MA4L7 Algebraic curves. Example sheet 2

Assessment deadline: Thu 24th Jan 2:00 pm

Week 2 of lectures were on integral extensions, finite A-modules, normalisation, characterisation of DVR. The material is standard, covered in many commutative algebra textbooks. I mostly follow [UCA, esp. Chap. 8].

Recall that finite A-module means finitely generated as A-module: every element can be written as a linear combination of finitely many generators e_{1}, \ldots, e_{n}. (As opposed to a finitely generated A-algebra $A \subset B$, when every $b \in B$ is a polynomial combination of generators x_{1}, \ldots, x_{n}.)

1. Tower law. Let $A \subset B_{1} \subset B_{2}$ are integral domains. If B_{1} is finite as A-module and B_{2} is finite as B_{1}-module prove that B_{2} is finite as A-module.

Given the determinant trick [UCA, 2.7], modify the argument to prove the same statement for integral extensions.
2. Standard open sets X_{g}. If X is an affine algebraic variety with coordinate ring $k[X]$ and $g \in k[X]$, it is known that the open subvariety $X_{g}=\{P \in X \mid g(P) \neq 0\}$ is also affine, and has coordinate ring $k\left[X_{g}\right]=$ $k[X]\left[\frac{1}{g}\right]$. The X_{g}, called standard open sets, form a basis of the Zariski topology of X.

Prove that $k\left[X_{g}\right]$ is a finite $k[X]$-module if and only if $1 / g$ is integral over $k[X]$. If $k[X]$ is already normal (integrally closed in $k(X)$), this happens only if g is a unit of $k[X]$, so that $X_{g}=X$. Thus the inclusion $X_{g} \subset X$ is usually not a finite morphism.
3. Finite and nonfinite extension. The nodal cubic $C \subset \mathbb{A}^{2}$ given by $y^{2}=x^{2}(x+1)$ has the usual parametrisation $f: \mathbb{A}^{1} \rightarrow C \subset \mathbb{A}^{2}$ given by $x=t^{2}-1, y=t\left(t^{2}-1\right)$. Show that f is finite, that is, $k\left[\mathbb{A}^{1}\right]$ is a finite $k[C]$-module. [Hint: $k[C] \cdot 1_{k[t]}$ contains x, y; what more do you need to get $k\left[\mathbb{A}^{1}\right]$? You might start by finding a basis of the vector space $\left.k[t] / k[x, y].\right]$

Now replace \mathbb{A}^{1} by the hyperbola $H: s(t-1)=1 \subset \mathbb{A}_{\langle t, s\rangle}^{2}$ and consider the polynomial map $f: H \rightarrow C$ given by $x=t^{2}-1, y=t\left(t^{2}-1\right)$. Show that f is a bijective map. Show that it is not finite (that is, $k[H]$ is not a finite $k[C]$-module).
4. Similar exercise. The cuspidal cubic $\Gamma: y^{2}=x^{3}$ has the parametrisation $\mathbb{A}^{1} \rightarrow \Gamma$ given by $x=t^{2}, y=t^{3}$. Show that it is finite. On the other hand $H=\mathbb{A}^{1} \backslash 0$ defined by $s t=1$ is a nonsingular curve, and $x=t^{2}$,
$y=t^{3}$ maps H isomorphically to $\Gamma \backslash(0,0)$. Show that $H \rightarrow \Gamma$ is not finite. (Since it misses the singular point, we don't want to allow it as a resolution of singularities.)
5. Explicit normalisation. Let A be a UFD with field of fractions $K=\operatorname{Frac} A$, and assume 2 is invertible in A. For $a \in A$, consider the quadratic field extension $K(\alpha) / K$ where $\alpha^{2}=a$ (that is, $\alpha=\sqrt{a}$). If a is square-free, show that $A[\alpha] \subset K(\alpha)$ is integrally closed. [Hint: write out the minimal polynomial of $c+d \alpha$.]

Let A be a UFD with $K=\operatorname{Frac} A$, and assume that 6 is invertible. Let $a, b \in A$ be square-free coprime elements. Consider the cubic extension field $L=K\left(\sqrt[3]{a^{2} b}\right)$. Prove that the integral closure of A in L is generated by y, z satisfying $y^{3}=a^{2} b, z^{3}=a b^{2}$. The ideal of all relations holding between $y, z \in L$ needs a third generator. Find it.

If $a=(x-1)(x-2)$ and $b=x(x+1)$, determine the normalisation of the affine plane curve $y^{3}=a b^{2}$.
6. Normalisation of monomial curve. Following on from the cuspidal cubic $y^{2}=x^{3}$, determine the normalisation of $k[x, y] /\left(y^{2}-x^{5}\right)$. Same question for $k[x, y] /\left(y^{3}-x^{7}\right)$. More generally, if a, b are coprime, find the normalisation of $x^{a}=y^{b}$. [Hint: If you want to write $x=t^{b}$ and $y=t^{a}$ you are on the right track. However, for this to be a normalisation, you still have to establish that $t \in \operatorname{Frac}(A)$ where $A=k[x, y] /\left(x^{a}-y^{b}\right)$. In other words, express t in terms of x and y.]
7. Trace in a finite field extension. Let $K \subset L$ be a finite field extension. Recall from Galois theory that any $y \in L$ has a minimal polynomial, an irreducible polynomial

$$
p(T)=T^{d}+c_{d-1} T^{d-1}+\cdots+c_{1} T+c_{0} \in K[T]
$$

such that $p(y)=0$, so that $K[y]=K[T] /(p(T))$; it follows that $K[y]=K(y)$ is a field, since $(p(T))$ is a maximal ideal. We say that L / K is a primitive extension with generator y if $L=K(y)$.

Consider the multiplication map $\mu_{y}: L \rightarrow L$ consisting of multiplication by y. If L / K is a primitive extension, write out the matrix of μ_{y} in the basis $1, y, \ldots, y^{d-1}$, and deduce that its trace is $\operatorname{Tr}_{L / K} \mu_{y}=-c_{d-1}$.

In general, prove that the trace of μ_{y} equals $-c_{d-1}[L: K(y)]$. [Hint: let b_{j} for $j=1, \ldots,[L: K(y)]$ be any basis of $L / K(y)$, and calculate the trace of μ_{y} in the basis $y^{i} b_{j}$ of L / K.

