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0 Introduction

The main object of study of this paper is a Galois etale cover ¥: Y — X,
where X is a minimal surface of general type; write G = Gal(Y/X) and
n = |G|. Recall that the algebraic fundamental group is defined as the limit
T8(X) = lim G, the limit begin taken over all such covers Y. For brevity I

will write m X for ﬁflg(X ); this paper will only incidentally contain informa-
tion concerning the topological fundamental group.

Theorem 0.1 Suppose that X has p, = 0, K* = 2; then any Galois etale
cover Y — X has order n < 9.
Furthermore,

(i) if n = 8 then the canonical map ¢, :Y — Y C P® is a birational
morphism, and the image Y is a complete intersection of 4 quadrics.

(i) if n =9 then ¢k, : Y =Y C P is a birational morphism and the
image Y is the section of the Segre embedding of P? x P? with a cubic
hypersurface.

Corollary 0.2 Any cover Y — X has q(Y) = 0; and H (X, 0) = 0 for every
torsion element o € Pic X.

A detailed treatment of the cases |mX| = 9 and |m X| = 8 is given in
Section 2; for | X| = 8, each of the possibilities (Z/2)3, Z/4 ® Z/2, Zg and
Qs (the quaternion group) occurs and leads to an irreducible (unirational)
moduli space; whereas m X = Dg (the dihedral group) is impossible.

It should be possible to obtained complete information on the cases of
m X of order 7, 6, or 5, and I hope to return to this subject in a subsequent

paper.
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The idea behind Theorem 0.1 is that for n large the canonical map of Y
must be “special”, so that Y acquires some special properties. On the other
hand, any idiosyncracy of the canonical system is intrinsically attached to Y
and is therefore compatible with the action of G' (see Section 4). In principle
this idea can be applied to any surface with small K? and large m;. The
following more general results are proved in Section 3.

Theorem 0.3 Let X be a minimal surface o general type, and suppose that
K% < 3¢63(X) (equivalently, K% < 3x(Ox); then either

(i) mX is finite; or

(i1) there exists an etale Galois cover Yo — X, Yy having a morphism
f: Yo = Cy to a curve of genus p > 0 inducing an isomorphism
f*I 71'1)/0 — 7T100.

Furthermore in (ii), the fibres of f: Yo — Cy are hyperelliptic curves of genus
g <5

Corollary 0.4 (i) m X is an extension of mCy by a finite group Gy;

(ii) for every etale cover Y — X with q(Y) # 0, the Albanese map o: Y —
AlbY maps onto a curve;

(111) if f: X — C is a nonconstant morphism of X with connected fibres to
a curve C of genus p > 0 then ¢(X) = p.
Dividing Yo — Cy by the equivariant action of Gy gives a restatement

of (i1):

(i) m X is infinite, and contains a normal subgroup A of order < 4; there
exists a morphism X — B to a curve B; and every etale cover Y — X,
which corresponds to a finite quotient of m1 X /A, is obtained by making
a normalised pullback diagram

Y=XxpC — X

1 1
C — B

over a cover C — B ramified only at points of B corresponding to
multiple fibres of X — B.

Theorem 0.5 Let X be a minimal surface with K% < 3p,(X) — 7, K% <
3x(Ox), and py > 8; then one of the following 4 cases hold:
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(i) |Kx| is composed of a rational pencil X -+ P', and ¢(X) = 0;

(1) |Kx| is composed of a irrational pencil X — C, with C' a curve of genus
p>0, and q(X) = p;

(iii) Qi X —— F C PPoX)=1 s generically 2-to-1 onto a rational surface
F, and ¢(X) =0; or

(iv) ory: X -+ F C PPsX)=1 s generically 2-to-1 onto a ruled surface of
genus p > 0, and q(X) = p.

It is quite likely that (i) and (ii) cannot actually occur; I also do not know
if fibres of genus 4 or 5 can occur in Theorem 0.3 — if this happens then |Ky |
must have a fixed part having large intersection number with the fibres.

There is an element of ineffectivity in Theorem 0.3, there being no bound
for the finite 7 X which can occur; the problem is to bound the 2-torsion in
Pic X (see Problem 3.2).

A positive answer to Conjecture ?? would be one step in the direction of
the following:

Conjecture 0.6 The hypothesis in Theorem 0.8 can be weakened to K% <
s0o(X) (equivalently, K% < 4x(Ox)).

The conjecture can be weakened to ask only that surfaces with K% <
so(X) satisfy Corollary 0.4, (ii) and (iii); perhaps the natural approach
to this conjecture would be through differential geometric methods, which
could also shed light on the problem of the topological fundamental group for
surfaces in this range.

F. Sakai points out that the hypothesis of Theorem 0.3 cannot be weak-
ened to K% < co(X), since for every surface of general type S, there exists a
cyclic branched cover T — S with K2 < co(T).
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Characteristic All varieties, morphisms, etc., in this paper are defined over
an algebraically closed field & of characteristic 0.

According to [15], p. ??, a surface of general type has p, > ¢, so that
p, = 0 implies also ¢ = 0. Actually any surface with K? > 0 which is not
rational (for example, not simply connected) is necessarily of general type.

The assumption of characteristic 0 is used several times in using the for-
mula for the plurigenera P, = x(Ox) + (g)Kz, especially the n = 2 case,
P, = x(Ox) + K% it is used again in Theorem ??, a classical result which is
to be found (with one and the same proof) in dozens of places in the literature.
It would seem highly desirable to have a proof of this result in characteristic
.

A linear system |L| is said to be free if it is free of fixed components and
base points. I write H? & H"~ to denote duality of vector spaces.



Part I
The main theorem

1 Proof of Theorem 0.1

Let X be as in Theorem 0.1, and ¥: Y — X an etale Galois cover, with G
and n as in Section 0; Y has the following invariants:
Ky =nKi=2n and (p,+1)(Y) = n(p. + 1)(X),
that is, py(Y) = n — 14 ¢(Y). Theorem 0.1 is proved by considering the
canonical map
YKy Y ——» Y C Pr2taY),

the proof proceeds in 8 steps:

Step 1 Forn > 5, |Ky| is not composed of a pencil.

Proof Suppose that
|Ky|=|E®| +F,

with E(") = E; 4+ --- + E,, the E; being fibres of a rational map f: Y --» C.
Write E for the numerical equivalence class of the E;. Then

o2n =K =rKyE + KyF > rKyE,
and
KyE =rE*+ EF > rE?
furthermore, since |E()| has projective dimension p,(Y) — 1. I have
n—2<p,Y)-1<r.

If C has genus p > 0 then f is a morphism, and E? = 0; on the other
hand if C' is rational then the fibres of f form a rational pencil | F'| equivariant
under the action of G, so that by Lemma 4.1, (i), n | F?, and 2n > r?E?
implies at once that E2 = 0. Then

KyE< <

T n—2
implies that Ky E = 2, so that f is a pencil of curves of genus 2. Some
element of G must act on C' with nontrivial stabiliser, since otherwise C/G
would have genus p > 0, with morphism X =Y/G — C/G. Lemma 4.2, (i)

now provides a contradiction.

Step 2 Ifn > 5, then |Ky| is free.



Proof Write |[Ky| = |C|+ F, with C an irreducible linear system, and F
the fixed part. Then

K¢ = KyC+KyF > KyC,

KyC = C*+CF > C%

writing Z for the scheme theoretic base locus of C, I also have
C? =deg Z +degpc -degY,

where ¢ = ¢k, : Y -+ Y C P»274Y) ig the rational map defined by |C].
Then

2n = Ki =degpc -degY + KF + CF + deg Z.

According to Lemma 4.1, each of KF, C'F and deg Z is divisible by n, so
that if any one of them is nonzero, I get

deg pc - degY = n;

and degY > n — 3, since Y spans P?—2+a(Y)

In case n = 5 or n > 7 if follows immediately that deg e = 1, that is,
©c is birational; for n = 6 special considerations also show that ¢ must be
birational. But for n = 5, Y would be a quintic in P3, birational to Y, which
contradicts the invariants p, = 4, K& = 10; for n > 6 a surface of degree n in
Pr-2+4(Y) is not of general type according to Theorem 6.2. This contradiction
proves this step.

Step 3 Forn > 6, either pk, is birational, or G = (Z/2)".

Remark 1.1 Forn = 5it can happen that Y — Y C P? is a double cover of a
quintic, ramified in just 20 nodes of Y; a specific example can be constructed
easily out of the Hilbert modular surface (see [3], §4, Theorem 3). This
provides the only surface with p, = 0, K? = 2 and m; = Z/5 which I know of
at time of writing.

Proof 2n= K% =degyk, -degY, with degY > n — 3. Hence

2
deg vk, < —n3, and degyk, | 2n.
n_

Thus if ¢k, is not birational then either deg ¢k, = 2, or I am in one of the
following cases:
n==6, degyk, =4
n =206, deg PKy = 3;
or n=9, degygk, =3.



The cases with n = 6 require separate (rather easy) treatment, and are
omitted here. The case n =9, degy, = 3 leads rapidly to a contradiction as
follows: ¢k, : Y — Y C P7, with Y of degree 6; then Y must be a rational
normal scroll F,., with n 4 2r = 6. If » # 0 then Y is nonsingular, and the
ruling of Y leads to a pencil |E| of curves on Y with Y2 = 0, Ky E = 3, which
is absurd. In the case r = 0, Y is the cone Fg, and the generators of this cone
again give an irreducible pencil |E| on Y such that Ky > 6F; it follows at
once that E? = 0, Ky E = 3, which is the same contradiction.

Suppose then that deg gy, = 2; the image Y = F is then a surface of
degree n spanning P*~2t4(Y) By Theorem 6.2, F is either a K3 surface (and
n = 6), or a rational surface, or a ruled surface of genus p > 0.

(a) Suppose that F' is rational; then the double cover g, : Y — F defines
a biregular involution 7 of Y such that the quotient Y/i is rational.
The covering Y — Y/i is equivariant under an action of G, and every
element ¢ € G has a fixed point on Y/i. Lemma 4.1, (ii) then shows
that o2 = 1 for all o € G, so that G = (Z/2)°.

(a') If n = 6 and F is birationally a K3 surface then the same argument
applied to an element of G of order 3 (which necessarily has a fixed
point on Y/i) gives a contradiction.

(b) Suppose that F is ruled of genus p > 1; F is of degree n in Pr=2+a(Y),
with ¢(Y) > p > 0. By Corollary 6.5, if n > 5 then F is ruled by
lines. It follows that Y has a canonical pencil Y — C of curves of
genus 2, with C' of genus p > 0. As before, G cannot act freely on C,
for otherwise the quotient C'/G would also have genus > 0, and there
would be a morphism X — C/G. Lemma 4.2, (i) then provides the
usual contradiction, completing the proof of this step.

Step 4 (Miyaoka) G = (Z/2)* implies that a < 3.

According to Theorem 5.4, a Galois cover with group G = (Z/2)® corre-
sponds to a subgroup (Z/2)* C Pic X.

Theorem 1.2 ([5], §4) Let X be a minimal surface with p, = 0, K* = 2,
and suppose that (Z/2)® C Pic X; let ¢: Y — X be the corresponding cover.
Then ¢, :Y — Y C PS is birational onto a complete intersection of 4
quadrics in PP,

Since Y has at worst rational double points as singularities it follows that
Y is simply connected.



Proof For each of the 7 nonzero elements o € (Z/2)> C PicX, I have
H?*(X,0x(Kx + o)) =0, so that by Riemann—Roch,

RY(X,0x(Kx +0)) =1+h'>1;

thus I can choose nonzero sections z, € H*(Kx + o).
The 7 elements all belong to H°(2Kx), which is a vector space of dimen-
sion 3; there are thus (at least) 4 linearly independent relations

Li(z2) =Y Aigzl = 0. (1.1)

Now for each o, let z, continue to denote ¢*z, € H°(Ky); these 7 elements
are linearly independent since they belong to different eigenspaces of the
group action. Consider the map ¢: Y —-» P® defined by these 7 sections;
exactly as in Step 1, the image Y = ¢(Y)) is a surface, which spans P since
the 7, € H°(Ky) are linearly independent. On the other hand Y is contained
in 4 linearly independent diagonal quadrics (1.1).

The following simple result completes the proof of Theorem 1.2:

Proposition 1.3 Let xy,...,x, be homogeneous coordinates in P", and let

Qz(&) :Z)\wl‘? fori: 1,...,r

be r linearly independent diagonal quadrics. Let W C P™ be the locus of
common zeros of the QQ;. Then

(i) W is pure of dimension n —r;

(i1) either W is irreducible, or every component of W is contained in a
hyperplane.

Proof Choose a component U of W; renumbering the z; if necessary, I
can assume that U is not contained in the hyperplane xq = 0, and that the
relations are of the form

x) = Li(x3,...,02_,) fori=n—r+1,...,n,
with the L; linear forms.

For (i), note that by the theorem on the dimension of intersection, U
has dimension > n — r; but on the other hand, the function field £(U) of
U is generated by z1/xq,...,%,/xo, of which the final r are algebraically
dependent on the first n — r.

For (ii), note first of all that £(U) contains the purely transcendental
extension k(T1,...,T,_,) of k with T; = z2/z2. The extension k(U)/k(T)



is generated by x;/z¢ for i = 1,...,n, each element of which satisfies an
equation

x?/l"g = Li(TI: s aTnfr):

with the L; linear polynomials in the 7; (not necessarily homogeneous).

Now I claim that if no 2 of the L; are proportional, then [k(U) : k(T)] = 2™;
from this it follows easily that U has degree 2" in P", so that U = W and W
is irreducible. On the other hand, if say L; = o*L; then 27 = o”z3, so that
U is contained in one of the hyperplanes z; = *au;.

To prove the claim, let K; = k(T)(x1/xo, - .., z;/xo); then each Kj is either
a quadratic extension of K; 1, or K; = K, ;. If the latter happens, consider
the valuation of £(7T') at L;; this is certainly ramified in Kj, so that it must also
be ramified in K;_;. However, this implies that the valuation at L; coincides
with the valuation at L; for some j < ¢, and then the linear forms L; and L;
are proportional

This completes the proof of the proposition and of Step 4.

Step 5 n < 10.

Proof By Steps 3 and 4, for n > 6 the morphism ¢g,.: Y =Y C pr—2taY)
must be birational. However, by Theorem ??, (ii), this implies that K2 >
3p, — 7; substituting the values given at the beginning of this section gives

2n>3(n—1) — 7+ 3¢(Y),

and n < 10.

Note that this proves Corollary 0.4, since if Y has g # 0 then X has etale
Galois covers of arbitrarily large orders.

Step 6 Forn =29 or 10, or for n =8 if Y is not a complete intersection of
4 quadrics, then Y C W C P2 with W a component of the intersection of
all quadrics through Y .

Proof In cases n = 10 and n = 9, I have K& = 3p,(Y) — 7 and K2 =
3py(Y) — 6 respectively. The assertion thus follows from Theorem ?7, (iii).
In case n = 8, Y C PP® has degree 16, and is contained in 4 quadrics. Thus
if ﬂQ)?Q # Y, it must contain some component W of dimension > 3; the
case of 4-dimensional W is easy to exclude by means of Theorem ??, (i) and
Proposition ??. But then I can choose 3 quadrics (01, @2, @3 in the web such
that >, Q; = UW,, with each W; irreducible and 3-dimensional; there
must be at least two W;, since if ();_; @Q; is irreducible then for some 4th
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quadric ()4 the intersection ﬂle Q; is purely 2-dimensional, and therefore
coincides with Y. Therefore Y C W (= Wi, say), with degW < 8; if Q4
is some quadric containing Y by not containing W then W N @ is purely
2-dimensional, of degree < 16, and this contradiction implies that W is a
component of (o y Q-

Note that since W C P"~? is contained in at least (g) — 3n quadrics, it fol-
lows from Proposition ?? that in any of the 3 cases deg W < 6. Furthermore
W spans P* 2, so that degW > n — 4.

The notation of Step 6 is preserved in the next 3 sections.

Step 8 deals with the essential case n = 8, degW = 6.

Step 7 The following cases are impossible: n = 10; n =9 and degW < 5;
n =238 and degW < 5.

Proof IfF C P! is a rational normal m-fold scroll of degree d then one
calculates easily (compare Section 7)

RO (F, O (k)) = <k+m_1)d+ <k+m_1>.

m m—1

Case n =10, degW =6 Here W is a rational normal 3-fold scroll; then
0 6 6
h’ (W, 0w (4)) = 5 6+ 5) = 135,

= 4
whereas h°(Y,05(4)) < h°(Y,4Ky) =10+ 20 (2) = 130.

Thus Y is contained in a quartic hypersurface of P® not containing W. The
ruling of W must then cut out a pencil of curves of genus < 3 on Y’; this gives
the usual contradiction to Lemma 4.2, (i).

Case n =9, deglW =5 We have
0 7 7
h(W, 0w (5)) = 3 o+ 9) = 196,

whereas h°(Y,03(5)) < h°(Y,5Ky) =9 + 18 (;) = 189.

Thus Y is contained in the intersection of W with a quintic. This gives an
equivariant pencil |F| on Y with Ky E = 4 or 5; on the other hand, Y has
an automorphism of order 3 without fixed points. Applying Lemma 4.1 gives
3| E? and 3 | Ky E + E?, and the usual contradiction.

A 3-fold of degree 4 spanning P° is either a rational normal scroll or the
cone on the Veronese surface.
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Case n = 8, deglW = 4 and W the Veronese cone The vertex of W is
intrinsically determined by Y, and so is fixed by the action of G. Hence Y
cannot pass through the vertex of W, since otherwise it would have to pass
8-fold through it, giving a contradiction as in Step 2. Thus Y is a Cartier
divisor on W. Because PicW = Z, Y is the intersection of W with a quartic
hypersurface; the adjunction formula then gives Ky ~ 3h, where h is the
pullback of a line of P? under the projection of Y to the base of the cone W.
If now A C Y is the divisor defined by the conductor of Oy in Oy, we have

A~e*Ky — Ky ~¢*h, and 2A~ Ky.

This is a divisor which is invariant under the whole group G, and of arith-
metic genus given by 2p, — 2 = A(Ky + A) = 2K} = 12. This contradicts
Lemma 4.1, (ii).

Case n =8, degWW =4 and W a rational normal scroll Then

R (W, Ow (6)) = (2)4 + (2) = 252,
whereas h°(Y,O3(6)) < h°(Y,6Ky) =8+ 16 (g’) = 248.

As in the above cases, Y then acquires an equivariant pencil |E| with Ky E =
4,5 or 6; this is impossible to accommodate with a fixed point free automor-
phism of order 4. For in cases Ky E = 5 or 6 one obtains a contradiction
as before. In case Ky E = 4, |E| is a pencil of curves of genus 3, giving a
contradiction by Lemma 4.2, (i).

A 3-fold W of degree 5 in P% is either nonsingular, or a cone over a del
Pezzo surface of degree 5 (compare [18]).

Case n =8, degW =5 and W nonsingular In this case W is the unique
Fano 3-fold of index 2 and degree 5 ([8], Theorem 4.2, (iii)); since this is a
hyperplane section of a Grassmannian, it has PicW = Z. This implies that
5 | degY’, a contradiction.

Case n =8, degWW =5 and W a cone on a del Pezzo surface If W is
a cone with vertex O, then Y cannot pass through O by the argument used
above. If H; and Hj, are two general hyperplane sections through O then
Y N H, N H, consists of 5d transversal intersections,where d is the degree of
the projection morphism from Y to the base of the cone; this again implies
that 5 | deg Y, a contradiction.

Step 8 The case n =8, degW = 6 is impossible.
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Proof Let V, C H°(P® Iy - O(2)) be the vector space of quadrics through
W. If V, C H°(PY,0(2)) is an r-dimensional subspace, I write

V)= @

QEV,

for the corresponding (scheme theoretic) intersection. It is easily seen by the
arguments of Section 7 that I(V}) is (set theoretically) no bigger than W
itself. By Bertini’s theorem it then follows that for general V3 C V,, I(Vj3)
is reduced and purely 3-dimensional. There are only two possibilities for the
components residual to W:

Case (i) I(V3) = W Um U g, where m and 7y are two 3-planes with
dim(m Nmy) < 1.

Case (ii) I(V3) = W Ugq, where ¢ C P* is a quadric (possibly a pair of
3-planes meeting along a 2-plane).

Proposition ?? disposes of (i); for cutting W Um, Uy by a general P* C PS
we get two disjoint lines L; and Ly, which intersect W” = R in a subscheme
of degree 3. Then any quadric containing W must also contain m; and o,
and this contradicts the fact that W is contained in 4 linearly independent
quadrics.

In case (ii), at least a 2-dimensional space V; of quadrics contain the
P* = (¢). Then I(Vo) = F UP* where F is a cubic 4-fold scroll; since
W ¢ P*, W C F, and since W is contained in 4 linearly independent quadrics,
W = F'NQ for some quadric () not containing F'.

The construction so far depends on a particular choice of V3, and is thus
not necessarily invariant under the group action. However, I claim that the
rational map ¢: W ——» P! obtained by projecting from P* is uniquely de-
termined. This is so because for any general V; C Vi, and least a V] C VJ
of quadrics contain F', so that I(Vy) = W U ¢/, with ¢' C P* a quadric; the
ruling of F', which is the projection from the original P*, then coincides with
the projection from P*. The fibres of the rational map W --» P! constructed
above are quadrics; if I show that Y is contained in a cubic not containing W
then this rational map defines a G-equivariant pencil of curves of geometric
genus < 4 on Y, contradicting the existence of a free automorphism of Y of
degree 4. But one sees easily using the above model for W that

hO (W, Ow (3)) = 58,

whereas h°(Y,05(3)) < h°(Y,3Ky) = 8 + 16 (2) = 56.

Theorem 0.1 is proved. Amen.
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Step 9

2 |mX|=8and9

2.1 Godeaux type examples

In this section I review Godeaux’s construction of surfaces with p, = 0,
K? =2 and |G| = 8; this gives rise to surfaces for which G = Z/8, Z/A® Z/2
or Z/2®Z/2&®7Z/2. I then give my own construction of surfaces with G = Qs
(the quaternion group Qs = {+£1,+i, +j, £k}) and Zr.

Let X be a surface with p, = 0, K = 2 and G an Abelian group with
|G| = 8; the nonzero elements g € G* C Pic X give rise to seven sections
z, € HY(K +g). It turns out that in all cases there are four linear dependence
relations between the quadratic monomials in the z,. Letting 7: ¥ — X be
the G-covering of X, the z, (= 7*z,) form a basis of H°(Y, Ky). One gets
Godeaux’s construction by assuming that |Ky| is without base points and
defines an embedding of Y into P® as a complete intersection of 4 quadrics.

G=17/8 fori=1,2,...,7, ] have z; € H°(K + ). The 4 quadrics come
from linear relations between

H°(2K) : 2127, 2926, T3T5, T5;
H°(2K +2) : 2327, 1476, 72, 73;
H°(2K +4) : 2123, 577, 75, T5;
H°(2K +6) : 2,25, 2014, 73, 22.

G =7Z/4®Z/2: the nonzero x, are T1q, T, T30, Lo1, L11, T21,L31 With ;5 €
H°(K +ij). The quadrics come from two linear relations between each of

0 . 2 2 2 .
H (QK) S 210730, L1131 Logs L1y Loy

0 . 2 2 2 2
.H (2K + 20) . £E01£E21,.1710, l‘30, .’1?11,.’1?31.

G=Z/20Z/2®7Z/2: there are seven z,; since 2g = 0 for all g € G, the
seven squares z, all belong to H°(2K). There are thus 4 linear dependence
relations between these squares.
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In all three cases it is trivial to give explicit examples of the 4 quadric
relations chosen such that ¥ C P% is nonsingular and disjoint from the fixed
locuses of the action of G on P%; this gives a construction for X.

2.2 The quaternion group s

Let X be a surface with p, = 0 and K?> = 2 and f: Y — X an etale Galois
cover with Galois group Gal(Y/X) = Qg. Then by Theorem 0.1, (i), the
canonical model of Y is an intersection of 4 quadrics in 6. Moreover, Corol-
lary 5.3 tells us the representation of Qg on H°(Ky ), and hence on P®, and the
representation on the vector space of quadrics defining Y'; introduce the nota-
tion A = kQg for the regular representation of 3 and A™ for the complement
of the trivial representation. Then Corollary 5.3 says that H°(Ky) & A*,
H°(2Ky) = 34, and the quadrics are the kernel of

SQHO(KY’) — HO(QKy),
that is, of a surjection S2A* — 3A. Write Qg = {£1, +4, +5, +k}, and

for its regular representation, where L;, L;, L), are the three 1-dimensional rep-
resentations on which the centre {+1} and one of i, j and k act trivially, and
H = H®g C the obvious (reducible) quaternion representation. Choose a ba-
sis {zi, %}, Tk, Y1, Yi, Yj, Y } for AT; one sees easily that the invariant quadratic
forms are based by the 7 expressions

L7, 5, Ty 1Y + Vi VY5 Yiks Vi + Vi, Vi + U7 + Y5+ Uiy

and in fact S?AT =7-193L; ® 3L; ® 3L, ®3H. Choosing the four quadrics

T; 4 Ui T Yk T LY+ Yk T YUk VY, Y Y Y+ Yk

one sees that these define a nonsingular surface Y on which Gg acts freely.

2.3 The case G =7Z/7

I am now going to construct a surface with p, = 0, K =2 and G = Z/T; let
X be such a surface, and for : = 1,2,...,6, let z; € H°(K + ¢) be a nonzero
section. In each of the H°(2K + 1) (including ¢ = 0) there are 3 quadratic
monomials, which I will take to be linearly independent.

In each of the HY(3K + 1) (including i = 0) there are 8 cubic monomials;
I am going to assume that these span H°(3K + i), so that there is a single
nontrivial relation R; between them.
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In each of the H°(4K +1) (including 7 = 0) there are 18 quartic monomials;
if we assume that these span H°(4K +1), then there are 5 linearly independent
relations between them; however, there are already 6 relations z;R;_; (for
j=1,2,...,6), and so there is a 2nd relation (syzygy) S; = > a;;x;Ri—; =0
between these.

There is now a single 3rd relation which comes from considering H°(7K):
this has dimension P; = 1+ 2(}) = 43. In H°(7K) there are

114 septic monomials in the z;

126 relations of the form (monomial in H*(4K +j) - R_;

56 syzygies of the form (monomial in H*(3K + j) - S_;
It follows that there is a single 3rd relation which can be written »_ f ;S;,
with f; a sum of the monomials in H°(3K + j).

The relations can be written compactly as follows: let & be the matrix
(a;;x;). Then the relations take the form

R
( RZ\
Rs

G| Rs| =0,
Rs

)

(fo, fo» f55 far f3, f2, J1)E = 0.

There are are no more relations; this can be checked by making use of the
binomial coefficient identity

(5") - () =) o)

Now to show how to get relations R;, © and f; satisfying the above con-
ditions. Let us take & to be the 7 x 7 skewsymmetric matrix

and

0 ap1T1  Gp2T2
—Q0171 0 A1273

6= =0,

— sym
and

Adj & = (A;4;) where A; = Pfaffian of diagonal 6 x 6 minor
No proof of nonsingularity is offered here, but see [13], App. to Round 2.
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3 Proof of Theorems 0.3 and 0.5

Suppose that X is as in Theorem 0.3, and that 7 X is infinite. I will prove
(ii).

Let Y — X be an etale Galois cover such that G = Gal(Y/X) has |G| = n;
then Y has the invariants

K} = ano x(Oy) = nx(Ox).
Since K% < 3x(Ox) — 1, I have
K3 < 3p,(Y) +3—3¢(Y) — n.
Exactly as in Section 1, Step 5, if n > 11 then K% < 3p, — 7, so that
by Theorem ?7?, (ii), pk, cannot be birational; suppose that |Ky| is not
composed of a pencil. Then ¢k, is generically m-to-1 onto a surface Y, and
the standard argument as in Section 1, Step 2 gives

mdegY < K.

Since Y is a surface spanning PPs(")=1 for n > 10 I must have m = 2 and
degY < 2(py(Y) — 1). Thus using Theorem 6.2 and Corollary 6.5, I find the
following 3 possibilities for g, :

(1) |Ky| is composed of a pencil;
(2) ¢x, ——+ Y — Y is generically 2-to-1 onto a rational surface Y;

(3) vx, —* Y — Y is generically 2-to-1 onto a surface Y having an irra-
tional ruling by lines and conics.

In (ii) there is a biregular involution ¢ of Y such that the quotient F' = Y/i

is rational. As in Section 1, Step 3, it follows from Lemma 4.2, (ii) that
G = (Z/2)*. By Theorem 5.4 it follows that (Z/2)* C Pic X.

Proposition 3.1 There is a bound T (depending on X ) such that (Z/2)* C
Pic X implies that a < T.

Proof T can be taken as 2¢(X) plus the number of generators for the Néron—
Severi group (which is finitely generated).

Problem 3.2 Find an effective bound 7 in terms of p,(X), ¢(X) and K%.
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Step 4 of Section 1 solves this problem in the simplest case p, = ¢ = 0,
K? = 2; the most hopeful method to attack this problem would be to try to
extend the method of Step 4 to quadrics which although not diagonal, consist
of “small” diagonal blocks. However, I do not know how to do this even for
py = 0, K? = 3, although it seems likely that in this case =4 is a bound.

Thus under the hypothesis that 71X is infinite, there exist etale Galois
covers Y — X for which Y falls under (i) or (iii) above.

Proposition 3.3 Suppose that for some Y — X with pg > 8 the canonical
system |Ky| is composed of a pencil; then ¢r,:Y — C C Prs()=1 s @
morphism with irreducible generic fibres of genus 2.

Proof Write
|Ky| = |E"| + F,

with F the fixed part and |[E™)| = E; + --- + E,, the E; being irreducible
fibres of a map Y --+ C'. Let E be the numerical class of E;.

Then as in Section 1, Step 1, K3 > r2E?, where furthermore r > p,(Y)—1,
so that E? = 0; also

1 3p,(Y) +3

KyvE < K2 < <4
T

pg(Y) -1 ’

so that Ky E = 2.

Thus ¢k, is obtained by composing the morphism Y — C with the
rational map C' — PP¢(")=1 given by a linear system |d| on C of degree r;
if this map is not birational, then r > 2p,(Y) — 2, again contradicting the
numerical conditions. The proposition is proved.

I write gk, 1 Y —-» Y_C PPs(Y)~1 for the canonical rational map, regard-
less of the dimension of Y.
Proposition 3.4 Let Y, Y2y Y1 — X be an etale tower, with py(Y1) > 8;
then there exists a rational map Yy --+ Y1 making the diagram

Y, —» Yy, C Prs(¥2)-1
{ !
}/1 —-—> ?1 C I[ng(Yl)—l
commute. Furthermore
(i) if Yy is a curve then so is Y1;

(ii) if Yo is a surface ruled by lines then Y, is either a curve, or a surface
ruled by lines.
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Proof The composite
Yy = Yy --» Yy C PP

is defined by the subspace 15 | H*(Ky,) C H°(Ky,); hence the required map
is defined by the linear projection from PPs(Y2)=1 gnto PPs(Y1)=1  The final
assertion is obvious.

Thus my surface X falls under one of the following 3 cases:

Case 0 There exists some etale Galois cover Yy — X such that |Ky| is
composed of a pencil of curves of genus 2 for every etale cover Y — Y.

Case i (for i = 1 or 2) There exists an etale Galois cover Y, — X such
that for every etale cover Y — Yy,

(3.1)

Ky Y - Y C PP«(Y)71 is a double cover of a surface Y
having an irrational pencil of rational curves of degree .

It seems quite likely that Case 0 cannot occur; in any case it is easy to deal
with:

Proposition 3.5 In Case 0 there exists a morphism f: X — B inducing an
isomorphism f,: mX = m B.

Proof Y has a G-equivariant pencil Y5 — Cj of curves of genus 2; by
Lemma 4.2, (i), G must act freely on Cy, so that the following diagram is a
pullback:

Yo — Oy

l :
X =Y,/G — B=0Cy/G.

Now for every etale cover Y1 — Yo, ¢k, defines a pencil Y1 — Cj, and by
Proposition 3.4 there is a morphism C; — Cj compatible with the canonical
maps of ¥; and Y. But these maps then form a pullback diagram, and Y;
can also be obtained as the pullback X x g Cj; since every etale cover Y — X
fits into a Galois tower under some such Y;, the proposition is proved.

In Cases 1 and 2 the irrational pencil on Y defines a pencil Y — C on Y.

Lemma 3.6 In Case 1 the fibres of Y — C have genus < 3; in Case 2 they
have genus < 5.



19

Proof Since every fibre of ¥ — C goes into a rational curve of degree 3,
each fibre imposes at most 7 + 1 conditions on a divisor in |Ky|, and setting

r= [”iﬂ:ﬂ, it follows that a divisor of |Ky| can be found containing r fibres

of Y — C; thus

3py(Y)+3=3¢(Y)—n> Ky >rKyE.
It then follows that Ky F < 4 in Case 1, and Ky FE < 8 in Case 2, as required.
I can now make the further requirement on Yj:

as in (3.1), and for some g, for every etale Y — Y,
the irrational pencil on Y defines a pencil of curves (3.2)
of genus g on Y.

Now consider the multiple fibres of Yy — Cj; by making a pullback by a
cover of Cy ramified only in the points corresponding to the multiple fibres, I
arrive at a cover Y, which satisfies in addition

as in (3.2), and Yy — Cj has no multiple fibres. (3.3)

Now let Y7 — Y be an etale Galois cover; by Proposition 3.4, the canonical
double covers of Y, and Y fit into a commutative diagram

Vi - Y,
+ +
Yo - Y

on the other hand, both Y; are ruled by lines or conics, so that the map
Y1 — Y, defined by linear projection, induces a map C; — Cy between the
curves parametrising the lines or conics of Y'; and Y. I thus get a diagram

i —» ?1 -— O

1 \J 1
Yi —» 71 -+ O

Now since both Y; — C; have fibres of the same genus it follows that no
element of Gal(Y;/Yy) acts trivially on Cy. Thus C; — Cj is also Galois,
with Gal(Y;/Yy) = Gal(C1/Cy); under these circumstances it follows that Y}
is birational to the pullback Yy x¢, C1, and then since the pencil Yy — Cj
is without multiple fibres it follows that Cy — Cj is also etale. This proves
Theorem 0.3, via the following assertion:

Theorem 3.7 X has a cover Yy satisfying (3.3) above. For any such Yy,
f: Yy — Cy induces an isomorphism f,: mYy 3 mCy.
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Proof of Corollary 0.4, (ii) Since Yy — C, induces an isomorphism on
71, it also induces an isomorphism f,: AlbYy = JCy, so that the Albanese
map of Y} is just the composite of Yy — Cy with the embedding of C into
its Jacobian JCj.

For X itself the Albanese map of X fits into a commutative diagram

Yo = Cp C AlbY

\ \RCR
a: X — Alb X,

so that a(X) C 9.(Cy); this proves (ii).

Proof of Corollary 0.4, (iii) Given f: X — C, consider the diagram

a: X — AlbX,

\ b fs
c — JG;

the image «(X) is a curve D which maps onto C' under f,; since f has
irreducible fibres it follows that D = C, proving (iii).

Proof of Corollary 0.4, (ii) Given f: X — C, consider the diagram

X =5 AlbX
{ 1 fs
cC — JC;

the image «(X) is a curve D which maps onto C' under f,; since f has
irreducible fibres it follows that D = C, proving (iii).

Proof of Theorem 0.5 In view of Corollary 0.4, (iii) and Theorem ?7?,
(ii), the only nontrivial assertion remaining to prove is that if ¢(X) # 0 then
(i) and (iii) are impossible.

Let Yy — X be the cover as in Theorem 0.3; since ¢(X) # 0 the curve
Co C AlbYj has a nontrivial map to the curve a(X) C Alb X, and this
implies that Cy/Gy has genus > 0.

The map Y, --+ X provided by Proposition 3.4 and the quotient map
X =Y,/Gy — Y, /Gy fit into a diagram

Yo -3 Y, C Prs(Yo)-1

! sl
X — ?O/GO — X C [Prs(Yo)—1
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Now split into cases: if Y is a curve then it is birational to Cy; then Y /Gy
is a non-rational curve, birational to X according to Proposition 3.3.

On the other hand, if Y, is a surface then it is ruled over Cy, so that Y, /Gy
is ruled over Cy/Gy; if X --» X is generically 2-to-1 onto a surface then
this surface is birational to Y/Gy. If X is a curve then by Proposition 3.3
X —» X has irreducible fibres, so that the same holds for Y,/G —» X.
The ruled surface Y/G is birationally a product P' x C, with C = Cy/Gy
of genus p > 0. There are thus just two possibilities for the rational map
Y /G --+ X, the projection on the two factors. I am home if it is projection
onto C. But the other case is impossible: for ¢: X --» Y,/G is a double
cover, and ¢ composed with the first projection is birationally the canonical
map of X, and thus by Proposition 3.3 has fibres curves of genus 2. On the
other hand, ¢ composed with the second projection is the map X — Cy/Gy
deduced from Y, — Cj by quotienting by Gy, and thus has fibres of genus
< 5. Thus the branch locus of the birational double cover p: X --+ P! x C
has degree < 12 on the first factor, degree 2 on the second factor, and C' has
genus 1. It follows easily that then p, < 7.

Part 1I
Technical digressions

4 The geometry of Galois covers
Let ¢: Y — X be an etale Galois cover with group G = Gal(Y/X) of order
n = |G|. A linear system |D| on Y is said to be invariant under G if

o*D € |D| forall D € |D|and o € G;
the obvious examples are the complete canonical system |D| = |Ky|, or any
system determined in a unique way from |Ky|.
Lemma 4.1 Let |D| be G-invariant.

(i) Suppose that |D| is irreducible, and let Z be the scheme theoretic base
locus of |D|; then Z = y*Zx for some subscheme Zx C X, and in
particular

n | deg Z.

(ii) Let |D| = |Dy,|+ Dy be the decomposition of D into fized a mobile parts;
then Dy = *Ex for some divisor Ex on X, and in particular

n | D;, n| KyD; and 2n| DJ% + Ky Dy.
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Proof Dy is the divisor theoretic intersection of all D € |D| (that is, their
greatest common divisor), and is hence invariant under G, and thus of the
form ¢*Ex; similarly, Z is the scheme theoretic intersection of all D € |D|,
and is thus also invariant under G. Q.E.D.

Lemma 4.2 (i) Let Y — C be a G-equivariant morphism of a surface Y
onto a normal curve C with connected fibres of genus g; suppose that
the G-action on'Y 1is fized point free. Then for every c € C, the order
of the stabiliser group Stabg(c) = {g € G | gc = c} divides g — 1:

| Stabg(c)| [ g — 1

(ii) Let : Y — F be a finite morphism of Y onto a surface F, equivariant
under a group action G which is fized point free on Y. Then for every
x € F the order of the stabiliser group of x, Stabg(z) has order not
exceeding deg ¢:

| Stabg ()| < deg .

Proof (i) Write Gy = Stabg(c), and Xy = Y/Gy; since Gy C G acts freely
on Y, the cover ¢g: Y — X, is etale of degree |Gy|. From the adjunction
formula defining the arithmetic genus of a divisor, and from the fact that
Ky = ¢j(Kx,) if follows easily that for a divisor D on Xy, I have

pa( E)kD) -1= |G0| ) (paD - 1)'

But on the other hand the fibre ¢*(c) is invariant under Gy, and is thus of the
form 3D for some divisor D on X,. This proves (i). Note that if no element
of G acts trivially on C then the quotient Y/G = X has a pencil X — C/G
of curves of genus g with a multiple fibre of multiplicity | Stabg(c)| at ¢; this
gives a simpler proof of (i) in this case.

(ii) Stabg(z) acts freely on the inverse image ¢~'(z), which is a set of
points of cardinality < deg ¢ (see for example [14], p. 169).

Remark 4.3 It seems quite likely that (ii) can be strengthened to
| Stabg ()| | deg .

This holds for example if ¢ is either flat or Galois.
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5 The algebra of etale GGalois covers

I introduce some notation from elementary group representation theory. Let
G be a finite group whose order n = |G| is not divisible by the characteristic of
k; as always, k is algebraically closed. Let p;: G — GL(W;) fori=1,...,h be
a fixed choice of a complete set of nonisomorphic irreducible representations
of G; for each 1, let n; = degp; = dimW;. Let kG be the group algebra of
(G; considered as a representation of GG, kG is the reqular representation. The
following result is well known (see [16], 1.2.4).

Proposition 5.1 (Schur’s lemma) (i) Let V' be any finite dimensional
representation of G; then there is a natural .somorphism of kG-modules

h
V= @Vi ® W, where V; =Homyg(W;, V). (5.1)

=1

In (5.1), W; is the fized set of irreducibles, and V; is considered as a
trivial G-module.

(#) In the case of the regqular representation kG, dimV; = n;; in particular
n=>yn? 0O

Now let ¥: Y — X be an etale Galois cover, with group G. The normal
basis theorem of Galois theory ([17], §67) tells us that the function field £(Y")
is the regular representation of G over k(X), that is, k(YY) & k(X) ® kG
(as a kG-module); this is a result for the generic stalk of 1,0y, which I will
extend in Theorem 5.2 to ¥,y itself. For the present, note that ¥,Oy is a
locally free O x-algebra of rank n = deg, and that the action of G makes it
into a module over the sheaf of algebras Ox[G] = Ox ®y kG.

If £ € Pic X then G acts on the cohomology groups

HI(Y,4*L) = B (X, 9,4"L) = H (X, 4,0y ® L).

I can consider the Euler characteristic x(V,¥*L) = Y (=1 HI(Y,¥*L) as a
virtual representation of G. The knowledge of its class x(Y,¢*L) € Ri(G)
in the representation ring of GG is equivalent to knowing, for each irreducible

representation W;, the alternating sum of the number of times W; appears in
HI(Y,4*L).

Theorem 5.2 (normal basis theorem) Let X be a scheme of finite type
over k, and v: Y — X an etale Galois cover. Then

(1) ¥.Oy is locally free of rank 1 as an Ox|[G|-module;
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(i1) Oy has a natural decomposition

h
.0y = P& & Wi (5.2)
=1

where & = Homo, 61(Ox ® Wi, 0.0y ). Each &; is a locally free sheaf
of rank n; = dimW; on which G acts trivially; and each &; becomes
trivial on lifting to Y, that is, v*&; = OF'.

(iii) Suppose that X is complete, so that H'(X, F) is finite dimensional for
any coherent F; then in Ry(G) we have

X(Y, 0" L) = (X, £) ® kG € Ry(G).

Corollary 5.3 (i) Suppose that H'(Y,v*L) = 0 for all i > 0; then as
G-modules, H*(Y,V*L) =& H°(X,L) ® kG. In particualr if X is a
minimal surface of general type, and L = Ox(nKx) with n > 2 then
HO(K Oy(nKy)) = HO(X, OX(TLK)()) X kG

(ii) If X is a minimal surface of general type, and H'(Y,Oy) = 0 then
HO(Y,Oy(Ky))®k = H* (X, Ox(Kx)) ® kG, where G acts trivially on
the factor k on the left-hand side.

The corollary is an immediate consequence of (iii) of the theorem. For (i)
one must observe that Oy (Ky) = ¢¥*(Ox(Kx)), and that H(Oy(nKy)) =0
for n > 2 by the Kodaira-Ramanujam vanishing theorem. For (ii),

HY(Y, Oy (Ky)) 4 HY(Y,Oy) = 0;

on the other hand H2(Y, Oy (Ky)) 4 HO(Y, Oy) = H(X, Ox) = k, on which
G acts trivially.

Proof of Theorem 5.2 For z € X, let Oy, denote the semilocal ring
of rational functions on Y regular at each of the n points of ¢ 'z: Oy, =
1.0y Qoy Ox, is the stalk of Oy at z. Now Oy, /m;Oy, is naturally the
ring of k-valued functions on the n points of ¢ ~z; if @ € Oy, is the function
that takes the value 1 at one of these, and 0 at all the others, then the set
{ga} as g runs through G, forms a basis of Oy ,/m;Oy,. Now if a € Oy,
is an element that reduces to @ modulo m,, then the G-orbit {ga} forms a
basis of Oy, over Ox, by Nakayama’s lemma. This proves (i).

The first part of (ii), namely the splitting (5.2), is now obvious from
Proposition 5.1. Standard considerations in Galois theory provide a splitting
of the algebra k(Y) ®kx) k(Y) (with G acting on the second factor) into
the Cartesian product of n copies of k(Y) permuted by G (see [17], §67).
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Hence the Galois cover Y X x Y — Y splits as n isomorphic copies of Y. It
follows that 1*1,Oy = Oy ®j kG; the subsheaf ¢*(&; @ W;) C ¥*1), Oy must
then coincide with the piece Oy ®; V; ® W; of Oy ®; kG belonging to the
representation W;, and hence ¢¥*&; 2 Oy ®; V;. This proves (ii).

(iii) is very easy from (ii) and the Riemann-Roch theorem: by (ii), I have
X0y @ L) =), x(& ® L) ® W;; and by Riemann-Roch

X(& ® L) = 36 (ch(&; ® £) - TA(X)) [X].

However, since ¢*&; is trivial, the Chern classes of &; all vanish, so that the
right-hand side has the same value as if £ were the trivial sheaf of rank n,,
that is, n;x(£). Thus

X0y ® L) =Y nW;® x(£). QE.D.

In the Abelian case, all the & have rank 1, and one can easily see that
the multiplicative structure of 4, Oy is given by isomorphisms & ® £; = Eitj;
the subscript 7 + j makes sense, since the &; correspond to characters of G,
that is, to elements of the dual group G* = Hom(G, £*). This formalism also
works in any characteristic:

Theorem 5.4 Let X be a scheme of finite type over k, and let G be a com-
mutative group scheme over k; then there is a natural bijection

{G—torsors Y — X} — {homomorphisms G* — Pic X.}

The straightforward proof is omitted.

Problem 5.5 Let G be a group of transformations of a nonsingular minimal
surface of general type Y, and suppose that the action has finitely many
elliptic points P € Y where StabP = Gp C SL(TpY). Then Y/G = X is a
surface with only Du Val singularities, and 9*Kx = Ky. The problem is to
determine the representations of G on H°(nKy) in terms of p,(X), K% and
the subgroups Gp C SL(2, k).

Example 5.6 (G = Z/2) Suppose that the involution 0 € G has p fixed
points, so that the quotient X = Y/G has y nodes. Then 7,0y = Ox & L,
where L is a divisorial sheaf (invertible outside the nodes), and L® £ — Ox
is an isomorphism outside the nodes. Then

H(nKy) = H'(nKx) ® H*(L ® Ox(nKx)),
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and

dim H*(nKx) = x(Ox) + K% (Z)

dim H'(nKx ® £) = x(Ox) + K% (g) -

N

Note that K% = L1 K%; but py(X) is not in general determined by Y only. If

q(Y) =0 then

I

pg = 1+2pg(X) — Z,

(YY) =2¢(X) — 3p

(where X denotes the resolution).

6 Nagata’s method for surfaces of low degree

Let me start by giving a convenient statement of a classical result on linear
system on curves.

Theorem 6.1 (Clifford’s theorem + Riemann—Roch) Let C be a curve
of genus g, and let |d| be a linear system on C of degree d and projective di-
mension n,; then either

(i) |d| is special, that is, h*(Oc(d)) # 0; then
d>2n and g—12>n.
or
(ii) |d| is nonspecial, that is, h'(Oc(d)) = 0; then

n+1<h(O0c(d)=1-g+d

Theorem 6.2 Let F' C P" be an irreducible surface spanning P", and of
degree d < 2n — 2; then F' is birational either to a ruled surface, or to a K3
surface, and in the latter case d = 2n — 2.

Proof Let F; — F C P" be a resolution of the singularities of F', and |H|
the linear system on Fj defining the map to P”; let C' € |H| be an irreducible
nonsingular curve, and g its genus.

Consider the characteristic system |C|¢; according to the above, either
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(i)d>2n—2andg—1>n—1;o0r
(i) n<1—g+d.

Now if F} is not ruled, I can find a divisor D > 0 such that D ~ rKp,,
with r > 0; the adjunction formula for C' gives

1
29—2=C*+CKp, =d+-CD >d.
T

ii) is now impossible, since 2n < 2 — 2g + 2d < d contradicts the hypothesis
d<2n-—2.

(i) gives d = 2n — 2 and g = n, so that the hyperplane sections of F
are canonically embedded curves. If the resolution Fy — F'is chosen to be
relatively minimal (that is, no fibre contains exceptional curves of the first
kind) then it is easy to see that D = 0, and F is a K3 surface.

Remark 6.3 I have proved on the way that if d < 2n — 3 then
g<1l+d-—n. (6.1)

Now suppose that F} is a ruled surface of genus p > 0, so that F' has a
unique ruling by irreducible rational curves.

Theorem 6.4 (Nagata [18]) Let ' C P be a ruled surface of genus p > 0;
suppose that F is ruled by rational curves of degree o. Let g denote the
geometric genus of the general hyperplane section of F'. Then

20—-2>0(2p—-2)+ (1 - %) d. (6.2)
Proof A nonsingular minimal model of F' is a ruled surface F, = Pg(F),
with 7: Pg(F) — B a P'-fibre bundle over a curve B of genus p. The
birational map F, --+» F C P" is given by an irreducible system L on Fj,
with base points O; of multiplicity m;.
The Néron—Severi group of F» has generators H (a divisor corresponding
to the tautological line bundle Op k(1)) and A (a fibre of P5(E) — B),
with intersection numbers

H?=c¢(E), HA=1, A?’=0.
Furthermore, the canonical divisor class of Pg(FE) is given by

K]P’B(E) ~ —2H+7T*(detE+ KB)



28

By hypothesis, L is contained in a complete linear system L C |D|, with D
numerically equivalent to c H + rA. Then

D? = o%c,(E) + 207,
and
2p,D —2 =KD+ D* = (6* — 0)c1(E) +2(0 — 1)r + o(2p — 2).

Taking account of the effect of the fixed points on the degree and genus,
I get

dzdengoQCQ(E)+20r—me (i)

and
29— 2= (0*—0)c1(E)+2(c —1)r+0o(2p—2) —2 Z <T;LZ> (ii)

Subtracting (1 — 1/0) times (ii) from (i) then gives

2g—2—<l—§>d=0(2p—2)+2mi(1—%).

Since 0 < m; < o for each 7, each term under the summation is positive, and
the theorem follows.

(6.1) and (6.2) impose rather strong conditions on a nonrational surface
F of degree d < 2n — 3.

Corollary 6.5 If F is as in Theorem 6.4 with degree d < 2n — 3 then

d22n<1— L )
1+0

In particular, if F is not ruled by lines then d > %n, and if F' is not ruled by
lines or conics then d > %n

7 Counting quadrics

(For this section and the next, see my L’Aquila paper.)
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8 Castelnuovo’s inequalities for surfaces of
general type
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