
Alg curves, Lecture 1¬
¬
I start with a colloquial description of where we are going.¬
The contents of the course can be described as very simple,¬
but depending on sophisticated and in places quite difficult¬
prerequisites and foundational development.¬
¬
I treat nonsingular projective curves C in PP^N, assumed¬
irreducible. Over the complex field CC, this is a Riemann¬
surface or 1-dimensional complex manifold. At P in C there¬
is a local analytic coordinate z_P or z so that an analytic¬
neighbourhood P in U in C is isomorphic to |z| < 1 in CC.¬
¬
C has a field of rational function k(C). A rational function¬
h is the quotient h = f/g of two polynomial functions, with¬
denominator g not identically zero. A polynomial function is¬
a regular (or holomorphic) function on the Riemann surface¬
of C, and a rational function is a globally defined¬
meromorphic function.¬
¬
For P in C, a rational function h in k(C) can have a pole at¬
P (so its value is undefined or infinity), or can be regular¬
and nonzero (so a unit near P), or regular and have a zero¬
at P. The divisor of h is the formal sum¬
  div h = zeros of h - poles of h = sum ni*Pi¬
with Pi in C finitely many points, and ni in ZZ.¬
¬
In terms of a local parameter z at P,¬
  h = z^n * unit  with n in ZZ,¬
and h has a zero or order n if n > 0, or a pole of order¬
m = -n if n < 0. If h has a pole of order m then it has¬
a Laurent expansion¬
  h = am z^-m + .. + a1 z^-1 + regular¬
with m coefficients {a1,..m} making up the principal part.¬
Allowing h to have a pole of order m thus gives it the¬
freedom of an m-dimensional principal part to choose from.¬
¬
One easily takes for granted that h does not have zeros and¬
poles at the same point P in C, because we are used to¬
cancelling common factors top and bottom. But that is not¬
true in dimension >= 2 (consider the rational function y/x¬
on AA^2), or if C is singular (consider the rational¬
function y/x on the nodal curve y^2 = x^2*(x+1)).¬
¬
After the foundational work of establishing nonsingular¬
projective curves as a sensible object of study, the first¬
main aim of the course is the Riemann-Roch theorem. RR¬
addresses the question: how many rational functions are¬
there on C?¬
¬
0. If you don't allow any poles, you don't get any¬
functions.¬
¬
1. If you allow any number of poles, you get the whole¬



of k(C), which is of course infinite dimensional.¬
¬
2. If you allow only a finite set of poles of given¬
degree, you get a finite dimensional space of rational¬
functions.¬
¬
3. The dimension of the space of rational functions¬
with poles at most D = sum ni*Pi grows linearly with¬
deg D = sum ni.¬
¬
More precisely, introduce the notion of divisor and RR¬
space. Divisor¬
  D = sum ni*Pi a finite sum with Pi in C and ni in ZZ.¬
A divisor is effective, or D >= 0 means that all its¬
coefficients ni >= 0.¬
¬
Given D, its RR space is¬
  L(C, D) = { h in k(C) | div h + D >= 0 }.¬
The definition intends that L(C, D) is a k-vector subspace¬
of k(C), so by convention, I add the function 0 to L(C, D).¬
The condition div h + D >= 0 is a clever way of combining¬
two statements "poles at most D^+" if D is effective, and¬
"zeros at least D^-" if D has some negative part.¬
¬
Write l(C, D) = dim L(C, D). The first part of RR says that¬
  l(C, D) <= 1 + deg D   and¬
  l(C, D) >= 1 - g + deg D.         (*)¬
Here g = g(C) is some constant depending on C, its genus. It¬
has several different definitions, and is one of the main¬
topics of the course.¬
¬
Finally, the complete RR concerns the difference in (*). The¬
result is that there exists a divisor K = KC such that¬
  l(C, D) - l(C, K-D) = 1 - g + deg D.  (*)¬
There are several different treatments of KC, and this is¬
also a main component of the course.¬
¬
In applications, RR gives all kinds of implications for the¬
geometry of curves C and their embeddings C into PP^n.¬


