
MA4L7 Algebraic curves

Example Sheet 3. Deadline Wed 19th Feb at 12:00

Exercise 3.1 (Linear-bilinear lemma) Let V1, V2,W be vector spaces
and ϕ : V1 × V2 →W a bilinear map. Prove the following.

Lemma Assume that ϕ(v1, v2) 6= 0 ∈ W for every nonzero v1 ∈ V1 and
v2 ∈ V2. Then the subspace of W spanned by the image of ϕ has dimension
≥ dimV1 + dimV2 − 1.

Hint Consider the subvariety of V1⊗V2 of primitive tensors {v1⊗ v2}; that
is, the tensors of rank 1. This is the affine cone over the Segre product
P(V1)× P(V2) ⊂ P(V1 ⊗ V2). It has dimension n1 + n2 − 1. The assumption
on ϕ is that the kernel of ϕ : V1 ⊗ V2 →W intersects it in 0 only.

Exercise 3.2 (Clifford’s theorem) A divisor D is irregular if L(D) 6= 0
and L(K −D) 6= 0, that is, we can take both D and K −D to be effective.

Prove that d ≥ 2r for any irregular divisor D defining a grd. In other
words, the fastest growth of l(D) among all curves C and divisors D is given
by the ng12 on a hyperelliptic curve discussed in Ex. 3.3. [Hint: Consider
the multiplication map L(D) × L(K − D) → L(K), and put together the
RR formula with the inequality of the lemma.]

Exercise 3.3 (RR spaces L(C, ng12) for hyperelliptic curve C) Let C
be hyperelliptic of genus g ≥ 2 (assume 1

2 ∈ k). It has a double cover
ϕD : C → P1, so a divisor |D| with degD = 2 and l(D) = 2. This is called
a g12. Write t1, t2 ∈ L(C,D) for a basis, so x = t1/t2 is a parameter on P1.

The field extension k(P1) ⊂ k(C) is a quadratic extension given by z2 =
F2g+2(x), with Galois action i : z 7→ −z that acts on C interchanging the
two sheets of the double cover – the hyperelliptic involution.

The monomials Sn(t1, t2) = {tn1 , t
n−1
1 t2, . . . , t

n
2} are linearly independent

in L(nD) for each n, because x is transcendental over k. Calculate the
dimension of Sn(t1, t2) for n = 1, . . . , g. Using this, show that (g − 1)D is
irregular (that is, strict inequality in RR). Deduce that KC ∼ (g− 1)D. On
the other hand, gD has degree > 2g − 2, so is regular.

Next, use RR to show that L((g+1)D) is strictly bigger than Sg+1(t1, t2).
Show that the complementary basis element s can be chose so that z =
s/tg+1

2 is anti-invariant under the hyperelliptic involution, giving the new
generator with z2 = F2g+2(x).

Prove that the monomials Sn(t1, t2) and Sn−g−1(t1, t2) · z form a basis
of L(nD) for every n.
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Exercise 3.4 (Degree 5 divisor on a genus 2 curve) Let C be a curve
of genus g = 2 and D a divisor of degree 5. Use the criterion involving
L(D − P − Q) ⊂ L(D to prove that D is very ample and ϕD maps C
isomorphically to C ⊂ P3 of degree 5.

Compare the dimension of the space of quadrics of P3 with L(C, 2D),
and deduce that C is contained in a quadric hypersurface Q ⊂ P3.

If Q is nonsingular (say Q : (x0x3 = x1x2)), it is P1 × P1 in its Segre
embedding. In this case, prove that C is a curve in P1×P1 of bidegree (2, 3)
on P1 × P1. Deduce that D = KC + B where B is a free g13.

If Q is a quadric of rank 3 (that is, the ordinary quadratic cone x0x2 =
x21), prove that C passes through the vertex (0, 0, 0, 1), and deduce that

D
lin∼ P + 2g12.

Exercise 3.5 Let C and D be as in Ex. 3.4. Consider L(D − KC) and
determine the possible base points of |D−KC |. Recover the result of Ex. 3.4
without involving the geometry of the embedding C ⊂ P3.

Exercise 3.6 (Degree 4 divisor on a curve of genus 2) Suppose that
Γ4 ⊂ P2

〈x,y,z〉 is a plane quartic curve with a node or cusp at (1, 0, 0) and no

other singularities; assume its equation is x2a2 + xb3 + c4, with a, b, c forms
in y, z of the indicated degree. Show that projection from P defines a 2-to-
1 cover from the resolution C → P1

〈y,z〉 ramified in the discriminant sextic

b2 − 4ac. Deduce that C is birational to a hyperelliptic curves of genus 2.
Recall that KC is the final irregular divisor. Prove that for any curve C

of genus ≥ 1 and any P,Q ∈ C, we have l(K + P + Q) − l(K) = 1, so the
morphism ϕD corresponding to D = K + P + Q cannot distinguish the two
points P,Q. In other words, ϕD(P ) = ϕD(Q).

Now suppose that g = 2, and let D be any divisor of degree 4. Show
that l(D −KC) > 0, so that D is linearly equivalent to K + P + Q. Prove
that ϕD : C → P2 either maps C to a quartic curve Γ4 ⊂ P2 with a node at
ϕ(P ) = ϕ(Q) (resp., cusp if P = Q), or is a double cover of a plane conic
(in the case D −KC = g12, that is, D = 2g12).

Exercise 3.7 (Past exam question) (i) Let A ⊂ K be a subring of a
field. If y ∈ K is integral over A, prove that the subring A[y] ⊂ K is
a finite A-module (finitely generated as A-module).

Generalise the statement to the subring A[y1, . . . , yn] ⊂ K generated
by finitely many integral elements. [The proof is not required.]
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(ii) Suppose now that A ⊂ B ⊂ K with the subring B a finite A-module.
Prove that any b ∈ B is integral over A. [Hint: Choose generators of
B over A, and write out the A-linear map of multiplication by b as
a matrix with entries in A. Argue on the determinant of b times the
identity minus this matrix.]

(iii) Deduce from (i–ii) that the sum and products of elements of K that
are integral over A are again integral over A, hence that the integral
closure of A in K is a subring.

(iv) Calculate the integral closure of the ring A = k[x, y]/(y3 − x8) in its
field of fractions.

Explain briefly how taking normalisation (integral closure) provides
the nonsingular model of the curve C ⊂ A2 given by y3 = x8.

Status: (i–iii) is bookwork; (iii) looks obvious, but depends on (ii),
which is tricky to do directly. (iv) is unseen, but similar to material on the
example sheets.

Exercise 3.8 (Past exam question) (i) Give the definition of discrete
valuation ring. Explain how it relates to the notion of nonsingular
point of a curve C. Show how to define the divisor div f of a function
f ∈ k(C)×, and explain what it means in terms of zeros and poles of
f at points of C.

(ii) Let Ca ⊂ P2 be a nonsingular curve of degree a in P2 with homogeneous
coordinates x1, x2, x3. Give the definition of multiplicity of intersection
multP (Ca, L) of Ca with a line L ⊂ P2 at P ∈ C, and relate it to the
divisor of L/xi ∈ k(C)× (for appropriate choice of xi).

Write divL for the divisor on C corresponding to
∑

multP (C,L).
Prove that the divisors divL for different L are all linearly equiva-
lent.

From now on let C = C3 be a nonsingular plane cubic curve. You may
assume as given that g(C) = 1, and that every line L ⊂ P2 meets C
in 3 points counted with multiplicity.

(iii) Use RR to prove that any divisor D of degree 1 is linearly equivalent
to P for a unique point P ∈ C. For P1, P2, P3 ∈ C, give a geometric
construction for the point Q that is linearly equivalent to P1+P2−P3.
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(iv) Write A for the group of divisors of degree 0 modulo linear equivalence.
For O ∈ C a marked point, show that the map P 7→ [P−O] ∈ A defines
a bijective map C → A. Prove that C has a group law with O as unit
element such that the sum

∑
divL of the 3 points of L∩C is constant.

Status: Bookwork. (iii) relates to the geometric construction of the
group law.

Exercise 3.9 (Past exam question) (i) Let C be a nonsingular pro-
jective curve. Define a divisor on C, linear equivalence of divisors,
and the Riemann–Roch space L(C,D). Prove that if D1 and D2 are
linearly equivalent then L(D1) ∼= L(D2).

(ii) Prove that for a given divisor D and any P ∈ C,

l(D − P ) = either l(D)− 1 or l(D).

If l(D) 6= 0, prove that the second possibility occurs for at most a
finite number of points of C.

(iii) Give the full statement of the Riemann–Roch theorem, assuming the
definition of the canonical divisor class KC , and use it to prove the
following assertions:

(a) degKC = 2g − 2 and l(KC) = g.

(b) For any integer n with 0 ≤ n ≤ g, there exist n points P1, . . . , Pn

such that l(P1 + · · ·+ Pn) = 1.

(c) For any integer m with g− 2 ≤ m ≤ 2g− 2, there exists a divisor
D on C with degD = m for which l(D) = m− g.

Status: (i–ii) and (iii,a) is bookwork. (iii.b–c) are unseen, but follow
from the methods of argument around the proof of RR.
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