
MA4L7 Algebraic curves

Example sheet 5, Deadline Wed 11th Mar

Counter-examples to regular sequence

Exercise 5.1 In A4
〈x,y,z,t〉 let V = Πx,y ∪ Πz,t be the union of the x, y- and

z, t-coordinate planes. Verify that its ideal is

IV = (z, t) ∩ (x, y) = (xz, xt, yz, yt),

so that its coordinate ring is k[V ] = k[x, y, z, t]/(xz, xt, yz, yt).
Consider the hyperplane section V ∩H where H is the hyperplane y = t.

The geometric locus V ∩H is the union of the x- and z- coordinate lines, so
that its ideal in k[x, y, z, t] is I(V ∩H) = (y, t, xz).

Write y for the residue of y in the quotient ring k[V ]/(y− t). Prove that
y 6= 0, but y is annihilated by the maximal ideal (x, y, z, t) at 0. [Hint: View
the quotient ring k[V ]/(y − t) as

k[x, y, z, t]/(y − t, xz, xt, yz, yt) = k[x, y, z]/(xz, xy, yz, y2).] (5.1)

Note that y − t is a nonzero divisor in k[V ], but it does not extend to a
regular sequence of length 2, because the quotient k[V ]/(y− t) contains the
element y that is killed by every element of the maximal ideal.

Taking a hyperplane section V ∩ H is an obvious geometric activity.
In algebra, the equation of H in k[V ] is a nonzerodivisor, but it does not
follow that it generates a radical ideal. The example is similar to the ideal
(xy, y2) ⊂ k[x, y], a standard example in primary decomposition.

Exercise 5.2 In the example V of the preceding exercise, calculate the
dimension of the quotient ring k[V ]/(x − z, y − t). You might expect that
since V is a union of 2 planes, it is a surface of degree 2, and the answer
should be 2.

Exercise 5.3 (Macaulay quartic curve Γ4 ⊂ P3) The Macaulay quartic
curve Γ4 ⊂ P3 is the image of P1

〈u,v〉 under the embedding u4, u3v, uv3, v4.

The coordinate ring of the affine cone V ⊂ A4 over Γ4 is the subring
A ⊂ k[u, v] generated by x = u4, y = u3v, z = uv3, t = v4. Show that
the missing element w = u2v2 ∈ k[u, v] is integral over k[V ], and that its
products xw, yww, zw, tw with the generators of the maximal ideal m =
(x, y, z, t) are in k[V ]; as a slightly tricky exercise, show that its ideal IV is

IV = (xt− yz, x2z − y3, xz2 − y2t, yt2 − z3). (5.2)
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Let a ∈ m be any nonzero element; k[V ] is an integral domain, so a is a
nonzerodivisor. Prove that any other element b ∈ m is a zerodivisor in the
module k[V ]/(a). [Hint: Show that aw has nonzero residue aw ∈ k[V ]/(a).]

Exercise 5.4 In Ex. 5.3, calculate the dimension of the quotient k[V ]/(x, t).
In other words, calculate k[y, z] modulo the ideal given by the 4 equations
(5.2) with x, t set equal to zero.

Compare this with what you might expect from the degree of Γ4 ⊂ P3.

Exercise 5.5 Recall the example of the cuspidal cubic k[x, y]/(y2 − x3) =
k[t2, t3]. You can describe the subring k[t2, t3] ⊂ k[t] as keeping every mono-
mial except t.

In 2 dimensions, consider the subring of k[x, y] containing every mono-
mial except y. Show that it is generated by a = x, b = xy, c = y2, d = y3

and related by the ideal of 2× 2 minors∧2
(
b d ac c2

a c b d

)
= 0

The common ratio b/a = d/c is the missing element y. Notice that the last
two columns have c × (a, c) over (b, d), which inverts the first two columns
and multiplies by c = y2. Because of this repetition, you can check that the
ideal is generated by just 4 of the 6 minors: (ad−bc, a2c−b2, ac2−bd, c3−d2).

The ring A = k[a, b, c, d] ⊂ k[x, y] is the coordinate ring of the image of
A2 → A4 given by (x, y) 7→ (a, b, c, d).

Prove that the quotient A/(a) of A by the principal ideal (a) contains
a nonzero element whose product with any of a, b, c, d is zero. Thus the
regular element a ∈ A does not extend to a regular sequence of length 2.

Exercise 5.6 (Regular sequences and free module) Let S be a local
ring and x ∈ m an element of its maximal ideal. Let M be a S-module
that is finite as S-module. Suppose that x is a nonzero divisor of M and set
M = M/xM , giving the exact sequence

0→M
x−→M →M → 0.

Prove that M is free over S if and only if M is free over S = S/(x).
If S is a graded ring, s ∈ S a homogeneous element of positive degree,

and M a graded module, use the same argument to prove that M is a
free graded module over S if and only if M is a free graded module over
S = S/(x).
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Exercise 5.7 (R(C,D) for D = g1
2 on a hyperelliptic curve) Let C be

the hyperelliptic curve treated in Ex. 3.3. The equation z2 = f2g+2 corre-
sponds to the quadratic extension field k(C)/k(x) of k[x], with Galois group
Z/2 generated by the hyperelliptic involution, and z a −1-eigenform. The
calculation of Ex. 3.3 shows that R(C, g1

2) = k[t1, t2, z] with t1, t2 coordi-
nates on P1 giving a basis of L(C, g1

2). The new element z in degree g + 1
has div z = Q1 + · · · + Q2g+2 where Qi ∈ C are the branch points over the
roots of f .

Thus R(C,D) is a free module of rank 2 over the polynomial ring S =
k[t − 1, t2] = R(P1, P∞), with generators 1, z of degrees 0 and g + 1. That
is:

R(C,D) = S · 1⊕ S · z = S ⊕ S[−(g + 1)].

Exercise 5.8 (KC for hyperelliptic curve) It follows that the dual mod-
ule

KC = Hom(R(C,D), S(−2)) ∼= S(−2)⊕ S(g − 1) ∼= R(C,D)[−(g − 1)].

Verify that degKC = 2g − 2 and l(KC) = g, and l(nD) − l(KC − nD) =
1− g + 2n for all n.

Exercise 5.9 (Plane curve Ca ⊂ P2) Let Ca : (Fa = 0) ⊂ P2
〈x,y,z〉 be a

nonsingular plane curve, and assume that (0, 0, 1) /∈ Ca, so the defining
equation Fa is monic in z. Write H = div z for the hyperplane divisor. The
projection of C to P1

〈x,y〉 is a morphism of degree a, and correponds to the

inclusion S = k[x, y] ⊂ R(C,H). Show that R(C,H) viewed as a module
over S is free with generators 1, z, . . . , za−1, so that R(C,H) =

⊕a−1
i=0 S(−i).

Use this to calculate l(nH) and verify that for n ≥ a−2 it can be written
in the form 1− g + na with g =

∑a−1
i=1 (i− 1) =

(
a−2

2

)
.

Determine the dual module K = Hom(R(C,H), S(−2)) and prove that
it is isomorphic to R(C,H)(a− 3).

Exercise 5.10 (Trigonal curve) Let D be a g1
3 on a curve C, that is,

degD = 3, l(D) = 2 and L(D) = [s1, s2] with disjoint effective divisors
Di = D + div si. Viewed as a module over S = k[s1, s2], the graded ring
R(C,D) is the free module generated by elements 1, z, w, with z ∈ L(aD)
and w ∈ L(bD) of degree 0 < a ≤ b, so that R(C,D) = S ⊕ S(−a)⊕ S(−b).

This implies that l(nD) = (n + 1)+ + (n − a + 1)+ + (n − b + 1)+.
Spell out precisely what this means for n is the different intervals between
[−1, 0, a− 1, a, b− 1, b]. Show that g = (a− 1) + (b− 1), and that l(nD) =
1− g + 3n for n ≥ b− 1.
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Carry out the same calculations for the dual moduleK = Hom(R(C,D), S(−2))
and verify the RR formula for all n.

Exercise 5.11 (Calculating with R(C,D) =
⊕

S(−ai)) Assume as given
that R(C,D) =

⊕d
i=1 S(−ai) with 0 = a1 < a2 ≤ · · · ≤ ad, and give

a formula for l(C, nD). For n ≥ ad − 1, express the answer in the form
l(C, nD) = 1 − g + nd for the appropriate value g =

∑d
i=2(ai − 1). (cf.

Proposition 9.4, (C) in the notes of my 2019 course).

Exercise 5.12 (RR calculations for K = HomS(R(C,D), S(−2))) With
the above assumption R(C,D) =

⊕
S(−ai), the dual module

K = HomS(R(C,D), S(−2)) ∼=
⊕

S(ai − 2)

Calculate l(K) and l(K−nD) for n ≥ 0, and verify the RR formula for nD.
(cf. Proposition 9.6 in my 2019 notes).

Exercise 5.13 (Plane curve with ordinary multiple points) Let Γ ⊂
P2 be a plane curve of degree a having an ordinary multiple point of multi-
plicity m at Q. The normalisation (resolution of singularties) C → Γ has m
points P1, . . . , Pm over Q, corresponding to the m tangent branches of Γ at
Q.

Treat C → Γ as local or affine. (This means shrink Γ to an affine
neighbourhood of Q, and take the inverse image of that in C, which contains
all of P1, . . . , Pm. Or just treat Γ as the local ring OΓ,Q contained in the
semilocal ring

⋂
OC,Pi ⊂ k(C).)

The Brill–Noether method developed in Fulton’s book asserts that forms
on P2 of degree n ≥ a−3 vanishing m−1 times at Q (that is, in the conductor
ideal C = mm−1

Q ) map surjectively to the RR space L(C,KC +(n−a+3)H).
Here H is the hyperplane section divisor, and KC is the divisor (a− 3)H −
(m− 1)

∑
Pi.

Calculate the degree of all the divisors involved, and verify that the RR
theorem hold for them. (That is, equality if n ≥ a − 2, the value of g if
n = a− 3, and the difference l(D)− l(K −D) when n < a− 2.)

The point of Fulton’s book is that every curve C is birational to a plane
curve Γ with ordinary multiple points Qi of order mi, and the adjoint curves
of degree n + a− 3 give an exact description of the RR spaces of KC + aH.
This is the Brill–Noether method of proof of RR. At the same time, it
provides a vast catalogue of examples of constructions of curves.
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Exercise 5.14 (Conductor ideal (Harder)) As in Ex. 5.13, let Γ ⊂ P2 be
a plane curve of degree a having an ordinary multiple point of multiplicity
m at Q.

The conductor of the normalisation

C = [k[Γ] : k[C]] = Ann(k[C]/k[Γ]) = Hom(OC ,OΓ)

is the ideal of functions f in k[Γ] so that f · k[C] ⊂ k[Γ]. By considering
the quotient rings OΓ,Q/m

N
Q and

⊕
OC,Pi/m

N
Pi

for any N ≥ m, prove that

C = mm−1
Q .

[Hint: This is all finite dimensional linear algebra. The quotient ring
OΓ,Q/m

N
Q is isomorphic to the polynomial ring k[x1, x2]/(x1, x2)N , so Taylor

series in 2 variables up to degree N . Similarly eachOC,Pi/m
N
Pi

is Taylor series
in 1 variable up to degree N .]

Exercise 5.15 (Past exam question) Part 1. The proof of RR used in
the course was based on three main propositions. The first two of these are:

(I) A principal divisor has degree zero: deg(div f) = 0 for all f ∈ k(C)×.

(II) There exists a sequence of divisors Dn of degree tending to +∞ such
that the difference degDn + 1− l(Dn) is bounded.

Use (I) and (II) [together with the fact that l(D−P ) = l(D) or l(D)− 1 for
every D and P ] to prove the following results:

(i) The maximum g = maxD

{
degD+1−l(D)

}
taken over all divisors D is

well defined, so that the Riemann–Roch inequality l(D) ≥ 1−g+degD
is satisfied for every divisor D.

(ii) With g as in (i), every divisor D of degree ≥ g has l(D) > 0, so is
linearly equivalent to an effective divisor.

(iii) There exists a divisor D of degree g − 1 for which l(D) = 0, so that
the RR inequality is equality.

(iv) l(D) = 1− g + degD holds for every divisor D of degree ≥ 2g − 1.

Part 2. Suppose that g(C) = 2 and degD = 4. Prove that l(D−KC) 6=
0, and deduce that ϕD is not an embedding. Show that ϕD is either a
generically 2-to-1 map of C to a plain conic, or maps C birational to a
quartic curve C with a node or cusp as its only singularity. Explain which
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divisors D correspond to each case. [You may use the criteria on embeddings,
and standard properties of the canonical map of a genus 2 curve.]

Status: Part 1 is bookwork. The whole proof of RR is too long for an
exam question, but it is fair to state parts of it as given, and ask for the
proof of the next part. Part 2 is part of a past exam questions (that is
basically too hard), and was discussed on an example sheet.

Exercise 5.16 (Past exam question) (i) Let C be a nonsingular pro-
jective curve and A,B divisors on C. Prove that multiplication in
k(C) defines a k-bilinear map

L(C,A)× L(C,B)→ L(C,A + B).

(That is, f ∈ L(C,A) and g ∈ L(C,B) implies fg ∈ L(C,A + B).)

(ii) Let C be a nonsingular projective curve and D a divisor of degree d
with L(C,D) of dimension 2, with basis s1, s2. Say what it means for
the linear system |D| to be a free g1

d.

(iii) Let |D| be a free g1
d as in (ii), and A any divisor. Determine the

intersection

s1 · L(C,A) ∩ s2 · L(C,A) ⊂ L(C,A + D).

Deduce that the subspace s1 · L(C,A) + s2 · L(C,A) in L(C,A + D)
has dimension equal to 2l(A)− l(A−D).

(iv) Now assume in addition that degA− degD ≥ 2g − 1. Prove that the
image of the multiplication map of (i) spans L(A + D).

Status: (ii–iii) is part of the Castelnuovo free pencil trick, that was
lectured. (iv) is unseen, but not difficult.
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