
Example 1: 1
23
(1, 1, 3, 18)
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Figure 1: The median triangle for A = 1
23 (1, 1, 3, 18) and the fan computing

A-HilbA4. Here P1 = (1, 1, 3, 18), P2 = (2, 2, 6, 13), P8 = (8, 8, 1, 6) etc. Note
that E3, P4, P8 are collinear. The central point Q = P2 + P9 = P3 + P8 has
age 2, and divides the square into 4 basic cones that correspond to a discrepant
divisor in A-HilbA4, a P1 × P1 bundle over P1 that has two contractions to
minimal models that differ by a flop.

Figure 1 lives in the integral affine geometry of the median plane. Taking
the long arithmetic progression of points E4, P1, . . . , P4 as the horizontal axis
makes this kind of figure work in plain text, and brings out some important
features. Other strategically significant features of the diagram are the extreme
points:

P8 (with x3-coordinate = 1), P8 (with x4-coordinate = 1), (0.1)

lying closest to the sides x4 = 0 and x3 = 0, and the two straight lines CP8P1

and CP9P4 from C. In bigger cases, the perspective in these figures is often
misleading, and what they mean often takes some sorting out. The top triangle
with the half-lattice point C as vertex appears foreshortened. Please get used
to it: P4P9 is a primitive lattice vector, whereas P9C = 1

2 (P4P9) is the primitive
half-lattice vector along the same line.
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Example 2: 1
23
(1, 1, 2, 19)

The numbers suggest this case might be similar to 1
23 (1, 1, 3, 18), but the out-

come is very different. A-Hilb is computed by the fan of Figure 2. The figure
is not planar: except for C, E3 and Q11, all the labelled points are in an
affine plane (also containing 1

2 × Q11) sloping up steeply to the age 7 lattice
point Q72 = (72, 72, 6, 11). Their projection to the median triangle as drawn
in the figure on the next page is much less useful. Since the figure is not pla-
nar, the position of C and E3 is only defined after choosing a projection. The
sides down from Q72 to E4 on the right and to Q17 = (17, 17, 11, 1) on the
left are arithmetic progressions. Around the sides, there are 12 basic triangles
with C (or the axis E1E2) joined to E3, Q17, Q28, . . . , E4. Then E3 joined to
E4, P1, . . . , P5, Q11, Q17 and C. Each of the 10 parallelograms gives 2 ordinary
nodes of A-Hilb isomorphic to ac = bd on the cone joining to E1 and E2.
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Figure 2: The median triangle for A = 1
23 (1, 1, 2, 19) and the fan computing

A-HilbA4, with 78 affine pieces, 20 of them having a curve of nodes. The
figure leaves the viewer to imagine the lines and slivers of triangles around the
boundary joining E4, P1–P4 to E3, and E3, Q17–Q61, Q72, Q60–Q12, E4 to C.
The top half of the figure with it array of square tiles, and the bottom half
are in different planes, and it is often preferable to plot them as two separate
figures.
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Figure 3: The points of Figure 2 in perspective, scaled down to the median
plane. In this perspective, the vertex E3 is off the page on the bottom left.
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E3 E412 24 36 48 60 72 84

5 17 29 41 53 65 77

10 22 34 46 58

3 15 27 39
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C = E1 + E2

Figure 4: The median triangle for A = 1
96 (40, 40, 15, 1) and the fan computing

its nonsingular A-HilbA4. The row of points C,Q7, Q14, Q21, Q28, Q35 then
Q49, Q63, Q77 on the line vertically down from C have age 2 (drawn as half-lattice
points), so represent discrepant divisors. Likewise the point Q90 = P13 + P77 =
P32 + P58 at the midpoint of the tiny tile E4P77P13P32, drawn bigger below.
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Figure 5: A better perspective on the tile E4P77P13P32 of Figure 4. Since we
are in the affine geometry of a Z2 lattice, we are free to redraw to any scale.
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The IPMU abstract

Speaker: Miles Reid

Title: (1, 2)-symmetric subgroups of SL(4,C)

Abstract: The topic is finite diagonal subgroups A ⊂ SL(4,C) and their
A-Hilbert schemes. As a dimension reducing assumption, I impose the ad-
ditional (1, 2)-symmetric condition. The case to bear in mind is 1

r (1, 1, a, b)
with r = a + b + 2. The “junior end and all-even” conditions for the quotient
X = A4/A to have a crepant resolution are known from Sarah Davis’s thesis
[D].

Studying the A-Hilbert scheme A-HilbA4 in the general (1, 2)-symmetric
case is interesting in its own right, and provides more detailed insight into
crepant resolutions. The variety Y = A-HilbA4 is toric, a union of affine pieces
corresponding to monomomial ideals I ⊂ k[A4] = k[x, y, z, t], and can be con-
structed by my 2009 computer algebra routine [M]. In very many cases Y is
nonsingular, and is a resolution Y → X with exceptional divisors of discrep-
ancy 0 or 1.

The calculation of A-HilbA4 mirrors the classical construction of Naka-
mura [A] and Craw–Reid [CR], with some remarkable modifications. In (1, 2)-
symmetric coordinates x, y, z, t, an A-regular monomal ideal I has quotient the
regular representation of A, so k[x, y, z, t]/I = kA. Thus its monomial basis
MB has one monomial in each character space. Now x and y have the same
character, so at most one of them can be basic. If x ∈ MB then the SL(4) con-
dition says that x2zt is A-invariant, but MB may contain multiples of xzt. This
means that as a subset of the monomial lattice Z4, MB has a “double decker”
structure as the union of 4 planar sets:

• the x, z-sector {xizj}

• the x, t-sector {xitj}

• the lower deck of the z, t-sector {zitj}

• the top deck {xzitj}, that is, multiples of xzt.

I want to classify all of these quotients for all (1, 2)-symmetric groups, by
analogy with Nakamura’s tripods, that tesselate the trihedral plane of the quo-
tient lattice Z3/Z · (1, 1, 1). I replace this with the odd-looking plane of the
lattice quotient

Z4/(Z · (1, 1, 1, 1)⊕ Z · (1,−1, 0, 0))

where the x, z- and x, t-sectors occupy angles of 135◦ degrees each, and the z, t-
sector the remaining 90◦. Mapping the monomials of MB to this plane keeps
track of their characters, but overlays the two decks of the z, t-sector on the
90◦ angle. However, since the character of xzt is −1 times the character of x,
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the monomials of the top deck interleaves with those of the lower deck of the
z, t-sector like black and white squares on a chessboard.

I will provide pictures of typical cases on my website, plus examples and
guided exercises on how to use the computer algebra routines of [M].

References [D] Sarah Davis, Crepant resolutions and A-Hilbert schemes in
dimension four, Warwick 2012 PhD thesis
http://webcat.warwick.ac.uk/record=b2584703~S1

[M] Magma AH4 (“legacy software” – I know how to use it, and what to do
when it breaks down).
https://homepages.warwick.ac.uk/~masda/McKay/Magma_AH4

[N] Iku Nakamura, Hilbert schemes of abelian group orbits, J. of Algebraic
Geometry 10 (2001) 757-779

[CR] Alastair Craw and Miles Reid, How to calculate A-HilbC3, in Ecole d’été
sur les variétes toriques (Grenoble, 2000), collection Séminaires et Congrès, SMF
2001, arXiv preprint math.AG/9909085 32 pp.

For IPMU conference talk. Nice typeset pictures for

AHilb for 1/23(1,1,3,18) and 1/23(1,1,2,19)

The second has lots of nodes and lots of divisors of

large discrepancy.

==== Group 1/9(1,1,2,5), Affine piece No 4 out of 15 ====

false

[ 2 0 -1 0]

[ 1 0 2 -1]

[ 1 0 -3 1]

[-1 1 0 0]

[-1 0 5 0]

[-1 0 0 2]

[ 1 0 -2 0 -1 1]

[ 0 1 -1 0 -1 1]

->

[1 -1 -1 0 0 0]

[ 1 1 1 1]

[ 2 0 -1 0]

[ 1 0 2 -1]
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[ 1 0 -3 1]

[-1 1 0 0]

[-1 0 5 0]

[-1 0 0 2]

[ 1 0 0 -3 -1 -2 1]

[ 0 1 0 -2 0 -1 1]

[ 0 0 1 -1 0 -1 1]

x*y*z*t = a*1,

x^2 = b*z,

x*z^2 = c*t,

x*t = d*z^3,

y = e*x,

z^5 = f*x,

t^2 = g*x,

b = c*d (given by row 2 - row 3) of the final kernel

a = c^2*d*e*g (given by row 1 - 2*row 3)

Conclusion:

The parameter space = affine piece of AHilb

is singular c*g - d*f. The construction over

it has z^2*t - c*g as additional equation.

Monomial basis:

[.]

z^4

z^3

z^2 [.]

[.] z x*z

z*t 1 x [.]

t [.]

[.]

in character spaces

[.]

8

6

4

2 3

7 ! 0 1 [.]

5

[.]

The ! marks the lhs of the relation

x*z*t = z^4. This is the first hint

of "interleaving" of "top deck".

7



==== Group 1/11(1,1,2,7), Affine piece No 11 out of 30 ====

false

[ 1 1 1 1]

[ 2 0 -1 0]

[ 1 0 3 -1]

[ 1 0 -4 1]

[-1 1 0 0]

[-1 0 6 0]

[-1 0 -1 2]

[ 1 0 0 -3 -1 -2 1]

[ 0 1 0 -2 0 -1 1]

[ 0 0 1 -1 0 -1 1]

x*y*z*t - a*1,

x^2 - b*z,

x*z^3 - c*t,

x*t - d*z^4,

y - e*x,

z^6 - f*x,

t^2 - g*x*z

Conclusion is the same: c*g - d*f in AHilb direction

(last line of the ker matrix), extra z^2*t - c*g

[.]

z^5

z^4

z^3 [.]

z^2 x*z^2

[.] z x*z

z*t 1 x [.]

t

[.]

in character spaces

[.]

10

8

6

4 5

2 3
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9 ! 0 1 [.]

7

[.]

==== Group 1/13(1,1,2,9), Affine piece No 5 out of 25 ====

false

[ 1 1 1 1]

[ 2 0 -1 0]

[ 1 0 2 -2]

[ 1 0 -3 2]

[-1 1 0 0]

[-1 0 5 -1]

[-1 0 0 3] same but one more power of t throughout

[ 1 0 0 -3 -1 -2 1]

[ 0 1 0 -2 0 -1 1]

[ 0 0 1 -1 0 -1 1]

[.]

z^4

z^3

z^2 [.]

[.] z x*z

z*t xzt 1 x [.]

z*t^2 t x*t

t^2 [.]

[.]

in character spaces

[.]

8

6

4 [.]

2 3

11 12 0 1 [.]

7 ! 9 10

5 [.]

[.]

This is the first occurrence of top deck for a _singular_ affine piece.

the monomial x*z*t is basic

The ! marks the lhs of the relation

x*z*t = z^4.

of "interleaving" of "top deck".
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