Computations in inverse Galois theory

Johan Bosman
Supervisor: Bas Edixhoven

Nederlands Mathematisch Congres
April 13, 2007, Leiden
Galois theory

Motivating examples

The quadratic polynomial
\[ax^2 + bx + c \]
has zeroes
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
and (Cardano, 1545, stolen from Tartaglia) the cubic
\[ax^3 + bx^2 + cx + d \]
has zeroes
\[x = \sqrt[3]{C + \sqrt{D}} + \sqrt[3]{C - \sqrt{D}} - \frac{b}{3a} \]
where
\[C = \frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a} \]
and
\[D = C^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2} \right)^3. \]
Galois theory

We see that the expressions

\[-b \pm \sqrt{b^2 - 4ac} \over 2a\]

and

\[\sqrt[3]{C + \sqrt{D}} + \sqrt[3]{C - \sqrt{D}} - {b \over 3a}\]

are built up from the operations $+, -, \cdot, /$ and $\sqrt[n]{\cdot}$.

Question.
Can the zeroes of every polynomial be expressed in terms of $+, -, \cdot, /$ and $\sqrt[n]{\cdot}$?

Answer.
For quartic polynomials this is still possible (Ferrari, 1540) but from degree 5 there are polynomials for which this is not the case (Ruffini, 1799).

Definition.
A polynomial is called *solvable* if the zeroes can be expressed in terms of $+, -, \cdot, /$ and $\sqrt[n]{\cdot}$ and *non-solvable* if this cannot be done.
Galois theory

From polynomials to groups

In 1832, Galois found a better proof of the non-solvability. He attached a group to each polynomial P, obtaining more refined information about P than simply answering the solvability question with "yes" or "no".

How does it work?

Consider

$$P(x) = a_n x^n + \cdots + a_0 = a_n (x - x_1) \cdots (x - x_n),$$

where x_1, \ldots, x_n are the zeroes of P, supposed to be distinct. There can be many relations between the zeroes, e.g.

$$x_1 + \cdots + x_n = \frac{-a_{n-1}}{a_n}, \quad x_1 \cdots x_n = \frac{(-1)^n a_0}{a_n},$$

Definition.

The group of all permutations of the zeroes of P that preserve all relations between these zeroes is called the Galois group of P and denoted by $\text{Gal}(P)$.
Galois theory

From polynomials to groups

Definition.
The set of all permutations of the zeroes of P that preserve all relations between these zeroes is called the Galois group of P and denoted by $\text{Gal}(P)$.

'Most' P's have only relations deduceable from symmetric ones, so in that case $\text{Gal}(P) \cong S_n$ consists of all permutations of the roots, but there are exceptions.

Example.

$P(x) = x^4 + x^3 + x^2 + x + 1 = (x-x_1) \cdots (x-x_4)$

where $x_k = \zeta_5^k$. There are relations

$$x_k = x_1^k.$$

So for each $\sigma \in \text{Gal}(P)$ we have

$$\sigma(x_k) = \sigma(x_1)^k.$$

So σ is determined by what it does on x_1 and we see that $\text{Gal}(P)$ consists of just 4 elements instead of $4! = 24$, the number of all permutations.
Galois theory

Solvability translated to groups

Whether P is solvable can be translated to properties of $G = \text{Gal}(P)$.

Make a sequence $G_1 \supset G_2 \supset \cdots$ of groups as follows.

\[
G_1 := G, \quad G_{n+1} := [G_n, G_n]
\]

where

\[
[G_n, G_n] = \langle xyx^{-1}y^{-1} : x, y \in G_n \rangle.
\]

Then P is solvable iff there is an n with $G_n = \{e\}$.

Definition.
A finite group is called solvable if in the above sequence $(G_n)_n$ attached to it there is an n with $G_n = \{e\}$ and non-solvable otherwise.

All permutation groups acting on at most 4 elements are solvable. For $n \geq 5$ the group S_n of all permutations of n elements is non-solvable and usually many subgroups of S_n are non-solvable as well.
Inverse Galois theory

From groups to polynomials

Question.
Given a group G, does there exist a polynomial $P \in \mathbb{Q}[x]$ with $\text{Gal}(P) \cong G$?

Usually one restricts attention to *irreducible* polynomials. This is equivalent to G being *transitive*.

Question.
Given a transitive permutation group G, does there exist a polynomial $P \in \mathbb{Q}[x]$ with $\text{Gal}(P) \cong G$?

One can often use higher arguments to show the existence of such a polynomial but then it is still not clear how to compute it.

Question.
Given a transitive permutation group G, can one explicitly compute a polynomial $P \in \mathbb{Q}[x]$ with $\text{Gal}(P)$ isomorphic to G?
Inverse Galois theory

From groups to polynomials

Question.
Given a transitive permutation group G, does there exist a polynomial $P \in \mathbb{Q}[x]$ with $\text{Gal}(P) \cong G$?

Highly unsolved problem. At the moment, people conjecture it is possible for every G.

Partial answer 1 (Shafarevich, 1954).
For each solvable group there exists a polynomial!

So we concentrate on the non-solvable groups.

Partial answer 2.
Families of polynomials exist for certain types of non-solvable groups. For example S_n, A_n, many projective special linear groups, all but one of the sporadic simple groups and more.
Inverse Galois theory

Explicit constructions

Question.
Given a transitive permutation group G, can one explicitly compute a polynomial $P \in \mathbb{Q}[x]$ with $\text{Gal}(P)$ isomorphic to G?

Partial answer (Kl"uners & Malle, 2000).
For many types of groups families of polynomials can be computed. All transitive groups of degree ≤ 15 occur among these types. Later they did all degree 16 groups as well.

Question (Kl"uners).
Can you compute a polynomial P of degree 17 with $\text{Gal}(P) \cong \text{SL}_2(\mathbb{F}_{16})$?

Note that indeed, $\text{SL}_2(\mathbb{F}_{16})$ is a permutation group of degree 17 by letting it act on $\mathbb{P}^1(\mathbb{F}_{16}) = \mathbb{F}_{16} \cup \{\infty\}$:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (x) = \frac{ax + b}{cx + d}.
$$
Inverse Galois theory

Explicit constructions

Question (Klüners).
Can you compute a polynomial P of degree 17 with $\text{Gal}(P) \cong \text{SL}_2(\mathbb{F}_{16})$?

Answer (B.).
Yes, here is one:

$$x^{17} - 5x^{16} + 12x^{15} - 28x^{14} + 72x^{13} - 132x^{12} + 116x^{11} - 74x^9 + 90x^8 - 28x^7 - 12x^6 + 24x^5 - 12x^4 - 4x^3 - 3x - 1.$$

The construction uses *modular forms* and their *Galois representations*.
Inverse Galois theory

A question from number theory

Question (D. Roberts & J. Jones).
Does there exist a polynomial such that the Galois group contains $\text{SL}_2(\mathbb{F}_{16})$ and whose Galois root discriminant is less than $8\pi e^\gamma \approx 44.76$?

Answer (B.).
Yes, here is one:

\[
x^{17} - 5x^{16} + 12x^{15} - 28x^{14} + 72x^{13} \\
- 132x^{12} + 116x^{11} - 74x^9 + 90x^8 - 28x^7 \\
- 12x^6 + 24x^5 - 12x^4 - 4x^3 - 3x - 1,
\]

having Galois root discriminant 42.93.
Galois representations

There is a big group called \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) that encodes all Galois groups of polynomials in \(\mathbb{Q}[x] \). It has a natural topology. A finite group is \(\text{Gal}(P) \) for some \(P \) if it occurs as a homomorphic image of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \).

Using modular forms, one can make continuous homomorphisms

\[
\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_q),
\]

for finite fields \(\mathbb{F}_q \).

To show existence of a polynomial \(P \) with \(\text{Gal}(P) \cong \text{SL}_2(\mathbb{F}_{16}) \), we have to find a modular form giving rise to

\[
\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_{16})
\]

with image equal to \(\text{SL}_2(\mathbb{F}_{16}) \subset \text{GL}_2(\mathbb{F}_{16}) \). With a computer search one can find such modular forms indeed.
Galois representations

Explicit calculations

Edixhoven, Couveignes and R. de Jong showed the existence of a polynomial time algorithm for calculating these modular Galois representations.

- It involves symbolic computations as well as numerical calculations.

- The computations are related to point counting on modular curves. Interesting in cryptography and coding theory.

- Although it is slow in practise, it is the best algorithm known and it does run in polynomial time.