MA4L7 Algebraic curves. Example sheet 2

Assessment deadline: Thu 24th Jan 2:00 pm

Week 2 of lectures were on integral extensions, finite A-modules, normalisation, characterisation of DVR. The material is standard, covered in many commutative algebra textbooks. I mostly follow [UCA, esp. Chap. 8].

Recall that finite A-module means finitely generated as A-module: every element can be written as a *linear combination* of finitely many generators e_1, \ldots, e_n . (As opposed to a finitely generated A-algebra $A \subset B$, when every $b \in B$ is a *polynomial* combination of generators x_1, \ldots, x_n .)

1. Tower law. Let $A \subset B_1 \subset B_2$ are integral domains. If B_1 is finite as A-module and B_2 is finite as B_1 -module prove that B_2 is finite as A-module.

Given the determinant trick [UCA, 2.7], modify the argument to prove the same statement for integral extensions.

2. Standard open sets X_g . If X is an affine algebraic variety with coordinate ring k[X] and $g \in k[X]$, it is known that the open subvariety $X_g = \{P \in X \mid g(P) \neq 0\}$ is also affine, and has coordinate ring $k[X_g] = k[X][\frac{1}{g}]$. The X_g , called *standard open sets*, form a basis of the Zariski topology of X.

Prove that $k[X_g]$ is a finite k[X]-module if and only if 1/g is integral over k[X]. If k[X] is already normal (integrally closed in k(X)), this happens only if g is a unit of k[X], so that $X_g = X$. Thus the inclusion $X_g \subset X$ is usually not a finite morphism.

3. Finite and nonfinite extension. The nodal cubic $C \subset \mathbb{A}^2$ given by $y^2 = x^2(x+1)$ has the usual parametrisation $f: \mathbb{A}^1 \to C \subset \mathbb{A}^2$ given by $x = t^2 - 1, y = t(t^2 - 1)$. Show that f is finite, that is, $k[\mathbb{A}^1]$ is a finite k[C]-module. [Hint: $k[C] \cdot 1_{k[t]}$ contains x, y; what more do you need to get $k[\mathbb{A}^1]$? You might start by finding a basis of the vector space k[t]/k[x, y].]

Now replace \mathbb{A}^1 by the hyperbola $H : s(t-1) = 1 \subset \mathbb{A}^2_{\langle t,s \rangle}$ and consider the polynomial map $f : H \to C$ given by $x = t^2 - 1$, $y = t(t^2 - 1)$. Show that f is a bijective map. Show that it is not finite (that is, k[H] is not a finite k[C]-module).

4. Similar exercise. The cuspidal cubic $\Gamma : y^2 = x^3$ has the parametrisation $\mathbb{A}^1 \to \Gamma$ given by $x = t^2$, $y = t^3$. Show that it is finite. On the other hand $H = \mathbb{A}^1 \setminus 0$ defined by st = 1 is a nonsingular curve, and $x = t^2$, $y = t^3$ maps H isomorphically to $\Gamma \setminus (0, 0)$. Show that $H \to \Gamma$ is not finite. (Since it misses the singular point, we don't want to allow it as a resolution of singularities.)

5. Explicit normalisation. Let A be a UFD with field of fractions $K = \operatorname{Frac} A$, and assume 2 is invertible in A. For $a \in A$, consider the quadratic field extension $K(\alpha)/K$ where $\alpha^2 = a$ (that is, $\alpha = \sqrt{a}$). If a is square-free, show that $A[\alpha] \subset K(\alpha)$ is integrally closed. [Hint: write out the minimal polynomial of $c + d\alpha$.]

Let A be a UFD with $K = \operatorname{Frac} A$, and assume that 6 is invertible. Let $a, b \in A$ be square-free coprime elements. Consider the cubic extension field $L = K(\sqrt[3]{a^2b})$. Prove that the integral closure of A in L is generated by y, z satisfying $y^3 = a^2b, z^3 = ab^2$. The ideal of all relations holding between $y, z \in L$ needs a third generator. Find it.

If a = (x - 1)(x - 2) and b = x(x + 1), determine the normalisation of the affine plane curve $y^3 = ab^2$.

6. Normalisation of monomial curve. Following on from the cuspidal cubic $y^2 = x^3$, determine the normalisation of $k[x, y]/(y^2 - x^5)$. Same question for $k[x, y]/(y^3 - x^7)$. More generally, if a, b are coprime, find the normalisation of $x^a = y^b$. [Hint: If you want to write $x = t^b$ and $y = t^a$ you are on the right track. However, for this to be a normalisation, you still have to establish that $t \in \operatorname{Frac}(A)$ where $A = k[x, y]/(x^a - y^b)$. In other words, express t in terms of x and y.]

7. Trace in a finite field extension. Let $K \subset L$ be a finite field extension. Recall from Galois theory that any $y \in L$ has a minimal polynomial, an irreducible polynomial

$$p(T) = T^{d} + c_{d-1}T^{d-1} + \dots + c_{1}T + c_{0} \in K[T]$$

such that p(y) = 0, so that K[y] = K[T]/(p(T)); it follows that K[y] = K(y) is a field, since (p(T)) is a maximal ideal. We say that L/K is a *primitive* extension with generator y if L = K(y).

Consider the multiplication map $\mu_y: L \to L$ consisting of multiplication by y. If L/K is a primitive extension, write out the matrix of μ_y in the basis $1, y, \ldots, y^{d-1}$, and deduce that its trace is $\operatorname{Tr}_{L/K} \mu_y = -c_{d-1}$.

In general, prove that the trace of μ_y equals $-c_{d-1}[L:K(y)]$. [Hint: let b_j for $j = 1, \ldots, [L:K(y)]$ be any basis of L/K(y), and calculate the trace of μ_y in the basis $y^i b_j$ of L/K.