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Introduction

In this article we want to give the basic definitions and properties of dynamical
zeta functions, and describe a few of their applications. The emphasis is on
giving the flavour of the subject rather than a detailed summary.

To fix ideas, let us assume that V is a compact surface with some ap-
propriate Riemannian metric < ·, · >TV , say. We shall always assume that
V has negative curvature at every point on V (although we will not neces-
sarily assume that it has constant negative curvature). In studying geometric
properties of manifolds it is sometimes convenient to study the associated
geodesic flow. Fortunately, geodesic flows for negatively curved surfaces are
important examples of a broader class of flows, namely hyperbolic flows, which
are amenable to quite powerful techniques in dynamical systems which have
evolved over the last 40 years (from the work of Anosov, Sinai, Ratner, Smale,
Bowen, Ruelle, and many others). In particular, it is often (but not always)
convenient to introduce simple symbolic models for these flows. The basic hope
is that, despite the sacrifice of some of the geometry, we can benefit from be-
ing able to apply fairly directly ideas from ergodic theory and what is often
colloquially called “Thermodynamic Formalism”. Somewhat surprisingly, this
method is successful for various classes of problems, including:

(a) Geometric problems (e.g., counting closed geodesics, or equivalently closed
orbits for the geodesic flow);

(b) Statistical Properties (e.g., determining rates of mixing for flows); and
(c) Distributional properties (e.g., linear actions associated to the horocycle

foliation).

Of course, anyone familiar with the Selberg zeta function for surfaces of con-
stant negative curvature will recognise many of the ideas in (a), for example.
The main difference is that instead of using the Selberg trace formula, say, we
use transfer operators to study the zeta function. What we lose in elegance
(and error terms!) we hope to make up for in the generality of the setting.
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In this overview we want to recall a number of the key themes and outline
some recent and ongoing developments. The choice of topics reflects the au-
thor’s idiosyncratic tastes. The results are organised so as to give the illusion
of coherence, but are in fact a mixture of older and more recent material. For
different accounts and perspectives, the reader is referred to [7], [62]. In par-
ticular, nowadays non-symbolic methods are catching up in terms of efficiency
in the above areas.

Finally, I would like to express my gratitude to the organisers of the Les
Houches School for their invitation to participate.

1 Symbolic dynamics and zeta functions

The familiar geodesic flow for V is a flow φt (t ∈ R) defined on the (three
dimensional) unit tangent bundle T1V = {(x, v) ∈ TV : ||v||TV = 1}, i.e.,
those tangent vectors to V having length one with respect to the ambient
Riemannian norm. The flow acts in the standard way by moving one tangent
vector v ∈ T1V to another v′ =: φtx, using parallel transport [5]. 1 It is the
hypothesis of negative curvature ensures that this geodesic flow is a hyperbolic
flow, i.e., one for which directions transverse to the flow direction (in a natural
sense) are either expanding or contracting. 2

1.1 Sections

The modern use of symbolic dynamics to model hyperbolic systems prob-
ably dates back to the work of Adler and Weiss [2], who showed that the
famous Arnold CAT map could be modelled by a shift map on the space of
sequences from a finite alphabet of symbols. This lead to Sinai’s seminal work
introducing Markov partitions for more general hyperbolic maps and then
Ratner and Bowen’s extension to hyperbolic flows [10], [56]. Historically, the

1 More precisely, given any (x, v) ∈ M we let γ(x,v) : R → M be the unit speed
geodesic with γ(x,v)(0) = x and γ̇(x,v)(0) = v. We define the geodesic flow φt :
M → M by φt(x, v) = (γ(x,v)(t), γ̇(x,v)(t)).

2 For completeness we recall the formal definition, although we won’t need it in the
sequel. Let M be any C∞ compact manifold then we call a C1 flow φt : M → M

hyperbolic (or Anosov) if:

(a) the tangent bundle TM has a continuous splitting TΛM = E0⊕Eu⊕Es into Dφt-
invariant sub-bundles E0 is the one-dimensional bundle tangent to the flow; and
there exist C, λ > 0 such that ||Dφt|E

s|| ≤ Ce−λt for t ≥ 0 and ||Dφ−t|E
u|| ≤

Ce−λt for t ≥ 0;
(b) φt : M → M is transitive (i.e., there exists a dense orbit); and
(c) the periodic orbits are dense in M .

(More generally, if there is a closed φ-invariant set Λ with the above properties
then φt : Λ → Λ is called a hyperbolic flow.)



Dynamical Zeta functions 5

use of sequences to model geodesic flows goes back even further to the work
of Morse and Hedlund [25] who coded geodesics in terms of generators for the
fundamental group.

Step 1 (Discrete maps from flows)

At its most general (and probably least canonical) the coding of orbits for
hyperbolic flows φt : M →M on any compact manifold M starts with a finite
number of codimension one sections T1, . . . , Tk to the flow. Let X = ∪iTi
denote the union of the sections. We can consider the discrete Poincaré return
map T : X → X , i.e, the map which takes a point x on a section to the point
T (x) where its φ-orbit next intersects a section. Of course, we need to assume
that the sections are chosen so that

(i) every orbit hits the union of the sections infinitely often.

We would also like to consider the map r : ∪iTi → R+ which gives the time
it takes for x ∈ X to flow to T (x) ∈ X , i.e., φr(x)(x) = T (x).

Key idea (modulo a slight fudge) There is a natural correspondence be-
tween periodic discrete orbits T nx = x and continuous periodic orbits τ of
period λ = λ(τ) > 0 (i.e., the smallest value such that φλ(xτ ) = xτ for all
xτ ∈ τ), where

λ = r(x) + r(Tx) + . . .+ r(T n−1x).

Like many simple ideas, it is not quite true. There is an additional technical
complication because of the closed orbits which pass through the boundaries
of sections. However, this is not the typical case and an extra level of technical
analysis sorts out this problem [10].

Step 2 (Sequence spaces from the Poincaré map)

The essential idea in symbolic dynamics is that a typical orbit {φt(x) : −∞ <
t <∞} will traverse these sections infinitely often (both in forward time and
backward time) giving rise to a bi-infinite sequence (xn)∞n=−∞ of labels of the
sections it traverses [10], [56].

(ii) The sections are chosen to have a Markov property (i.e., essentially that
the space Σ of all possible sequences (xn)

∞
n=−∞ is given by a nearest

neighbour condition: there exists a k× k matrix A with entries either 0 or
1 such that the sequence occurs if and only if A(xn, xn+1) = 1).

Alternatively, we can retain a little of the regularity of the functions as
follows.
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Fig. 1. Figure 1. Transverse (Markov) sections for a hyperbolic flow code a typical
orbit and a closed orbit

Step 2′ (Expanding maps from the Poincaré map)

Instead of a reducing orbits to sequences, we can replace the invertible
Poincaré map by an expanding map (on a smaller space). The basic idea
is to remove the contracting direction by identifying the sections X along the
stable directions. We can then replace the union of two dimensional sections
X by a union of one dimensional intervals Y . The Poincaré map T : X → X
then quotients down to an expanding map S : Y → Y [59]. Of course, we lose
track of the “pasts” of orbits, but for most purposes this is not a real problem.

1.2 An alternative approach for constant curvature: The Modular
surface and compact surfaces

We mentioned that for geodesic flows on surfaces of constant negative curva-
ture there is an alternative method of Hedlund and Hopf to code geodesics.
This method was further developed by Adler and Flatto [1] and Series [69].
Again it leads to a Cω expanding Markov map T : Y → Y . In this case, Y
corresponds to the boundary of the universal cover

D2 = {z = x+ iy ∈ C : |z| < 1}

of the surface,i.e., the unit circle. This is divided into a finite number of arcs
(actually determined by the sides of a fundamental domain for the surface).
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The corresponding metric on D2 is ds2 = (dx2 + dy2)/(1−x2− y2)2. The side
pairs of the fundamental domain correspond to linear fractional transforma-
tions which preserve D2. On the boundary they give rise to expanding interval
maps. A geodesic on D2 is uniquely determined by its two end points on the
unit circle. We can associate a function r : Y → R by r(x) = log |T ′(x)|, then
we have the ingredients of the symbolic model.

Example: Modular surface We can consider the geodesic flow on the mod-
ular surface. In this case the surface is non-compact, and the difference is that
the linear fractional transformation T : Y → Y is on an infinite number of
intervals. However, in this case the transformation T is the well known con-
tinued fractional transformation on [0, 1], i.e., T : [0, 1] → [0, 1] by Tx = 1

x
(mod 1). The corresponding function r : I → R is r(x) = −2 logx, as is easily
checked.

In this case the associated transfer operator is very easy to describe. We
look at the Banach space B of analytic functions (with a continuous extension
to the boundary) on a disk {z ∈ C : |z − 1

2 | <
3
2}. The transfer operator is

given by Lsh(x) =
∑∞

n=1 h
(

1
x+n

)
1

(x+n)2s and the determinant det(I −Ls) is

analytic for Re(s) > 1. Using an approach of Ruelle [58], [59], Mayer [40], [41]
showed that

(i) det(I − Ls) has analytic extension to C; and
(ii) ζ(s) = det(I − Ls+1)/det(I − Ls)

For the Modular surface (and related surfaces) this special model leads to very
elegant connections with functional equations, the Riemann zeta function and
Modular functions cf. [38].

2 Zeta functions, symbolic dynamics and determinants

Let us denote by τ closed orbits for φ and let us write λ(τ) > 0 for the period,
(i.e., given x ∈ τ we have φλ(τ)(x) = x). We shall call τ a primitive closed orbit
if λ(τ) is the smallest such value. Let us assume for simplicity a fact which
is patently not true (but which has the virtue that it makes a complicated
argument into a simple one!) that r(x) = r(x0, x1) depends on only two terms
in the sequence x = (xn)∞n=−∞ ∈ Σ. We can then associate to A a weighted

k× k matrix Ms(i, j) = A(i, j)e−sr(i,j), i.e., the entries 1 in A are replaced by
values of the exponential of −sr (with s ∈ C) [45], [44]:
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ζ(s) =
∏

τ= prime
orbits

(
1 − e−sλ(τ)

)−1

= exp




∑

τ= prime
orbits

∞∑

m=1

(e−sλ(τ))m

m





= exp




∞∑

m=1

∞∑

p=1

∑

prime orbits

{x,...,σp−1x}

e−sm[r(x0,x1)+r(x1,x2)+···+r(xp−1,x0)]

m





= exp

(
∞∑

n=1

∑

σnx=x

e−sn[r(x0,x1)+r(x1,x2)+···+r(xp−1,x0)]

n

)
(2.1)

= exp

(
∞∑

n=1

trace(Mn
s )

n

)
=

1

det(I −Ms)
.

In particular, in this model case we see that ζ(s) has a (non-zero) meromorphic
extension to the entire complex plane. Moreover, the poles are characterised
as those values s for which the matrix Ms has 1 as an eigenvalue.

More generally, the function r will be more complicated, but still retains
sufficient regularity that the spirit of the above simple argument applies. In the
more general setting, the matrix is replaced by a bounded linear operator (the
Ruelle transfer operator). 3 The spectrum of this operator is quasi-compact
(i.e., aside from isolated eigenvalues of finite multiplicity, the remaining essen-
tial spectrum is in a “small” disk). The corresponding result is then in general
[58], [44], [49]:

Theorem 2.1 The zeta function ζ(s) converges on a half-plane Re(s) >
h. The zeta function ζ(s) has a non-zero meromorphic extension to a larger
half-plane Re(s) > h− ε, for some ε > 0.

There is a simple pole at s = h and, for geodesic flows, there are no other
poles on the line Re(s) = h.

In the special case of hyperbolic flows with analytic horocycle foliations it
is possible to show much more. This includes, for example, constant curvature
geodesic flows. This gives much stronger results [59]:

Theorem 2.2 The zeta function ζ(s) has a non-zero meromorphic ex-
tension to C.

The proof of this result is similar in spirit, except that from the hypothesis
on the foliations the expanding map on the sections (in Case 2′ before) is also
Cω. The transfer operator on analytic functions is trace class and so the
determinant makes perfect sense.

If the foliations are not analytic (which is the case for variable curvature
surfaces) then slightly less is known [32], [62] and [21].

3 The transfer operator in the context of the Modular surface is the operator Ls

described in the last section
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3 Counting orbits

We want to mimic the use of the Riemann zeta function in prime number
theory, except we want to count closed orbits instead of prime numbers. The
aim is to describe that asymptotic behaviour of the number of prime numbers
less than x, i.e.,

π(x) = #{p ≤ x : p is a prime } for x > 0.

Notation: We write f(x) ∼ g(x) if f(x)
g(x) → 1 as x→ +∞.

In 1896, Hadamard and de la Vallée Poussin independently showed the
asymptotic estimate π(x) ∼ x

log x , as x→ +∞, i.e., the prime number theorem

[19]. The basic properties of π(x) come from the Riemann zeta function defined
by

ζR(s) =

∞∑

n=1

1

ns
=

∏

p=prime

(
1 − p−s

)−1
.

This converges to an analytic non-zero function on the domain Re(s) > 1.
Moreover, ζR(s) has the following important properties [19]:

(1) ζR(s) has an analytic non-zero extension to a neighbourhood of Re(s) ≥ 1,
except for a simple pole at s = 1;

(2) ζR(s) has a meromorphic extension to all of C; and ζR(s) and ζR(1 − s)
are related by a functional equation.

Property (1) has a direct analogue for most hyperbolic flows (including
geodesic flows). We say that a hyperbolic flow is weak mixing if the set of
lengths of closed orbits {λ(τ) : τ = closed orbit} isn’t contained in aN, for
some a > 0. In particular, any geodesic flow is weak mixing. 4 The following
is the analogue of property (1) for the Riemann zeta function.

Theorem 3.1 Let φ be a weak mixing hyperbolic flow. There exists
h > 0 such that ζ(s) has an analytic non-zero extension to a neighbourhood
of Re(s) > h, except for a simple pole at s = h.

The value h is the topological entropy of the geodesic flow.
Unfortunately, property (2) doesn’t always have a direct analogue for gen-

eral hyperbolic flows (although it does for constant curvature geodesic flows).
5 However, since the proof of the prime number theorem only required prop-
erty (1) for the Riemann zeta function, we expect that something similar will
hold for closed orbits of hyperbolic flows. We can denote

π(T ) = Card{τ : λ(τ) ≤ T }, for T > 0.

4 Although height one suspended flows over hyperbolic diffeomorphisms aren’t!
5 Indeed there are examples (due to Gallavotti) of zeta functions which have loga-

rithmic singularities.
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The following result is the analogue of the prime number theorem for closed
orbits.

Corollary 3.2 Let φt : M →M be a weak mixing hyperbolic flow then

π(T ) ∼
ehT

hT
, as T → +∞. (3.1)

This was proved, although the details were not published at the time, by Mar-

gulis in 1969. This proof did not use zeta functions, but properties of transverse
measures for the horocycle foliation. (The proof was reconstructed by Toll in
his unpublished Ph.D. thesis from the University of Maryland in 1984.) An
alternative proof using zeta functions was given by Parry and Pollicott in [45].
Prior to this Sinai had shown in 1966 that limT→+∞

1
T log π(T ) = h. For the

special case of geodesic flows on surfaces of constant curvature κ = −1, Huber
showed in 1959, using the Selberg trace formula, that π(T ) = li(ehT )+O

(
ecT
)

where li(x) =
∫ x
2

du
log u and c < h is actually related to the first non-zero eigen-

value of the Laplacian on the surface.
There are related results for counting geodesic arcs between two given

points in place of closed geodesics [54].

3.1 Riemann hypothesis and error terms for primes

The (still unproved) Riemann hypothesis states that: Riemann hypothesis ζ(s)
has all of its (non-trivial) zeros on the line Re(s) = 1/2.

We recall the following:

Notation: We write f(T ) = g(T )+O(h(T )) if there exists C > 0 such that
|f(T ) − g(T )| ≤ C|h(T )|.

The Riemann hypothesis would imply that for any ε > 0 we can estimate
π(x) = li(x) +O(x1/2+ε). To date, only smaller non-uniform estimates on the
zero free region are known which lead to weaker error terms [19].

3.2 Error terms for closed orbits

It turns out that it is more convenient to replace the principal asymptotic

term by li(ehT ) ∼ ehT

hT , as T → +∞.
The following result shows that for variable curvature geodesic flows we

get exponential error terms (cf. [16] [53]).

Theorem 3.3 Let φt : M →M be the geodesic flow for a compact surface
with negative curvature. There exists 0 < c < h, where h again denotes the
topological entropy, such that

π(T ) = li(ehT ) +O
(
ecT
)
, as T → +∞ (3.2)
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Unfortunately, in contrast to the constant curvature case, there is little
insight into the value of c > 0. The estimate (3.2) extends to counting closed
geodesics on compact manifolds of arbitrary dimension providing that the
sectional curvature is pinched −4 ≤ κ ≤ −1. The following result on ζ(s) is
the main ingredient in the proof of Theorem 3.3.

Proposition 3.4 For a geodesic flow there exists c < h such that ζ(s)
is analytic in the half-plane Re(s) > c, except for a simple pole at s = h.
Moreover, there exists 0 < α < 1 such that ζ′(h+ it)/ζ(h + it) = O(|t|α), as
|t| → +∞.

This can be viewed as an analogue of the classical Riemann Hypothesis for
the zeta function for prime numbers. It is well-known for the case of constant
negative curvature (using the approach of the Selberg trace formula).

At the level of more general (weak mixing) hyperbolic flows no such result
can hold. Indeed, there are very simple examples with poles σn + itn for ζ(s)
such that σn ↗ h (and tn ↗ ∞) [47].

3.3 Spatial distribution of closed orbits

Given a geodesic flow φt : M → M , a classical result of Bowen [13] shows
that the closed orbits τ are evenly distributed (according to the measure of
maximal entropy µ). Consider a Hölder continuous function g : Λ → R, then

we can weight a given closed orbit τ by λg(τ) =
∫ λ(τ)

0
g(φtxτ )dt (for xτ ∈ τ).

The following result was originally proved by Bowen [13], with a subsequent
proof by Parry [43] using suitably weighted zeta functions.

Theorem 3.5 Given a geodesic flow φ : M → M there exists a proba-
bility measure µ such that

∑

λ(τ)≤T

λg(τ)/
∑

λ(τ)≤T

λ(τ) →

∫
gdµ as T → +∞.

In the case of constant curvature surfaces the measure of maximal entropy
is the Liouville measure (i.e., the natural normalised volume).

There are also Central Limit Theorems [57] and Large Deviation Theorems
[31] for closed geodesics. In particular, the latter can be viewed as generalisa-
tions of Theorem 3.5. More generally, the following result of Kifer is valid for
any hyperbolic flow and so, in particular, for the geodesic flow φt : SV → SV .
Let µτ be the natural invariant measure supported on a closed orbit τ .

Proposition 3.6 Let U be an open neighbourhood of the measure of
maximal entropy µ in the space M of all φ-invariant probability measures on
M . Then

1

π(T )
#{τ : λ(τ) ≤ T and µτ/λ(τ) 6∈ U} = O(e−δT ),

as T → +∞, where δ = infν∈M−U{h− h(ν)} > 0.



12 Mark Pollicott

3.4 Homological distribution of closed orbits

By way of motivation, recall the asymptotic behaviour of the number B(x)
of integers less than x which can be written as a square or as the sum of
two squares, i.e., B(x) = #{1 ≤ n ≤ x : n = u2

1 + u2
2, u1, u2 ∈ Z} for x > 0.

Landau [35] showed that B(x) ∼ Kx/(log x)1/2, for some K > 0, and the
same result appears in Ramanujan’s famous letter to Hardy in 1913 [8]. The
full asymptotic expansion for B(x) has the simple form

B(x) =
Kx

(log x)1/2

(
1 +

N∑

n=1

αn
(log T )n

+O

(
1

(log x)N

))

for any N ≥ 1. [23]. The proof of the above asymptotic expansion involves
studying the complex function

s 7→
1

1 − 2−s

∏

q

1

1 − q−s

∏

r

1

1 − r−2s
,

where q runs through all primes equal to 1 (mod 4) and r runs through all
primes equal to 3 (mod 4). Of course, this differs from the Riemann zeta func-
tion only in the factor of 2 in the last exponent, but the result is a singularity
of the form (s− 1)−1/2, rather than a simple pole, which leads to a different
asymptotic behaviour.

As usual, we let V denote a compact surface of negative curvature. Let
α ∈ H1(V,Z) be a fixed element in the first homology. Given a closed geodesic
γ we denote by [γ] the homology class associated to a closed geodesic V . Let
π(T, α) be the number of closed geodesics in the homology class α of length
at most T , i.e.,

π(T, α) = #{γ : l(γ) ≤ T, [γ] = α}.

The following formula was proved independently by Anantharaman [4] and
Pollicott and Sharp [55].

Theorem 3.7 Let b = dim(H1(V,R)) be the first Betti number for V .
There exist C0, C1, C2, . . . (with C0 > 0) such that

π(T, α) =
ehT

T b/2

(
N∑

n=0

Cn
T n

+O

(
1

TN

))
as T → +∞,

for any N > 0.

The similarity with Landau’s result comes from a (s − 1)−1/2 singularity
also appearing in the domain of the corresponding zeta function for π(T, α).

For surfaces of constant curvature κ = −1 this was originally proved by
Phillips and Sarnak [46]. Katsuda and Sunada [30], Lalley [33] and Pollicott
[50] then each independently showed that for more general surfaces of variable
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curvature the basic asymptotic formula π(T, α) ∼ ehT

T b/2 , as T → +∞, still
holds.

Finally, we should remark that there are interesting results on special
values of the closely related homological L-functions cf. [20], [22].

3.5 Intersections of closed orbits

There are a number of results describing the average number of times a typical
closed geodesic intersects itself [48] and [34] 6. However, we shall describe a
more topical result conjectured by Sieber and Richter[71].

Given 0 ≤ θ1 < θ2 ≤ 2π, let iθ1,θ2(γ) denote the number of self-
intersections of the closed geodesic γ such that the absolute value of the angle
of intersection lies in the interval [θ1, θ2].

Theorem 3.8 Given 0 ≤ θ1 < θ2 ≤ 2π, there exists I = I(θ1, θ2) and
c < h such that, for any ε > 0,

#

{
γ : l(γ) ≤ T,

iθ1θ2(γ)

l(γ)2
∈ (I − ε, I + ε)

}
= li(ehT ) +O(ecT ).

We shall outline the idea of the proof, due to Sharp and the author. Let
F denote the foliation of SV by orbits of the geodesic flow φ. Given any
φ-invariant finite measure µ (not necessarily normalised to be a probability
measure) we can consider the associated transverse measure µ̃ for F . The
set of such transverse measures C is usually called the space of currents. Let
E = SV ⊕SV −∆ be the Whitney sum of the bundle SV with itself, minus the
diagonal∆ = {(x, v, v) : x ∈ V, v ∈ SxV }. Let p : E → V denote the canonical
projection. In particular, points of the four dimensional vector bundle E (with
two dimensional fibres) consist of triples {(x, v, w) : x ∈ V and v, w ∈ SxV }.
Let p1 : E → SV be the projection defined by p1(x, v, w) = v and let p2 : E →
SV be defined by p2(x, v, w) = w. Following closely Bonahon’s construction
[9], we consider the two transverse foliations (with one dimensional leaves)
of E given by F1 = p−1

1 (F) and F2 = p−1
2 (F). Given 0 ≤ θ1 < θ2 ≤ π, we

define the angular intersection bundle Eθ1,θ2 ⊂ E by Eθ1,θ2 = {(x, v, w) ∈
E : ∠vw ∈ [θ1, θ2]}, where 0 ≤ ∠vw ≤ π denotes the angle between the two
vectors. This is a closed sub-bundle of E.

Given currents µ̃, µ̃′ ∈ C, we can take the lifts µ̂1 := p−1
1 µ̃ and µ̂′

2 := p−1
2 µ̃′,

which are transverse measures to the foliations F1 and F2 for E, respectively.
Bonahon defined the intersection form i : C ×C → R+ to be the total mass of
the E with respect to the product measure µ̂1×µ̂

′
2, i.e., i(µ̃, µ̃′) = (µ̂1×µ̂

′
2)(E)

[9]. By analogy, we can define an angular intersection form iθ1,θ2 : C×C → R+

to be the total mass of the Eθ1,θ2 with respect to the product measure µ̂1×µ̂
′
2,

i.e., iθ1,θ2(µ̃, µ̃
′) = (µ̂1 × µ̂′

2)(Eθ1,θ2).

6 Which also corrects an error in the asymptotic expression in [48]
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In the present context, the large deviation result Proposition 3.6 gives the
following estimates.

Lemma 3.9 Given ε > 0, there exists δ > 0 such that

1

π(T )
#{γ : l(γ) ≤ T and |l(γ)−2(µ̂γ,1 × µ̂γ,2)(Eθ1,θ2) − (m̂1 × m̂2)(Eθ1,θ2)| ≥ ε}

= O(e−δT ), as T → +∞.

In particular, we can set I(θ1, θ2) := iθ1,θ2(µ̃, µ̃), where µ is the measure
of maximal entropy. We deduce that, except for an exceptional set with car-
dinality of order O(e(h−δ)T ), the set of closed geodesics of length at most T
satisfy |l(γ)−2iθ1,θ2(γ) − I(θ1, θ2)| < ε. Theorem 3.8 then follows easily by
applying the asymptotic counting results described in §3.2.

3.6 Decay of Correlations (a compliment to counting orbits)

A closely related problem to that of counting closed orbits is that of decay
of correlations. Let φt : M → M be a weak-mixing hyperbolic flow and let µ
again be the measure of maximal entropy (i.e., the measure in Theorem 3.5).
The flow φ is strong mixing, i.e.,

ρF,G(t) :=

∫
F ◦ φtGdµ−

∫
Fdµ

∫
Gdµ → 0, for all F,G ∈ L2(X,µ).

(i.e., the “correlation of the flow tends to zero”.)
Dolgopyat proved the following result on exponential decay of correlations

in the case of geodesic flows on compact negatively curved surfaces [17].

Theorem 3.10 Let φt : M → M be the geodesic flow for a surface
of variable negative curvature. There exists ε > 0 such that for any smooth
functions F,G : M → R there exists C > 0 with ρF,G(t) ≤ Ce−ε|t|.

For constant negative curvature surfaces this result can be proved using
representation theory [42], [15]. Moreover, there are very few examples of
hyperbolic flows for which exponential decay of correlations is known to hold
[17].

The complex function used in the study of ρF,G(t) is its Fourier transform
ρ̂F,G(s) =

∫
eistρF,G(t)dt.

Theorem 3.11 Let φ : M → M be a Cr hyperbolic flow (r ≥ 2 or
r = ω). There is a neighbourhood V of φ (amongst Cr flows on M) such that:

there exists ε > 0 such that the associated correlation function ρ̂(ψ)(s) has
a meromorphic extension to a strip |Im(s)| < ε, for each ψ ∈ V [47]; and
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whenever si = si(φ) is a simple pole for ρ̂(φ)(s) in the strip |Im(s)| < ε
then the map V 3 ψ 7→ si(ψ) is Cr−2 [51].

Moreover, since the analysis of the Fourier transform also depends on the
Ruelle transfer operator there is a direct relationship between the poles of
ρ̂F,G(s) and ζφ(s) (described in [47]). More precisely, s (with Im(s) < 0) is a
pole for ρ̂(s) if and only if h+ is is a pole for ζ(s).

If we replace µ by the Liouville measure (or any other suitable Gibbs
measure) analogous results hold, with a suitably weighted zeta function.

4 Other applications of closed geodesics

Ruelle’s approach to the proof of theorem 2.2 has a number of other applica-
tions. Here we recall a couple of our favourites.

4.1 Determinants of the Laplacian

A very interesting object in the case of surfaces V of constant negative curva-
ture κ = −1 is the (functional) determinant of the Laplacian. The Laplacian
∆ : L2(V ) → L2(V ) is a self-adjoint linear differential operator. Let us write
the spectrum of −∆ as 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ +∞ and consider the
associated Dirichlet series

η(s) :=

∞∑

n=1

λ−sn .

This converges for Re(s) > 1, as is easily seen using Weyl’s theorem. The
function η(s) has a meromorphic extension to C and we define the determinant
by det(∆) := exp(−η′(0)). 7 The function det(∆) depends smoothly on the
Riemann metric. There is considerable interest in understanding its critical
points [66].

Somewhat surprisingly this quantity can be explicitly expressed in terms of
the closed geodesics. The starting point is that is a direct connection between
det(∆) and the Selberg zeta function. First we define for each n ≥ 1 the
function

an :=
∑

|τ1|···+|τr|=n

(−1)r+1 λ(τ1) + · · ·λ(τk)

(eλ(τ1) − 1) · · · (eλ(τk) − 1)
,

where the sum is over collections of closed orbits for the geodesic flow (or,
equivalently, closed geodesics) and |τ | denotes the word length of a corre-
sponding conjugacy class in π1(V ) with respect to a suitable choice of gener-
ators (i.e., the smallest number of generators needed to write an element in
this conjugacy class). The following theorem was proved in [52]. 8

7 A particularly nice introduction to this subject is [66].
8 The title of this article is good humoured reference to the title of the Ph.D. thesis

of G. McShane.
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Theorem 4.1 We can write det(∆) = C(g)
∑∞
n=1 an, where the series

is absolutely convergent (and |an| = O(θn
2

)) and C(g) is a constant depending
only on the genus g of the surface V .

It is also possible to use the zeta functions to describe the dependence of
other dynamical invariants, such as entropy [28].

4.2 Computation

It is an interesting problem to get numerical estimates on dynamical properties
for interval maps. For example, given an expanding interval maps it might be
interesting to estimate the entropy (of the absolutely continuous invariant
measure). The “classical” approach to this problem is the Ulam method, in
which the map is essentially approximated by a piecewise linear map and the
density can be estimated from the eigenvectors of the matrix.

We can now describe a somewhat different method which applies to Cω

expanding maps T : I → I on an interval I. We can define invariant (signed)
measures νM defined by

νM =
∑

(n1,...,nm)

n1+...+nm≤M

(−1)m

m!

m∑

i=1

∑

x∈Fix(ni)




m∏

j=1
j 6=i

∑

z∈Fix(nj)

r(z, nj)




δx

|(T ni)′(x) − 1|

where δx is the Dirac measure and the first summation is over ordered m-
tuples of positive integers whose sum is not greater than M , where Fix(n)
denotes the set of fixed points of T n, and where

r(x, n) =
1

n|(T n)′(x) − 1|
.

The measure νM is supported on those periodic points of period at most
M , which can easily be computed in practise. Introducing the normalisation
constant

IM =
∑

(n1,...,nm)

n1+...+nm≤M

(−1)m

m!

m∑

i=1

∑

x∈Fix(ni)




m∏

j=1
j 6=i

∑

z∈Fix(nj)

r(z, nj)




1

|(T ni)′(x) − 1|
,

we then define the invariant signed probability measures µM = I−1
M νM . For

real analytic maps we have the following [27]:

Theorem 4.2 Let µ be the absolutely continuous T -invariant probability
measure. There is a sequence of T -invariant signed probability measures µM ,
supported on the points of period at most M , such that for every Cω function
g : I → R, there exists 0 < θ < 1 and C > 0 with
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∣∣∣∣
∫
g dµM −

∫
g dµ

∣∣∣∣ ≤ CθM(M+1)/2.

In particular, with the choice g = log |T ′| we have as a corollary that the
“Lyapunov exponent” λµ =

∫
log |T ′| dµ can be quickly approximated, i.e.,

∣∣∣∣
∫

log |T ′| dµM − λµ

∣∣∣∣ ≤ CθM(M+1)/2.

Many related ideas appear in the beautiful work of Cvitanovic and his
coauthors.

5 Frame flows

Recently, there has been interest in extending results for hyperbolic flows to
partially hyperbolic flows. That is, we allow some transverse directions to the
flow that are neither expanding nor contracting. The principle example of such
systems are probably the frame flow, which is an extension of the geodesic
flow φt : M →M on the unit tangent bundle, for a manifold V with negative
sectional curvatures.

5.1 Frame flows: Archimedean version

Let Stn+1(V ) be the space of (positively oriented) orthonormal (n+1)-frames.
The frames Stn+1(V ) form a fibre bundle over M with a natural projection
π : Stn+1(V ) → M which simply forgets all but the first vector in the frame,
i.e., π(v1, . . . , vn+1) = v1. The frame flow ft : Stn+1(V ) → Stn+1(V ) acts
on frames (v1, . . . , vn+1) ∈ Stn+1(V ) by parallel transporting for time t the
frame along the geodesic γv1 : R → V satisfying v1 = γ̇v1(0). In particular,
the frame flow semi-conjugates to the geodesic flow, i.e., πft = φtπ for all
t ∈ R.

The associated structure group acts on each fibre by rotating the frames
about the first vector v1. In particular, we can identify each fibre π−1(v) ⊂
Stn+1(V ), for v ∈ St1(V ), with the compact group SO(n). We can associate
to each closed orbit τ a holonomy element [τ ] ∈ SO(n − 1) (defined up to
conjugacy). The following is the natural analogue of Theorem 3.5 [44].

Theorem 5.1 Let f : SO(n− 1) → R be a continuous function constant
on conjugacy classes. Then

1

π(T )

∑

λ(τ)≤T

f([τ ]) →

∫
fdω, as T → +∞,

where ω is the Haar measure on SO(n− 1).
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The idea of the proof is that we can model the underlying geodesic flow
symbolically by a sequence spaceΣ, etc. But for the frame flow we additionally
have an associated map Θ : Σ → SO(n − 1) which essentially measures the
“twist” in SO(n− 1) along the orbits.

The distribution properties of frame flows on certain non-compact man-
ifolds have been considered in [36]. In this context, there is a particularly
interesting connection with Clifford numbers [3].

5.2 Non-Archimedean version

Let Qp denote the p-adic numbers with the usual valuation |·|p. Let Zp = {x ∈
Qp : |x|p ≤ 0} denote the p-adic integers. We can study a natural analogue
of the frame flow and geodesic flow for G = PSL(2,Qp). The rôle of the
hyperbolic upper half plane H2 in the usual archimedean case is taken here
by a regular tree X , say. We recall the basic construction.

Vertices Given any pair of vectors v1, v2 ∈ Q2
p one associates a lattice

L = v1Zp + v2Zp. We can define an equivalence relation on lattices: L ∼ L′

if lattices L,L′ are homothetically related (i.e., there exists α ∈ Qp such that
L′ = αL). We take the equivalence classes [L] to be the vertices of the tree
X .

Edges Given two vertices (equivalence classes) [L1], [L2] we can associate
an edge [L1] → [L2] whenever we can find a basis {v1, v2} for L1 and {πv1, v2}
for L2, where π = 1

p is called the uniformizer.

Lemma 5.2 [70] X is a homogeneous tree, with every vertex having (p+1)-
edges.

There is a natural action GL(2,Qp) × X → X on the tree given by
γ[v1Zp + v2Zp] = [(γv1)Zp + (γv2)Zp]. The construction and action is ele-
gantly described by Serre [70]. The frame flow is actually a discrete action
defined on the quotient space Γ\X of the associated tree X by a lattice Γ
and is given as multiplication by

(
1 p
0 π

)
. If Γ is torsion free then there is a

natural shift map on the space of paths σ : Σ → Σ which plays the role
of the geodesic flow. Let S be the closed multiplicative subgroup of squares
in O× = {x ∈ Qp : |x|p = 0}. There exists a Hölder continuous function
Θ : Σ → S such that the p-adic frame flow for a lattice Γ corresponds to a
simple skew product

σ̂ : Σ × S → Σ × S

σ̂(x, s) = (σx,Θ(x)s). (5.2)

Let Γn be the set of conjugacy classes of γ ∈ Γ with |trγ|p = n. For each

conjugacy class [γ] ∈ Γn, denote by σ([γ]) ∈ S the common value of p|λ
2
γ |pλ2

γ ,
where λγ denotes the maximal eigenvalue. The analogue of Theorem 5.1 is
the following result of Ledrappier and Pollicott.
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Theorem 5.3 Eigenvalues of matrices in Γ are uniformly distributed in
the sense that for any continuous function φ on S, we have:

lim
n→∞

1

p2n

∑

[γ]∈Γn

φ(σ([γ])) =

∫
φ(s)dω(s),

where ω is the Haar probability measure on S.

This can be viewed as a non-archemidean version of the results in [67].
Moreover, in the particular case that Γ is an arithmetic lattice it is possible to
use Deligne’s solution of the Ramanujan-Petersson conjecture to get uniform
exponential convergence in Theorem 5.3.
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