Efficient computation of the Hasse-Weil zeta function
Problem I:

Develop an efficient algorithm that determines the number of zeroes of any given polynomial $f(x_1, \ldots, x_n)$ with coefficients in a finite field \mathbb{F}_q.

$$f \rightarrow \# \{(a_i) \in (\mathbb{F}_q)^n \mid f(a_1, \ldots, a_n) = 0\}$$

Naively checking for every $(a_1, \ldots, a_n) \in (\mathbb{F}_q)^n$ whether $f(a_1, \ldots, a_n) = 0$ is not efficient!

\leadsto takes at least q^n steps

Wouter Castryck Efficient zeta function computation
Write $N_k := \# \left\{ (a_i) \in (\mathbb{F}_{q^k})^n \mid f(a_1, \ldots, a_n) = 0 \right\}$ and define the zeta function

$$Z_f(T) = \exp \left(\sum_{k=1}^{\infty} N_k \frac{T^k}{k} \right) \in \mathbb{Q}[[T]]$$

which turns out to be a rational function (Dwork) that can be algorithmically determined (Bombieri).

Problem II:

Develop an efficient algorithm that determines the zeta function of any given polynomial $f(x_1, \ldots, x_n)$ with coefficients in a finite field \mathbb{F}_q.

\[f \rightarrow \text{Algorithm} \rightarrow Z_f(T) \]
In general, both problems are far from being solved (in every reasonable sense of the word efficient).

- If \(n = 1 \) \(\sim \) solved
 - polynomial factorization over \(\mathbb{F}_q \) (Berlekamp)
 - count the number of linear factors

- If \(n = 2 \) \(\sim \) good progress
 - reduce to irreducible case via
 \[
 \#Z(fg) = \#Z(f) + \#Z(g) - \#(Z(f) \cap Z(g))
 \]
 - using polynomial factorization (Lenstra, Wan)
 - irreducible-but-not-absolutely-irreducible case is easy (point enumeration) \(\sim \) reduce to absolutely irreducible case
 - use geometric and arithmetic properties of the curve \(Z(f) \)

- If \(n > 2 \) \(\sim \) some generalizations, mostly only in theory
This talk: n=2, i.e.

- $f \in \mathbb{F}_q[x, y]$ is absolutely irreducible.
- Thus it defines a curve \tilde{C} in $\mathbb{A}^2_{\mathbb{F}_q}$.
- Generalized zeta function: for any quasi-projective curve C/\mathbb{F}_q we define

$$Z_C(T) = \exp \left(\sum_{k=1}^{\infty} \# C(\mathbb{F}_{q^k}) \frac{T^k}{k} \right).$$

Thus $Z_{\tilde{C}}(T) = Z_f(T)$.
- Note that $Z_C(T)$ only depends on the isomorphism class $[C]$.
Theorem (Weil):

Let C be a smooth projective curve of genus g. Then we can write

$$Z_C(T) = \frac{P(T)}{(1 - T)(1 - qT)}$$

for a degree $2g$ polynomial $P(T) \in \mathbb{Z}[T]$. Moreover

- $P(T)$ factors as

$$\prod_{i=1}^{2g} (1 - \alpha_i T)$$

for algebraic integers $\alpha_i \in \mathbb{C}$.

- For $i = 1, \ldots, 2g$ we have $|\alpha_i| = \sqrt{q}$ (Riemann hypothesis).

- For a suitable choice of indices, we have $\alpha_i \alpha_{2g-i} = q$ for $i = 1, \ldots, g$.

- $\# C(\mathbb{F}_{q^k}) = q^k + 1 - \sum_{i=1}^{2g} \alpha_i^k$.
If \tilde{C} is any quasi-projective curve, and C is its complete nonsingular model, then

$$Z_{\tilde{C}}(T) = Z_C(T)(1 - T^{\kappa_1})(1 - T^{\kappa_2})(1 - T^{\kappa_t})$$

where $\kappa_1 + \cdots + \kappa_t$ is the number of ‘points missing’.

The κ_i depend on the degrees of the field extensions over which these points are defined.
In the case of a smooth projective $g = 1$ curve, we have the group law

For higher genus, a smooth projective curve C/\mathbb{F}_q can be embedded in a ‘smallest’ abelian variety $\text{Jac}_{\mathbb{F}_q}(C)$ (it has dimension g).

Theorem (Tate):

$$\#\text{Jac}_{\mathbb{F}_q}(C) = P(1)$$
Most famous application and research motivation:

\[
P \in E(\mathbb{F}_q)
\]

\[
a \in \mathbb{N}
\]

\[
aP
\]

\[
bP
\]

\[
b \in \mathbb{N}
\]

\[
(ab)P = a(bP)
\]

\[
(ab)P = b(aP)
\]

- Security is believed to depend on the hardness of the discrete log problem: given \(P \) and \(nP \), find \(n \) . . .
- . . .which is easy if \(\#E(\mathbb{F}_q) \) contains no big prime factors.
First method. Computing in $\text{Jac}_{\mathbb{F}_q}(C)$.

Idea:

- Arithmetic in $\text{Jac}_{\mathbb{F}_q}(C)$ can be performed efficiently (Hess, Khuri-Makdisi).
- Use this to compute the order of a generic point.
- Try to recover $Z_C(T)$ from $P(1) = \#\text{Jac}_{\mathbb{F}_q}(C) \ldots$
- ... and some additional info if $g > 1$ (becomes hard when g gets big).
- Example: in genus 2, q odd, every ordinary curve C has a quadratic twist C^t. If

$$Z_C(T) = \frac{P(T)}{(1 - T)(1 - qT)}$$

then

$$Z_{C^t}(T) = \frac{P(-T)}{(1 - T)(1 - qT)}$$

\leadsto recover $Z_C(T)$ from $P(1)$ and $P(-1)$.

Wouter Castryck
Efficient zeta function computation
First method. Computing in $\text{Jac}_{\mathbb{F}_q}(C)$.

Shanks’ method to compute $N = \#\text{Jac}_{\mathbb{F}_q}(C)$ (case $g = 1$).

- By Weil’s theorem: $q + 1 - 2\sqrt{q} \leq N \leq q + 1 + 2\sqrt{q}$.
- Choose a random point $P \in C(\mathbb{F}_q) = \text{Jac}_{\mathbb{F}_q}(C)$.
- Baby steps: make a list of the first $s \approx \frac{4}{\sqrt{q}}$ multiples

 $0, \pm P, \pm 2P, \pm 3P, \ldots, \pm sP$.

- Giant steps: compute $Q = (2s + 1)P$ and $R = (q + 1)P$ and for $t = \lceil 2\sqrt{q}/(2s + 1) \rceil \approx \frac{4}{\sqrt{q}}$, produce the list

 $R, R \pm Q, R \pm 2Q, \ldots, R \pm tQ$.

- Find match

 $R + iQ = jP$.

- Then $mP = (q + 1 + (2s + 1)i - j)P = 0$. If the match is unique, then $\#C(\mathbb{F}_q) = m$. If not, try another P.

- Running time is $\tilde{O}(\frac{4}{\sqrt{q}})$. For $g \rightarrow \infty$, the advantage poured out of the Weil bound becomes smaller: $\tilde{O}(q^{(2g-1)/4})$.

Wouter Castryck
Efficient zeta function computation
First method. Computing in $\text{Jac}_{\mathbb{F}_q}(C)$.

State of the art: thanks to improvements by Mestre, Kedlaya, Sutherland, generic group methods make it feasible to compute $Z_C(T)$ for (roughly)

- $q < 10^{40}$ if $g = 1$, easily outperforms naive counting as soon as $q > 10^3$
- $q < 10^{13}$ if $g = 2$
- $q < 10^8$ if $g = 3$

If one is only interested in $\#\text{Jac}_{\mathbb{F}_q}(C)$, then also higher genera can be dealt with, over moderately sized finite fields. . .
Second method. Computing in the Tate module.

Theorem (Tate):

For any prime ℓ different from the field characteristic p, and any $k \in \mathbb{N}$ we have that

$$\text{Jac}_{\overline{F}_q}(C)[\ell^k] \cong \left(\frac{\mathbb{Z}}{\ell^k \mathbb{Z}} \right)^{2g}.$$

Define

$$T_\ell(C) = \lim_{k \to \infty} \text{Jac}_{\overline{F}_q}(C)[\ell^k] \cong \mathbb{Z}_\ell^{2g}.$$

Let $\chi(T)$ be the characteristic polynomial of Frobenius acting on $T_\ell(C)$. Then

- $\chi(T) \in \mathbb{Z}[T]$ and does not depend on ℓ
- $Z_C(T) = \frac{T^{2g} \chi(1/T)}{(1 - T)(1 - qT)}.$
Second method. Computing in the Tate module.

Idea (Schoof):

- Compute $\chi(T) \mod \ell$ as the characteristic polynomial of Frobenius acting on $\#\text{Jac}_{\overline{\mathbb{F}}_q}[\ell]$ for various primes ℓ.

- Use the Chinese Remainder Theorem to recover $\chi(T) \mod \prod \ell$.

- If $\prod \ell$ is big enough, Weil’s theorem allows us to recover $\chi(T)$.

Wouter Castryck
Efficient zeta function computation
Second method. Computing in the Tate module.

In practice for elliptic curves $E : y^2 = x^3 + Ax + B$.

- The characteristic polynomial of Frobenius is of the form
 \[T^2 - tT + q, \]
 and we need to recover t. By Weil's bound, $|t| \leq 2\sqrt{q}$.

- Caley-Hamilton: Frobenius map φ should satisfy its own characteristic polynomial
 \[\varphi^2 - t\varphi + q = 0. \]

- There exist polynomials $\Psi_\ell \in \mathbb{F}_q[x]$ that vanish precisely at the ℓ-torsion points of E (example: $\Psi_2 = x$).

- For small ℓ, check for which $t' = t \mod \ell$ the relation
 \[(x^{q^2}, y^{q^2}) - t'(x^q, y^q) + (q \mod \ell)(x, y) \]
 holds in $\mathbb{F}_q[x, y]/(\Psi_\ell, y^2 - x^3 - Ax - B)$.

- If $\prod \ell > 4\sqrt{q}$, use CRT to recover t.

Wouter Castryck
Efficient zeta function computation
Second method. Computing in the Tate module.

- Using smart speed-ups by Atkin and Elkies, Schoof’s algorithm has become very efficient for elliptic curves ($q \approx 10^{60}$ in a couple of seconds).

- Seems hopeless to generalize this to high genera, because of the need of explicit formulas for $\#\text{Jac}_{\mathbb{F}_q}(C)$.

- Small advances in genus 2 by Gaudry and Schost ($q \approx 10^{24}$ in about a week).
Third method. p-Adic cohomology.

First step: lift the curve to characteristic 0.

- Let $\overline{C}(x, y) \in \mathbb{F}_q[x, y]$ define a smooth curve in $\mathbb{A}^2_{\mathbb{F}_q}$, and write

$$\overline{A} = \frac{\mathbb{F}_q[x, y]}{(\overline{C}(x, y))}$$

for its coordinate ring.

- Write $q = p^n$ where p is the field characteristic.
- Let \mathbb{Q}_q be the unramified degree n extension of \mathbb{Q}_p.
- Let \mathbb{Z}_q be its ring of integers. This is a complete DVR with local parameter p and residue field \mathbb{F}_q.
- Let $C(x, y) \in \mathbb{Z}_q[x, y]$ be such that it reduces to $\overline{C}(x, y)$ mod p and write

$$A = \frac{\mathbb{Z}_q[x, y]}{(C(x, y))}.$$
Third method. p-Adic cohomology.

Problem: Geometric properties of \mathbb{C}/\mathbb{Q}_q depend on the choice of the lift: different genus, different endomorphism ring, . . .

- Define

\[
\mathbb{Z}_q \langle x, y \rangle^\dagger = \left\{ \sum_{i,j \in \mathbb{N}} a_{ij} x^i y^j \left| \exists \rho \in]0, 1[: \frac{|a_{ij}|^p}{\rho^{i+j}} \to 0 \text{ if } i + j \to \infty \right. \right\}.
\]

- Note that $\mathbb{Z}_q \langle x, y \rangle^\dagger$ is closed under integration and that there is a natural map $\pi : \mathbb{Z}_q \langle x, y \rangle^\dagger \to \mathbb{F}_q[x, y]$.

- Define

\[
A^\dagger = \frac{\mathbb{Z}_q \langle x, y \rangle^\dagger}{(C(x, y))}.
\]

Theorem (Monsky, Washnitzer):

A^\dagger does not depend on the choice of C, and for every morphism $\overline{\varphi} : \overline{A} \to \overline{A}$ there exists a morphism $\varphi : A^\dagger \to A^\dagger$ that lifts $\overline{\varphi}$ in the sense that $\overline{\varphi} \circ \pi = \pi \circ \varphi$.

Wouter Castryck
Efficient zeta function computation
Consider the module of differentials

\[D^1(A^\dagger) = \frac{A^\dagger \, dx + A^\dagger \, dy}{\left(\frac{\partial C}{\partial x} \, dx + \frac{\partial C}{\partial y} \, dy \right)} \]

and let \(d : A^\dagger \to D^1(A^\dagger) \) be the usual exterior derivation. Then define the cohomology space

\[H^1_{MW}(\overline{A}/\mathbb{Q}_q) = \frac{D^1(A^\dagger)}{d(A^\dagger)} \otimes_{\mathbb{Z}_q} \mathbb{Q}_q. \]

Every \(\mathbb{Z}_q \)-algebra morphism \(\varphi : A^\dagger \to A^\dagger \) induces a map

\[\varphi^* : D^1(A^\dagger) \to D^1(A^\dagger) : f dx + g dy \mapsto \varphi(f) d \varphi(x) + \varphi(g) d \varphi(y) \]

which is well-defined on \(H^1_{MW}(\overline{A}/\mathbb{Q}_q) \).
Third method. p-Adic cohomology.

Theorem (Monsky, Washnitzer):

Let $\overline{F}_q : \overline{A} \to \overline{A} : a \mapsto a^q$ and let $\overline{F}_q : \overline{A}^\dagger \to \overline{A}^\dagger$ be a lift. Then

$$Z_C(T) = \det \left(I - qF_q^{-1}T \left| H_{MW}^1(\overline{A}/\mathbb{Q}_q) \right. \right) \frac{1}{1 - qT}.$$

If $\chi(T)$ is the characteristic polynomial of F_q^* acting on $H_{MW}^1(\overline{A}/\mathbb{Q}_q)$, then one can verify that

$$Z_C(T) = \frac{1}{q^g + R - 1} \chi(qT) \frac{1}{1 - qT}$$

where R is the number of points at infinity.
Third method. p-Adic cohomology.

Kedlaya’s method:
- Compute a lift of Frobenius \mathcal{F}_q.
- Compute a basis of $H^1_{MW}(\bar{A}/\mathbb{Q}_q)$.
- Let \mathcal{F}_q^* act on this basis.
- Re-express the result in terms of the basis, hence obtain a matrix of Frobenius.
- Compute its characteristic polynomial.
- By Weil’s theorem, it suffices to do this modulo a certain p-adic precision.
- Problem: the resulting algorithms have running time $O(q)$ and are therefore slower than generic methods.
- Solution if n is big and p is small: split up $\mathcal{F}_q = \mathcal{F}_p \circ \cdots \circ \mathcal{F}_p$ running time becomes typically $O(p)$.
- Hopeless if p is big.
Third method. p-Adic cohomology.

So far:

- Elliptic curves, in slightly different framework (Satoh, ...): works extremely fast ($q \approx 10^{60}$ in a fraction of a second).
- Hyperelliptic curves (Kedlaya, Denef, Vercauteren): works fast (matter of seconds for cryptographic ranges and high genera).
- Superelliptic curves (Gaudry, Gürel): idem.
- C_{ab} curves (Denef, Vercauteren): slow performance due to different Frobenius lifting technique.
- Nondegenerate curves (curves in toric surfaces) (C., Denef, Vercauteren): idem.
Third method. \(p \)-Adic cohomology.

Deformation (Lauder):

- Idea: put the curve of interest into a 1-parameter family

\[
\begin{align*}
\text{Spec } A & \quad \text{Spec } \overline{A}_{t_0} \\
\text{Spec } \overline{A} & \quad \text{Spec } \overline{S}
\end{align*}
\]

with \(\overline{S} = \mathbb{F}_q[t, \overline{r}(t)^{-1}] \).

- Define the relative cohomology as above, now taking coefficients in a ring \(S^\dagger \).

- ‘Specifying’ \(t = t_0 \) gives us the cohomology of the fibre above \(t_0 \).
The relative matrix of Frobenius $F(t)$ can be computed from an initial value by solving a differential equation

$$N \cdot F - \frac{d}{dt} F = q t^{q-1} \cdot F \cdot N(t^q),$$

where N is easy to compute (Gauss-Manin connection).

Lauder’s idea: take as initial value an ‘easy’ curve (e.g. one whose actual field of definition is a small subfield of \mathbb{F}_q), compute $F(t)$ and specify at the curve of interest.
Advantages:

- Avoid slow lifting of Frobenius.
- Algorithms become more memory efficient.
- Finding curves with prime order Jacobian is easier: specify at various values in the family.

So far:

- Works already well in elliptic and hyperelliptic case (Hubrechts).
- Gives satisfactory results in C_{ab} case (C., Hubrechts, Vercauteren).
- Probably as well in nondegenerate case (Tuitman, in progress)

Deformation might be the key towards dealing with arbitrary curves!

Remember: all this is over fields of small characteristic.
Some overall remarks on p-adic methods.

- The theoretical framework is very robust, results in algorithms that have polynomial running time in the genus, and applies to a wide range of varieties. In fact:

Theorem (Lauder, Wan):

If we fix the field characteristic p and the dimension n, there exists a polynomial running time algorithm (although nonpractical) to compute the zeta function of an arbitrary polynomial in n variables.

- Dependency on p is $O(p)$, but in case of hyperelliptic curves this has been reduced to $O(\sqrt{p})$ by Harvey, who outperforms generic methods from genus 3 on.
- Interesting question: can deformation be done in $O(\sqrt{p})$?
That’s it (phew)!