
SUMMER TERM ABSTRACT ALGEBRA
HANDOUT II: COSETS AND LAGRANGE’S THEOREM

SAMIR SIKSEK

1. Orientation

You’re meant to tackle Handout II in Weeks 3 and 4. If you were ill/busy
and missed out on Handout I don’t worry: Handout II is independent of
Handout I. Just crack on with Handout II. You can look forward to Handout
I as a delicious treat to devour at some point during the summer. Still, you
should read the advice on self-study under “What’s this?” in Handout I.

Handout II revises cosets, and Lagrange’s theorem, and explores some of
the links with linear algebra. Just as with true love, the path to mathemat-
ical erudition never runs smooth. You need to keep going backwards and
forwards between topics. You can’t know abstract algebra properly until
you know linear algebra and vice versa. And you need to do computations;
with computations you acquire confidence and wisdom. As I said this before
in Handout I, if you get stuck on something move on and come back later;
hindsight is potent in maths just as it is in life.

2. Advice on writing out solutions

This term you are trying to cope without a supervisor. I think this can
be a positive experience and help make you a better mathematician. Here
is some advice on how that can be achieved.

• You should take the exercises seriously and write out full solutions
to the best of your ability.
• Write in full sentences and avoid excessive notation. What you write

should resemble how mathematics is written in textbooks (or for
example in these handouts). The way your supervisor/tutor/lecturer
writes on the blackboard is probably not a good model—blackboard
style aims at quick and informal communication of ideas with many
of the details said but not written.
• The level at which you write is important. Try imaginging that you

are writing for a fellow first year student who will have to understand
what you’ve written without second-guessing your mind.
• Be honest about gaps in your arguments. If there is a gap, just write

down an explanation of what it is. For once, the objective is to learn
and gain understanding, not to maximize marks.
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• Come back to your answers after a couple of days and see if they still
make sense, or if you can improve them.

I personally never write maths on bits of paper. Everything is Latexed so
it can be edited and improved. If I change my mind about the ordering of
an argument I can rearrange things by copying and pasting. I advise you to
consider Latexing your answers. Yes it will slow you down at the beginning,
but only at the beginning.

3. Past Exam Question

Here is a question from the 2015 Introduction to Abstract Algebra paper.
As revision, we’re going to work our way through this question. We’re going
to write far more than is necessary, and get distracted by some instructive
examples. However, it might help you to have a go at the question first
before reading on, and see how much you remember.

Question. Let G be a finite group and H a subgroup.

(i) Let g ∈ G. Define the left coset gH, and show that #H = #gH.
(ii) Show that any two left cosets of H in G are either disjoint or equal.

(iii) Define the index [G : H] and show that #G = [G : H] ·#H.

Let S = {α ∈ C∗ : |α| = 1}.
(iv) Show that S is a subgroup of C∗.
(v) Show that [C∗ : S] =∞.

4. Subgroups

Recall the following definition.

Definition. Let (G, ◦) be a group. A subgroup H is a subset of G such that
H (or strictly speaking (H, ◦)) is a group with the same binary operation ◦.

Example 1. R∗ is a subset of R, both are groups, but R∗ is not a subgroup
of R. When we talk about the group R we really mean the group (R,+).
When we talk about the group R∗ we really mean the group (R∗, ·). The
binary operations are different.

Example 2. Z is a subgroup of R. Strictly speaking we should say (Z,+)
is a subgroup of (R,+). But only amateurs do that. Usually the intended
binary operation is clear.

To check thatH is a subgroup of the groupG we normally use the following
theorem.

Theorem 3. Let G be a group and H a subset of G. The subset H is a
subgroup if and only if

(i) 1 ∈ H;
(ii) ab ∈ H for all a, b ∈ H;
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(iii) a−1 ∈ H for all a ∈ H.

In this theorem we’re using multiplicative notation for the group G. When
we write 1 ∈ H in (i) what are we really saying? Here 1 is the identity element
of G, and one of the things we need for H to be a subgroup of G is for that
identity element to also belong to H. Then G and its subgroup H share
the same identity element. What does (ii) mean? It means that if take two
elements a, b of H and compose them using the binary operation on G we
obtain an element of H. What does (iii) mean?

Exercise 1. Let S = {α ∈ C∗ : |α| = 1}. Sketch S and show that it’s a
subgroup of C∗.

Exercise 2. Let

A = {α ∈ C∗ :
1

2
< |α| < 2}.

Sketch A. Is A a subgroup of C∗?

Exercise 3. Let K be a field and n ≥ 2. Write Mn(K) for the set of all
n × n matrices with entries in K (in your Linear Algebra notes this set is
denoted by Kn,n). Let

GLn(K) = {A ∈Mn(K) : det(A) 6= 0}
and

SLn(K) = {A ∈Mn(K) : det(A) = 1}.
Show that GLn(K) is a group and SLn(K) is a subgroup of GLn(K). Here
are some points to bear in mind.

• You can assume the standard properties of matrices and determinants
that you know from Linear Algebra or school maths.
• You need to decide on the binary operation that is intended here. I

am treating you as an adult, and expect you to work it out yourself.
Is it addition, subtraction, multiplication, division or something ex-
otic? Of course if had some exotic operation in mind I would have
told you what it is. I don’t like exotic things myself. The whole point
of abstract algebra is to attain a better understanding of the opera-
tions (addition, multiplication, . . . ) and objects (numbers, matrices,
functions, polynomials, . . . ) that we already know and love.
• One thing you should decide on pretty early is whether GLn(K) is a

subgroup of Mn(K).

You will recall that Theorem 3 is written a little differently when G is an
additive group.

Theorem 4. Let G be an additive group and H a subset of G. The subset
H is a subgroup if and only if

(a) 0 ∈ H;
(b) a+ b ∈ H for all a, b ∈ H;
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(c) −a ∈ H for all a ∈ H.

Exercise 4. Which of the following subsets of R2 are subgroups? You prob-
ably don’t want to write out full details here—that’ll take forever!

(i) {0}.
(ii) R2.

(iii) Z2.
(iv) Q2.
(v) Straight line passing through the origin.
(vi) Straight line not passing through the origin.

(vii) {(a, a) : a ∈ R, a ≥ 0} (draw picture).
(viii) {(a, a) : a ∈ R} ∪ {(a,−a) : a ∈ R} (draw picture).

(ix) {(x, y) ∈ R2 : x+ y ∈ Q}.

5. Vector spaces are additive abelian groups

Let K be a field and let V be a K-vector space. Then V is also an additive
abelian group. How do we know this? We have two operations defined on V ,
addition and scalar multiplication (i.e. multiplication by elements of K), and
these satisfy a bunch of properties listed under the definition of vector spaces
in your Linear Algebra notes (page 14). From that bunch of properties we
notice that A1–A4 tell us that V is an additive abelian group.

Let’s now recall the defintion of a subspace (page 23 of your Linear Algebra
notes).

Definition. A subspace W of V is a non-empty subset W ⊆ V such that

(i) u + v ∈ W for all u, v ∈ W ;
(ii) αu ∈ W for all α ∈ K and u ∈ W .

We can summarise by saying that a subspace is a non-empty subset that
is closed under addition and scalar multiplication.

Lemma 5. Let W be a subspace of the K-vector space V . Then W is a
subgroup of V .

Proof. You should have a go at the proof yourself before reading on. In
Theorem 4 we take G = V , H = W and we would like to check that W
satisfies conditions (a), (b), (c) of Theorem 4. Condition (b) is the same as
(i), so we have it for free. What about condition (c)? Let u ∈ W . We want
to show that −u ∈ W . So we take α = −1 ∈ K, and invoke (ii). Therefore
(c) holds.

Finally we need to check (a). We’re given that W is non-empty. So take
any u ∈ W . Then −u = (−1)u ∈ W by (ii), and 0 = u + (−u) ∈ W by (i).
Hence (a) is also satisfied. Therefore W is a subgroup of V . �

Exercise 5. As you know, R2 is an R-vector space. Which of the subsets
in Exercise 4 are subspaces of R2? Again you probably don’t want to write
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down all the details as it’ll take too long. One of your conclusions should be
that whilst every subspace is a subgroup, not every subgroup is a subspace.
There are more subgroups than there are subspaces.

Example 6. Groups are much more complicated than vector spaces. If I take
R2 and think of it as an R-vector space, I can give a complete description of
its subspaces. If I think of R2 as a group I don’t know how to give a complete
description of its subgroups.

Let’s give a complete a description of the subspaces of R2. The dimension
of R2 is 2. Therefore any subspace will have dimension at most 2. So if W is
a subspace then dim(W ) = 0, 1, 2. If dim(W ) = 0 then W = {0} is the zero
subspace. If dim(W ) = 2 then W = R2. What if dim(W ) = 1? Then W
has an R-basis consisting of one vector w. This vector is non-zero, as {w}
is linearly indendent. Since w is an R-basis, we have

W = {αw : α ∈ R}.
We see that 1-dimensional subspaces of R2 are precisely the straight lines
passing through the origin.

Exercise 6. Give a complete description of the subspaces of R3. Give five
examples of subgroups of R3 than aren’t subspaces.

6. Cosets

Let G be a group and H a subgroup. Let g be an element of G. We call
the set

gH = {gh : h ∈ H}
a left coset of H in G. Here of course, we’re using multiplicative notation.
If G is an additive group then a coset of H in G has the form

g +H = {g + h : h ∈ H}.
We write [G : H] for the number of distinct left cosets of H in G and call it
the index of H in G.

Example 7. Z is a subgroup of R. Note that

· · · = −1.9 + Z = −0.9 + Z = 0.1 + Z = 1.1 + Z = 2.1 + Z = · · · .
But

0.1 + Z 6= 0.2 + Z.

A very very important fact about cosets is the following:

g1 +H = g2 +H 6=⇒ g1 = g2

in the additive setting, and

g1H = g2H 6=⇒ g1 = g2

in the multiplicative setting.
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Example 8. Let’s go back to the exam question and show [C∗ : S] = ∞.
We did this before in lectures, and it’s also in the lecture notes. But I want
to go through it again. A coset of S in C∗ has the form αS where α is in
C∗ (i.e. α is a non-zero complex number). As such, we can write α = reiθ,
where r is positive (it is the absolute value of α), and θ is the argument of
α. Consider eiθS. Multiplying any complex number by eiθ simply rotates
anticlockwise through angle θ about the origin. So eiθS = S. Now αS = rS.
What does multiplying by r do? It scales the circle S by a factor of r. Two
different positive real numbers r1 6= r2 will give different cosets r1S 6= r2S,
since the first has radius r1 and the second has radius r2. See Figure 1. So

1

S

0.5S

1.5S

Figure 1. S and its cosets 0.5S and 1.5S in C∗.

S has as many cosets in C∗ as there are positive real numbers. In particular
[C∗ : S] =∞.

Summary: S is the circle centred at the origin of radius 1, and its cosets in
C∗ are the circles centred at the origin (of positive radius).

7. Equivalence Relations and Equivalence Classes

We are going to prove Lagrange’s Theorem in a slightly different way from
MA136 lectures. Both proofs are instructive, and you should feel at home
with both. The proof is going to make use of the concepts of equivalence
relation and equivalence classes that you’ve met before in Foundations (pages
68–70) of your lecture notes. Recall the following defintion.

Definition. Let X be a set and let ∼ be a relation on X. We say that
∼ is an equivalence relation on X if the following three conditions are
satisfied.
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• Reflexivity: x ∼ x for all x ∈ X.
• Symmetry: for all x, y ∈ X, if x ∼ y then y ∼ x.
• Transitivity: for all x, y, z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

Example 9. • Equality is an equivalence relation whatever X is.
• Let m ≥ 2. Congruence modulo m is an equivalence relation on Z.
• ≤ is not an equivalnce relation on R; it is reflexive and transitive but

not symmetric.
• Let A be a set and P(A) its powerset. Then ⊆ is not an equivalence

relation on P(A); again it is reflexive and transitive without being
symmetric.
• < is neither reflexive nor symmetric on R, and so is certainly not an

equivalence relation.

Definition. Let ∼ be an equivalence relation on X and let x ∈ X. The
equivalence class of x is the set

(1) [x] = {y ∈ X : y ∼ x}.

Example 10. Take the equivalence relation = on X. The equivalence class
of x ∈ X is

[x] = {y ∈ X : y = x} = {x}.
Thus the set of equivalence classes here is the set of singletons.

Example 11. Let m ≥ 2, and consider congruence modulo m on Z. The
equivalence class of a ∈ Z is

[a] = {b ∈ Z : b ≡ a (mod m)} = {. . . , a−2m, a−m, a, a+m, a+2m, . . . }.

In Introduction to Abstract Algebra we denote [a] by a. The set of equiva-
lence classes is Z/mZ.

Exercise 7. Let ∼ be the relation on R2 given by

(r, s) ∼ (u, v) ⇐⇒ r − s− u+ v ∈ Z.

Show that ∼ is an equivalence relation on R2. Sketch the equivalence class
[(0, 0)].

Lemma 12. Let ∼ be an equivalence relation on X. Let x, y ∈ X. Suppose
that y ∈ [x]. Then [x] = [y].

Proof. Note y ∈ [x] simply tells us that y ∼ x by definition of the equivalence
class [x] in (1). We want to show that [x] = [y]. This means that every
element of [x] belongs to [y] and vice versa.

Suppose z ∈ [x]. Thus z ∼ x. We know that y ∼ x so x ∼ y by symmetry.
Now we have z ∼ x and x ∼ y. By transitivity, z ∼ y. Hence z ∈ [y].

Your turn! Suppose z ∈ [y] and show that z ∈ [x]. Once you’ve done that
the proof would be complete. �
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Definition. Let X be a set and let A be a collection of subsets of X. We
say that A is a partition of X if and only if the following three conditions
are satisfied.

(I) A 6= ∅ for every A ∈ A.
(II) If A, B ∈ A and A 6= B then A ∩B = ∅.

(III)
⋃
A∈A

A = X.

Example 13. Let X = {1, 2, 3, 4}.
• A = {{1, 2}, {2, 3}, {4}} is not a partition of X since A = {1, 2} and
B = {2, 3} belong to A and violate condition (II).
• B = {{1, 2}, {4}} is not a partition of X, since⋃

B∈B

= {1, 2} ∪ {4} = {1, 2, 4} 6= X,

violating condition (III).
• C = {{1}, {2, 3, 4}, ∅} is not a partition of X as one of the elements

is empty violating condition (I).
• D = {{1}, {2, 3, 4}} is a partition ofX, and so is E = {{1}, {2}, {3}, {4}}

and so is F = {{1, 2, 3, 4}}.

Example 14. {2Z, 1 + 2Z} is a partition of Z, since every integer is either
even or odd but can’t be both.

Example 15. Let n ≥ 2. Recall that we refer to a permutation σ ∈ Sn as
even if it is a product of an even number of transpositions, and odd if it
is a product of an odd number of transpositions. One of the key theorems
of MA136 says that every permutation is either odd, or even but not both.
This is Theorem XIV.40 of your MA136 lecture notes. We wrote An for
the subset of even permutations in Sn and discovered that it is a subgroup.
Let’s write A′n = Sn \ An for the set of odd permutations (warning: this is
non-standard notation). Then {An, A′n} is a partitition of Sn.

Aside. If X is a finite set of size n then the number of partitions of X is
denoted by Bn and called the n-th Bell number. You might be interested
in the Wikipedia page on Bell numbers. Here’s an interesting random fact:

Bn =
n!

2πie

∫
γ

ee
z

zn+1
dz

where γ is any closed simple anticlockwise path going around the origin in
the complex plane. The proof of this requires Cauchy’s integral formula
which is one of the most beautiful and powerful tools in all of mathematics.
You learn Cauchy’s integral formula and how to wield it if you choose to
do the 3rd year Complex Analysis module. It’s a bit early to be giving you
advice about third year modules, but I’ll do it anyway as I probably won’t get
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another chance. You should choose the ones you enjoy, but my own personal
favourites are Galois Theory, Algebraic Number Theory, Algebraic Topology,
Complex Analysis, Groups & Representations, Functional Analysis. My least
favourite is Rings & Modules. Avoid that one like the plague.

Theorem 16. Let ∼ be an equivalence relation on X. Then the set of
equivalence classes

{[x] : x ∈ X}
is a partition of X.

Proof. Note that every element of the set {[x] : x ∈ X} has the form
[x] and so is a subset of X. We’ll show that conditions (I), (II), (III) of
the proposition are satisfied. By reflexivity x ∼ x for all x. Thus x ∈ [x]
from the definition of the equivalence class [x] in (1). Hence (I) is satisfied.
Moreover, the union of all the classes will contain all the elements of X, and
so (III) is satisfied.

Let’s prove (II). So suppose x, y are elements of X such that [x] 6= [y].
We want to show that [x] ∩ [y] = ∅. We do this by contradiction. Suppose
z ∈ [x] ∩ [y]. Then z ∈ [x] and z ∈ [y]. Lemma 12 tells us that [x] = [z]
and [y] = [z]. Thus [x] = [y], giving a contradiction and completing the
proof. �

8. Cosets are Equivalence Classes

Exercise 8. Let G be a group and H a subgroup. We define a relation ∼
on G by the following rule:

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ H.

(i) Show that ∼ is an equivalence relation.
(ii) Let g ∈ G. Show that [g] = gH where [g] is the equivalnce class of g.

(iii) Deduce that the set of cosets {gH : g ∈ G} is a partition of G.

Example 17. Let m ≥ 2. The cosets of mZ in Z are congruence classes
0, 1, . . . ,m− 1. The of congruence classes Z/mZ = {0, 1, . . . ,m− 1} forms
a partition of Z.

Example 18. Recall what we said earlier about the cosets of S in C∗, “S is
the circle centred at the origin of radius 1, and its cosets in C∗ are the circles
centred at the origin (of positive radius)”. It should be clear that the cosets
of S form a partition of C∗.

Example 19. Let L be a line in R2 passing through the origin and parallel
to a non-zero vector v. At school you probably wrote the equation of the
line like this:

L : x = λv.



10 SAMIR SIKSEK

Here λ is the parameter. In set notation we can specify the same line by
writing

L = {λv : λ ∈ R}.
This is a 1-dimensional subspace of R2 with basis v. It’s also a subgroup of
R2 (recall that every vector space is an additive group and every subspace
is a subgroup). Now let u ∈ R2. Let

Lu : x = u + λv.

This is the line passing through u and parallel to v. It is therefore a line
parallel to L. In set notation,

Lu = {u + λv : λ ∈ R}.
Thus Lu = u + L. See Figure 2

x

y L

v
u

Lu = u + L

Figure 2. A line L defines a subgroup of R2 if and only if it
passes through the origin. In that case, its cosets are the lines
parallel to it. Also adding red to blue gives you magenta.

We see that the cosets of the line L in R2 are the lines parallel to L. It
should be geometrically clear that these lines form a partition of R2.

9. Lagrange’s Theorem

Before we prove Lagrange’s theorem we need a fact which you have seen
before in Introduction to Abstract Algebra.

Exercise 9. Let G be a group and H a finite subgroup. Let g ∈ G. Show
that

(2) #gH = #H.
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Don’t look up the proof. Try to do it yourself first. I’ll remind you that the
proof starts by enunciating a profound philosophical precept of tremendous
utilitarian import,

“The best way to show that two sets have the same number of
elements is to set up a bijection between them”.

Let
φ : H → gH, φ(h) = gh.

Prove (2) by showing that φ is a bijection.

Theorem 20 (Lagrange’s Theorem). Let G be a finite group and H a sub-
group. Then

#G = [G : H] ·#H.

Proof. Let g1H, . . . , grH be the distinct cosets of H in G. Here r = [G : H]
is the index. These cosets form a partition of G (see Exercise 8 if you’ve
already forgotten). In particular, they are pairwise disjoint and their union
is G. Hence

#G = #g1H + #g2H + · · ·+ #grH

= r ·#H (by (2))

= [G : H] ·#H.
�

Exercise 10. Let n ≥ 1. Write

Un = {z ∈ C : zn = 1}
for the set of n-th roots of 1.

(i) Show that Un is a subgroup of C∗. What’s #Un? What do the n-th
roots of 1 sum to?

(ii) Let m, n ≥ 1. Under what condition on the pair m, n would Um be
a subgroup of Un. In that case, what would the index be?

(iii) Let α ∈ C∗. Let

W = {w ∈ C : wn = α}
be the set of n-th roots of α. Show that W is a coset of Un inside C∗.

10. GL2(Fq) and SL2(Fq) (Optional)

This section is a little tougher than the previous sections, so I’ll leave it
as optional. Recall that for any field K we defined

GLn(K) = {A ∈Mn(K) : det(A) 6= 0}
and

SLn(K) = {A ∈Mn(K) : det(A) = 1}.
We checked that GL2(K) is a group and SLn(K) is a subgroup. Of course if
K is infinite (e.g. K = Q, R, C) then so these two matrix groups are infinite
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too. But if K is finite then they are finite. In fact they fit inside Mn(K)
which has to be finite itself.

Exercise 11. Let Fq be the field with q elements. Show that #Mn(Fq) =

qn
2
. Hint: how many entries does an n × n matrix have, and how many

possibilities are there for each entry?

Exercise 12. For α ∈ F∗q let

Dα = {A ∈ GLn(Fq) : det(A) = α}.
(i) Show that {Dα : α ∈ F∗q} is a partition of GLn(Fq).

(ii) Show that Dα is a coset of SLn(Fq), and also that every coset of
SLn(Fq) is of this form.

(iii) Deduce that

[GLn(Fq) : SLn(Fq)] = q − 1.

To work out the order of SLn(Fq) it’s enough to work out the order of
GLn(Fq). To work out the latter order, we need to do some linear algebra.

Exercise 13. Let V be an Fq-vector space. Let {v1, . . . ,vr} be a linearly
independent subset of V . Show that the span of {v1, . . . ,vr} has qr elements.
Hint. At first sight this looks easy. The elements of the span have the form

α1v1 + α2v2 + · · ·+ αrvr,

with α1, α2, . . . , αr ∈ Fq. There are q possibilities for α1, q possibilities for
α2, and so on. But where do we use the linear independence hypothesis?

Exercise 14. Let V be a vector space, and let v1, . . . ,vn be vectors in
V . Show {v1, . . . ,vn} is linearly independent if and only if the following
simultaneously hold.

• v1 6= 0;
• v2 is not a linear combination of {v1};
• v3 is not a linear combination of {v1,v2};

...
• vn is not a linear combination of {v1,v2, . . . ,vn−1}.

Exercise 15. Show that

# GLn(Fq) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).
Hint: a square matrix is non-singular (i.e. has non-zero determinant) if and
only if its columns are linearly independent.


