−1. Indeed, for sufficiently large 0 < M < ∞, we must have vδ + M > w (since the
right-hand side is bounded and vδ is bounded below) and then we can reduce M > 0
continuously without this condition failing until possibly at M = 0 since if it suddenly
failed for M > 0 at some point p, then vδ − w +M would be a weakly positive function
with a zero at p but with strictly negative Laplacian at p:

∆(vδ − w +M) = −e2vδK[e2vδ |dz|2] + e2wK[e2w|dz|2]

≤ e2vδ − e2w = e2w(e−2M − 1)

< 0
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which is a contradiction.

Thus
w ≤ vδ → v0 as δ ↓ 0,

and returning from (s, θ) to (x, y) coordinates, keeping in mind (3.1), we deduce the first
part (3.2) of the lemma.

For the second part of the lemma, note that the function vδ+ 1
2 ln(1+2t) is the conformal

factor of a Ricci flow on Iδ × S1 which starts at t = 0 above v0, and hence above any
conformal factor w as above. By the maximum principle, vδ + 1

2 ln(1 + 2t) must then lie
above any conformal factor on D which represents a Ricci flow and which starts below
w at t = 0. Letting δ ↓ 0 then yields (3.3).

We now turn to the subtler issue of lower bounds for conformal factors of metrics g0 as
in Lemma 3.1.

Lemma 3.2. Suppose g0 = e2a|dz|2 is a smooth conformal metric on the punctured
disc D\{0} with Gauss curvature bounded within some interval [−M,−1] and with g0

complete at the origin. Denoting the complete conformal hyperbolic metric on D\{0} by
H = e2v|dz|2, where v = − ln[−r ln r] as above, we have

a− v ≥ −C (3.4)

for some C < ∞ (depending on g0) and any r ∈ (0, 1
2 ), and in particular, a → ∞ as

r ↓ 0.

To clarify, by complete at the origin we mean that g0 restricted to, say, D 1
2
\{0} should

be a complete manifold with boundary.

Proof. (cf. [6].) Choose any cut-off function ϕ ∈ C∞c (D 3
4
, [0, 1]) with ϕ ≡ 1 on D 1

2
, and

consider the metric Ω = e2α|dz|2 defined by

α = ϕa+ (1− ϕ)v.

For r ∈ ( 3
4 , 1), we have Ω = H, and so K[Ω] = −1. For r ∈ (0, 1

2 ), we have Ω = g0, and
so K[Ω] ≥ −M . In the remaining compact region 1

2 ≤ r ≤ 3
4 , the curvature K[Ω] has

some lower bound, and thus there exists β ≤ ∞ such that

K[Ω] ≥ −β

throughout D\{0}. Since Ω is clearly complete, we may apply Yau’s Schwarz lemma (see
[17] and [5, Theorem 2.3]) to deduce that H ≤ βe2α|dz|2, or equivalently

v ≤ 1

2
lnβ + α.

Since α = a on D 1
2
, the lemma is proved with C = 1

2 lnβ.

3.2 Spherical upper barriers

In this section we consider Ricci flows on the disc which begin at a metric as considered
in Lemma 3.1. The goal is to exploit the estimates from the previous section in order to
construct an upper barrier which gives decay of the conformal factor like 1/t.
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Lemma 3.3. If g0 = e2a|dz|2 is any smooth conformal metric on the punctured disc
D\{0} with Gauss curvature bounded above by −1 (with g0 not necessarily complete) and
g(t) = e2u(t)|dz|2 is any smooth Ricci flow on D (t ∈ [0, T ]) with g(0) ≤ g0 then there
exists β <∞ universal such that

u ≤ β

t
(3.5)

for r ≤ 1
2 and 0 < t < min{1, T}.

The function s : R2 → R defined in polar coordinates by

s(r) := ln
2

1 + r2

gives rise to the metric e2s|dz|2 of the round (punctured) sphere. One may also dilate
this conformal factor to s( rλ ), or add a constant, giving another spherical metric of a
possibly different curvature. Under Ricci flow such a conformal factor evolves simply by
shifting downwards - i.e. subtracting off a time-dependent constant. For example, for
any λ > 0, one Ricci flow would be given by the conformal factor

(r, t) 7→ s
( r
λ

)
− lnλ+

1

2
ln(1− 2t).

The idea in this section is to use these spherical metrics, appropriately restricted, as
upper barriers for the Ricci flow g(t) of the lemma. Moreover, we evolve them not just
by Ricci flow (i.e. subtracting off a time-dependent constant) but also by dilating within
the domain. Whereas a Ricci flow would make the radius of a sphere shrink like

√
C − t,

our barriers will have a radius which is increasing like t.

One difficulty with this approach is that one must take care in any maximum principle
argument about what is happening on the boundary of the domain on which one is
working. This is where the estimates of the previous section first come in.

Proof. (Lemma 3.3.) Without loss of generality, we may assume that T ≤ 1. Then by
Lemma 3.1, for t ∈ (0, T ), we have the upper bound

u(r, t) < h(r) := − ln[r(− ln r)] +
1

2
ln 3

for r ∈ (0, 1). On the other hand, we consider the function S : D × (0, T ) → R defined
by

S(r, t) := s
( r
λ

)
− ln[λ(− lnλ)] +

1

2
ln 3

where λ = λ(t) := e−
6
t will be motivated in a moment. As mentioned above, S(·, t)

represents the conformal factor of part of some sphere for each t. Note that

S(λ, t) = h(λ),

and so we can define a continuous function U : D × (0, T )→ R by

U(r, t) =

{
S(r, t) 0 ≤ r < λ

h(r) λ ≤ r < 1
.

Claim: On the whole of D × (0, T )→ R we have

u ≤ U
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Proof of Claim: For 0 ≤ r ≤ λ, we have S(r, t) ≥ − ln[λ(− lnλ)] → ∞ as t ↓ 0.
Therefore for sufficiently small t > 0 (depending on the flow in question) we must have
u(r, t) < U(r, t) for all r ∈ [0, 1).

Now suppose at some first time t0 ∈ (0, T ) the function U(·, t0) fails to be a strict upper
barrier for u(·, t0). Then we can find r0 ∈ (0, λ(t0)) such that U(r0, t0) = u(r0, t0) even
though U(·, t0) ≥ u(·, t0). At (r0, t0) we then have

∂(U − u)

∂t
≤ 0; ∆(U − u) ≥ 0,

but the Ricci flow equation (1.2) gives ∂u
∂t = e−2u∆u, and so

∂U

∂t
≤ e−2U∆U (3.6)

at (r0, t0). On the other hand, keeping in mind that λ = e−
6
t , we have at (r0, t0) that

∂U

∂t
=
∂S

∂t
=

[
− r0

λ2
s′
(r0

λ

)
− 1

λ
− 1

λ lnλ

]
dλ

dt

≥ − 1

λ

dλ

dt
= − 6

t2

and

e−2U∆U = e−2S∆S = −1

3
(lnλ)2 = −12

t2
,

and so
∂U

∂t
− e−2U∆U ≥ 6

t2
> 0,

contradicting (3.6) and proving the claim.

By inspection, the maximum of U for r ≤ 1
2 is achieved at the origin (r = 0):

sup
r≤ 1

2

U = s(0)− ln[λ(− lnλ)] +
1

2
ln 3 = ln 2 +

6

t
− ln(

6

t
) +

1

2
ln 3 ≤ C

t

for some universal C, since t < 1. By the claim above, we then have for r ≤ 1
2 and

t ∈ (0, T )

u ≤ C

t

as desired.

3.3 Truncating cusps

In this section we clarify how to take a cusp-like metric on a punctured surface and
smooth it out across the puncture in a controlled manner.

Lemma 3.4. Suppose g0 = e2a|dz|2 is a smooth complete conformal metric on the punc-
tured closed disc D\{0} with Gauss curvature bounded within some interval [−M,−1].Then
there exists an increasing sequence of smooth conformal metrics gk = e2uk |dz|2 on D such
that

(i) gk = g0 on D\D1/k;
(ii) gk ≤ g0 throughout D\{0};

(iii) infD1/k
uk →∞ as k →∞;
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(iv) the Gauss curvatures of gk are uniformly bounded below independently of k.

Proof. Pick any smooth function ψ : R→ R such that

(a) ψ(s) = s for s ≤ −1;
(b) ψ(s) = 0 for s ≥ 1;
(c) ψ′′ ≤ 0.

The lemma is proved by taking a subsequence of the increasing sequence of metrics gk
defined by their conformal factors

uk := ψ(a− k) + k.

One should view these metrics as a smoothed out version of the minimum of g0 and the
metric with constant conformal factor k. Indeed, it is clear that (ii) is satisfied. Note
that uk is identically equal to k in a neighbourhood of the origin because a→∞ at the
origin, according to Lemma 3.2, and therefore the metrics extend smoothly across the
origin. Assertion (iii) also follows because a→∞ at the origin.

In order to see that the Gauss curvature of the metrics gk is uniformly controlled from
below, we divide up into three cases:

(a) Where a ≥ k + 1, we have uk ≡ k, so K(gk) = 0;
(b) Where a ≤ k − 1, we have uk ≡ a, so K(gk) = K(g0) ≥ −M ;
(c) Where k − 1 < a < k + 1, we have uk ≥ a− 1. We compute

∆uk = ψ′(a− k)∆a+ ψ′′(a− k)|∇a|2 ≤ ψ′(a− k)∆a ≤ ∆a,

since ψ′′ ≤ 0, ψ′ ∈ [0, 1] and ∆a = −e2aK(g0) ≥ 0. Therefore

K(gk) = −e−2uk∆uk ≥ −e−2uk∆a ≥ −e−2(a−1)∆a = e2K(g0) ≥ −e2M.

Finally, Assertion (i) can be guaranteed after passing to an appropriate subsequence.

3.4 Proof of Theorem 1.2

We now combine the supporting results we have compiled in Section 3 into a proof of
the existence of the Ricci flows claimed in Theorem 1.2.

For simplicity of notation, we restrict our discussion to the case that n = 1 – that is,
there is a single puncture p on M – although the proof of the general case will then be
an obvious extension.

We begin by taking isothermal coordinates x and y in a neighbourhood of p. By scal-
ing and translating them, we may assume that p corresponds to x = y = 0, that the
coordinates exist for z = x + iy within a domain containing the closure of the unit disc
D ⊂ C, and that the supremum of the curvature of g0 in D\{0} is strictly negative. By
scaling the metric itself, we may then assume without loss of generality that the Gauss
curvature of g0 is less than −1 within D\{0}.

By truncating g0 within D using Lemma 3.4, we can find an increasing sequence of
smooth conformal metrics gk on M such that

(i) gk = g0 on M\{p} outside the shrinking neighbourhood D1/k of p;
(ii) gk ≤ g0 throughout M\{p};
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(iii) near p, the conformal factors uk of gk satisfy infD1/k
uk →∞ as k →∞;

(iv) the Gauss curvatures of gk are uniformly bounded below independently of k.

We now flow each of the smooth metrics gk under Ricci flow in order to give a time-
dependent flow gk(t). Ricci flow theory in two dimensions due to Hamilton and Chow
[4] tells us that the flows exist for all time if the genus of M is at least one, while if
the genus is zero, then the existence time is equal to the area of (M, gk) divided by
8π. In particular, the existence time is increasing with k since the areas of (M, gk) are
increasing with k, and we may pick some uniform T > 0 so that all of these flows exist
for t ∈ [0, T ].

The maximum principle applied to conformal factors tells us that because the metrics
gk(0) are increasing with k, so are the metrics gk(t) for each t ∈ [0, T ]. Also, the maximum
principle applied to curvatures, and condition (iv) above, tell us that the Gauss curvature
of the flows gk(t) is uniformly bounded below independently of k and t.

We also want to consider Shi’s complete bounded-curvature Ricci flow gs(t) on M\{p}
with gs(0) = g0. Within D\{0}, the conformal factor of g0 is converging to infinity at the
puncture (this is implicit above and follows from Lemma 3.2). Therefore, working directly
from the Ricci flow equation (1.2) and using the fact that the curvature is bounded above,
we see that the conformal factor of each of the metrics gs(t) must also converge to infinity
at the puncture. This allows us to apply the maximum principle to compare each gk(t)
with gs(t), and we conclude that for each t ∈ [0, T ],

gk(t) ≤ gk+1(t) ≤ gs(t) (3.7)

throughout M\{p}.

This estimate gives good control on the approximating flows gk(t) away from p, all the
way down to t = 0. In particular, it allows us to define a flow

G(t) = lim
k→∞

gk(t) (3.8)

on M\{p} for t ∈ [0, T ], and when we take any conformal chart not containing p, we
see that the conformal factors of gk(t) are locally uniformly bounded, independently of
k (since gk(t) is sandwiched between g1(t) and gs(t)) and so we may apply standard
parabolic regularity theory to get local uniform bounds on their derivatives. Therefore,
we deduce that G(t) is a smooth Ricci flow on M\{p} for t ∈ [0, T ].

We propose that G(t) extends to be the flow whose existence is asserted in the theorem.
Certainly G(t) → g0 locally on M\{p} as t ↓ 0. However, at this point it is unclear
whether for t > 0, G(t) extends smoothly across p. Indeed, the truncated cusps within
the metrics gk(t) might take longer and longer to contract as k → ∞, and G(t) might
then coincide with Shi’s flow gs(t), for example. In order to show that the truncated
cusps within the metrics gk(t) contract at a rate which is independent of k, we apply
Lemma 3.3 to each flow gk(t) restricted to D.

This gives us uniform control from above on the metrics gk(t) throughout M, on any
closed time interval within (0, T ], independently of k. Therefore for t > 0, we can extend
the definition (3.8) to the whole ofM. Moreover, this uniform control allows us to apply
the same standard parabolic regularity theory as above to get local uniform bounds on
the derivatives of gk(t) across p, and we conclude that G(t) is a smooth Ricci flow on the
whole of M for t > 0.

We now see that the Ricci flow (M, G(t)) for t ∈ (0, T ] has (M\{p}, g0) as initial metric
in the sense of Definition 1.1, with the map ϕ of the definition equal to the obvious
inclusion.
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This completes the proof of the first part of the theorem. It remains to argue that the
diameter of (M, G(t)) decays precisely logarithmically in t as in (1.3). Since the flow
is only singular at p, it suffices to argue that the distance from p (z = 0 in the chart
considered above) to any other fixed point in M (say the point z = 1/2) decays in this
logarithmic fashion.

Upper bound: Because the flow G(t) above arose as a limit of flows gk(t), it suffices to
prove a logarithmic upper bound for the distance from z = 0 to z = 1/2 in the flows
(M, gk(t)) provided that it is independent of k. Taking β from Lemma 3.3, and exploiting
that result together with Lemma 3.1 we compute

distgk(t)(z = 0, z = 1/2) ≤
∫ 1

2

0

euk(s,t)ds

=

∫ e−β/t

0

euk(s,t)ds+

∫ 1
2

e−β/t
euk(s,t)ds

≤
∫ e−β/t

0

eβ/tds+

∫ 1
2

e−β/t

√
3

s(− ln s)
ds

= 1 +
√

3

[
− ln(− ln s)

] 1
2

e−β/t

(3.9)

for t ∈ (0,min{1, T}) sufficiently small. Therefore, for sufficiently small t ∈ (0,min{1, T})
we have

distgk(t)(z = 0, z = 1/2) ≤ −2 ln t

as desired.

Lower bound: For points near the origin, we will derive control on the curvature for
a certain time depending on the proximity to the origin. This will then show that we
cannot deviate from the original metric too much for a controlled time (again, depending
on the proximity to the origin) and will lead to a lower bound for the diameter.

Claim: There exists C <∞ such that for r > 0 sufficiently small, on ∂Dr, the conformal
factor of the Ricci flow is bounded below by −C − ln[r(− ln r)] for a time 1

C(ln r)2 .

Throughout the argument, C will denote a positive constant which may get larger each
time it is used.

Before proving the claim, we show how it would imply the desired lower bound on the
diameter. Suppose that the claim holds for r ∈ (0, r). Then for t > 0 sufficiently small,
we would have the conformal factor at time t bounded below by −C − ln[r(− ln r)] for

r ∈ (r, r), where r := e
− 1
C
√
t . Then the distance between ∂Dr and ∂Dr with respect to

the time t metric must be at least∫ r

r

e−C−ln[r(− ln r)]dr ≥ 1

C

[
− ln(− ln r)

]r
r

≥ 1

C
ln(

1

C
√
t
) ≥ − 1

C
ln t

for sufficiently small t, as desired.

Proof of claim: Note that the lower bound of the claim holds at t = 0 by Lemma 3.2.
By inspection of the Ricci flow equation (1.2), the claim will follow if we can bound the
Gauss curvature on ∂Dr by C(ln r)2 for a time 1

C(ln r)2 (for sufficiently small r > 0).

Consider the hyperbolic metric H on D\{0} defined in terms of its conformal factor
h(z) = − ln(−|z| ln |z|). As z ∈ D\{0} approaches the origin, the injectivity radius at
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z with respect to H is asymptotically π
− ln |z| . Therefore, for z sufficiently close to the

origin, we have the volume ratio bound

VolH(BH(z, s))

πs2
≥ 1

for s ∈ (0, π
−2 ln |z| ), say.

By virtue of Lemmata 3.1 and 3.2, we see that g0 is equivalent to H on D 1
2
\{0}, say,

and thus for z sufficiently close to the origin and r0 = 1
− ln |z| , we have

Volg0(Bg0(z, r0))

r2
0

≥ 1

C
.

By applying Proposition 2.1 to the flowG(t) (or strictly speaking toG(t+ε) for arbitrarily
small ε > 0) on D with x0 ∈ D\{0} sufficiently close to 0 and r0 = 1

− ln |x0| , we deduce

the Gauss curvature control

|K|(x0) ≤ C(ln |x0|)2 for t ≤ 1

C(ln |x0|)2

as required to complete the proof.

We remark that a by-product of the argument we have just given is that the supremum
of the conformal factor at small time t > 0 is bounded below by 1

C
√
t
. This can be

compared to the upper bound C
t implied by Lemma 3.3.

4 Alternative uniqueness issues

The example of a contracting cusp that we have constructed in Section 3 demonstrates
that Ricci flows are nonunique when posed as in Definition 1.1. However, one can also
ask whether our newly constructed flows are unique amongst all flows which contract
their cusps, and in Theorem 1.5 we asserted that they are. This section is devoted to
proving that assertion.

The essential difficulty is that a priori we know little about the behaviour of any com-
petitor flow near the punctures, for small time.

Recall that M is a compact Riemann surface and {p1, . . . , pn} ⊂ M is a finite set of
distinct points. We have a complete bounded-curvature smooth conformal metric g0 on
N :=M\{p1, . . . , pn} with strictly negative curvature in a neighbourhood of each point
pi, and (from Theorem 1.2) a complete Ricci flow g(t) on M for t ∈ (0, T ] (for some
T > 0) with curvature uniformly bounded below, and such that

g(t)→ g0

smoothly locally on N as t ↓ 0.

Claim 1: With g̃(t) any Ricci flow as in Theorem 1.5, (that is, defined onM for t ∈ (0, δ),
with curvature bounded below and satisfying g̃(t)→ g0 smoothly locally on N as t ↓ 0)
if σ(t) is any Ricci flow on M for t ∈ [0, δ) such that σ(0) < g0 on N , then σ(t) ≤ g̃(t)
on M for t ∈ (0, δ).

We will use Claim 1 to prove:
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Claim 2: Given two such flows g̃1(t) and g̃2(t) (that is, defined onM for t ∈ (0, δ), with
curvature bounded below and converging to g0 smoothly locally on N as t ↓ 0) we must
have g̃1(t) ≤ g̃2(t) for t ∈ (0, δ).

Once we have established Claim 2, by switching g̃1(t) and g̃2(t) we will have g̃1(t) = g̃2(t),
and by applying this in the case g̃1(t) = g̃(t) and g̃2(t) = g(t), we will have finished the
proof of Theorem 1.5.

To prove Claim 2 from Claim 1, we will consider a scaling of the flow g̃1(t) starting at
some early time t0 > 0. By the lower curvature bound assumption K[g̃1(t)] ≥ −β ≤ 0
say, we have e−βt0 g̃1(t0) ≤ g0 and better still, e−2βt0 g̃1(t0) < g0. Therefore, the Ricci flow
σ(t) := e−2βt0 g̃1(e2βt0t+ t0) considered for t ∈ [0, (δ− t0)e−2βt0) satisfies the hypotheses
of Claim 1 (with g̃(t) there equal to g̃2(t) here) and so

e−2βt0 g̃1(e2βt0t+ t0) ≤ g̃2(t)

for t ∈ [0, (δ − t0)e−2βt0). Taking the limit t0 ↓ 0 then finishes the proof of Claim 2.

It remains to prove Claim 1, and for that we need some a priori control on solutions.
The key ingredient is:

Claim 3: Take any flow g̃(t) as above (that is, defined onM for t ∈ (0, δ), with curvature
bounded below and satisfying g̃(t)→ g0 smoothly locally on N as t ↓ 0). Choose a local
complex coordinate z about one of the punctures pi, and write g̃(t) locally as e2u|dz|2.
Then for any M <∞, we have

u ≥M
in some neighbourhood of pi, for sufficiently small t > 0.

To prove Claim 1 from Claim 3, look at a neighbourhood of a point pi as in Claim 3.
Denote the conformal factor of σ(0) in this local chart by s (i.e. σ(0) = e2s|dz|2) and
define M <∞ to be the supremum of s over some neighbourhood of pi. By Claim 3, we
may shrink this neighbourhood and be sure that u ≥M ≥ s for sufficiently small t > 0.
Repeating for all the other punctures pi, we can find an open set Ω ⊂M containing each
point pi so that g̃(t) ≥ σ(0) on Ω for t ∈ (0, t0) (for some t0 ∈ (0, δ)). By compactness
of M\Ω and the fact that σ(0) < g0, we may reduce t0 > 0 further and be sure that
g̃(t) ≥ σ(0) throughout the whole of M for t ∈ (0, t0). The comparison principle then
tells us that for any t̃ ∈ (0, t0), we have g̃(t + t̃) ≥ σ(t) for t ∈ (0, δ − t̃). By taking the
limit t̃ ↓ 0, Claim 1 is proved.

It now remains to prove Claim 3, and this in turn relies on a new claim:

Claim 4: In the setting of Claim 3, if Ω is a neighbourhood of pi compactly contained
in the neighbourhood where z is defined, then there exists some m ∈ R such that

u ≥ m

within Ω for t ∈ (0, δ/2].

To prove Claim 4, we use the fact that the Gauss curvature is uniformly bounded below
by −β, say. Then by the Ricci flow equation (1.2), for z ∈ Ω, and t ∈ (0, δ/2],

u(z, t) ≥ u(z, δ/2)− β(δ/2− t) ≥ inf
Ω
u(·, δ/2)− βδ/2 =: m,

and the claim is proved.

Finally, we prove Claim 3 from Claim 4. With respect to the local complex coordinate
from Claim 3, we may write g0 as e2u0 |dz|2. Recalling that the curvature of g0 is uniformly
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strictly negative in some neighbourhood of pi, we see that without loss of generality, we
may assume that the coordinate z is defined for z ∈ D, and that for z ∈ D\{0} the
curvature of g0 lies in some interval [−C,−1]. By Lemma 3.2, we then see that the
conformal factor u0 of g0 is at least M + 2 for z in some small disc Dε within the
conformal chart (away from the origin).

Consider

(M − u)+ :=

{
M − u if M − u > 0

0 otherwise.

Using the fact that u → u0 smoothly locally on Dε\{0}, together with Claim 4, we see
that ‖(M −u)+‖L1(Dε) → 0 as t ↓ 0. Moreover, because u0 ≥M + 2 on ∂Dε, we see that
u ≥M + 1 on ∂Dε over some nonempty time interval (0, t0). Pick any smooth function
φ : R→ R such that

(a) φ(s) = s for s ≥ 1;
(b) φ(s) = 0 for s ≤ −1;
(c) φ′′ ≥ 0,

and note that φ′ ≥ 0. We then have φ(M − u) = 0 on ∂Dε over the time interval (0, t0)
and we may compute for t ∈ (0, t0),

d

dt

∫
Dε

φ(M − u) = −
∫
φ′(M − u)ut = −

∫
φ′(M − u)e−2u∆u

= −
∫
e−2u|∇u|2 (φ′′(M − u) + 2φ′(M − u))

≤ 0.

(4.1)

By allowing φ to decrease uniformly to the function s 7→ s+, we then see that

(M − u)+ ≡ 0

on Dε for t ∈ (0, t0), completing the proof.
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