MA4L7 Algebraic curves

Example Sheet 3. Deadline Wed 19th Feb at 12:00

Exercise 3.1 (Linear-bilinear lemma) Let V_1, V_2, W be vector spaces and $\varphi: V_1 \times V_2 \to W$ a bilinear map. Prove the following.

Lemma Assume that $\varphi(v_1, v_2) \neq 0 \in W$ for every nonzero $v_1 \in V_1$ and $v_2 \in V_2$. Then the subspace of W spanned by the image of φ has dimension $\geq \dim V_1 + \dim V_2 - 1$.

Hint Consider the subvariety of $V_1 \otimes V_2$ of primitive tensors $\{v_1 \otimes v_2\}$; that is, the tensors of rank 1. This is the affine cone over the Segre product $\mathbb{P}(V_1) \times \mathbb{P}(V_2) \subset \mathbb{P}(V_1 \otimes V_2)$. It has dimension $n_1 + n_2 - 1$. The assumption on φ is that the kernel of $\varphi: V_1 \otimes V_2 \to W$ intersects it in 0 only.

Exercise 3.2 (Clifford's theorem) A divisor D is *irregular* if $\mathcal{L}(D) \neq 0$ and $\mathcal{L}(K-D) \neq 0$, that is, we can take both D and K-D to be effective.

Prove that $d \geq 2r$ for any irregular divisor D defining a g_d^r . In other words, the fastest growth of l(D) among all curves C and divisors D is given by the ng_2^1 on a hyperelliptic curve discussed in Ex. 3.3. [Hint: Consider the multiplication map $\mathcal{L}(D) \times \mathcal{L}(K - D) \to \mathcal{L}(K)$, and put together the RR formula with the inequality of the lemma.]

Exercise 3.3 (RR spaces $\mathcal{L}(C, ng_2^1)$ for hyperelliptic curve C) Let C be hyperelliptic of genus $g \geq 2$ (assume $\frac{1}{2} \in k$). It has a double cover $\varphi_D \colon C \to \mathbb{P}^1$, so a divisor |D| with deg D = 2 and l(D) = 2. This is called a g_2^1 . Write $t_1, t_2 \in \mathcal{L}(C, D)$ for a basis, so $x = t_1/t_2$ is a parameter on \mathbb{P}^1 .

The field extension $k(\mathbb{P}^1) \subset k(C)$ is a quadratic extension given by $z^2 = F_{2g+2}(x)$, with Galois action $i: z \mapsto -z$ that acts on C interchanging the two sheets of the double cover – the hyperelliptic involution.

The monomials $S^n(t_1, t_2) = \{t_1^n, t_1^{n-1}t_2, \ldots, t_2^n\}$ are linearly independent in $\mathcal{L}(nD)$ for each n, because x is transcendental over k. Calculate the dimension of $S^n(t_1, t_2)$ for $n = 1, \ldots, g$. Using this, show that (g - 1)D is irregular (that is, strict inequality in RR). Deduce that $K_C \sim (g - 1)D$. On the other hand, gD has degree > 2g - 2, so is regular.

Next, use RR to show that $\mathcal{L}((g+1)D)$ is strictly bigger than $S^{g+1}(t_1, t_2)$. Show that the complementary basis element s can be chose so that $z = s/t_2^{g+1}$ is anti-invariant under the hyperelliptic involution, giving the new generator with $z^2 = F_{2g+2}(x)$.

Prove that the monomials $S^n(t_1, t_2)$ and $S^{n-g-1}(t_1, t_2) \cdot z$ form a basis of $\mathcal{L}(nD)$ for every n.

Exercise 3.4 (Degree 5 divisor on a genus 2 curve) Let C be a curve of genus g = 2 and D a divisor of degree 5. Use the criterion involving $\mathcal{L}(D - P - Q) \subset \mathcal{L}(D$ to prove that D is very ample and φ_D maps C isomorphically to $C \subset \mathbb{P}^3$ of degree 5.

Compare the dimension of the space of quadrics of \mathbb{P}^3 with $\mathcal{L}(C, 2D)$, and deduce that C is contained in a quadric hypersurface $Q \subset \mathbb{P}^3$.

If Q is nonsingular (say $Q : (x_0x_3 = x_1x_2)$), it is $\mathbb{P}^1 \times \mathbb{P}^1$ in its Segre embedding. In this case, prove that C is a curve in $\mathbb{P}^1 \times \mathbb{P}^1$ of bidegree (2,3) on $\mathbb{P}^1 \times \mathbb{P}^1$. Deduce that D = KC + B where B is a free g_3^1 .

If Q is a quadric of rank 3 (that is, the ordinary quadratic cone $x_0x_2 = x_1^2$), prove that C passes through the vertex (0, 0, 0, 1), and deduce that $D \stackrel{\text{lin}}{\sim} P + 2g_2^1$.

Exercise 3.5 Let C and D be as in Ex. 3.4. Consider $\mathcal{L}(D - K_C)$ and determine the possible base points of $|D - K_C|$. Recover the result of Ex. 3.4 without involving the geometry of the embedding $C \subset \mathbb{P}^3$.

Exercise 3.6 (Degree 4 divisor on a curve of genus 2) Suppose that $\Gamma_4 \subset \mathbb{P}^2_{\langle x,y,z \rangle}$ is a plane quartic curve with a node or cusp at (1,0,0) and no other singularities; assume its equation is $x^2a_2 + xb_3 + c_4$, with a, b, c forms in y, z of the indicated degree. Show that projection from P defines a 2-to-1 cover from the resolution $C \to \mathbb{P}^1_{\langle y,z \rangle}$ ramified in the discriminant sextic $b^2 - 4ac$. Deduce that C is birational to a hyperelliptic curves of genus 2.

Recall that K_C is the final irregular divisor. Prove that for any curve C of genus ≥ 1 and any $P, Q \in C$, we have l(K + P + Q) - l(K) = 1, so the morphism φ_D corresponding to D = K + P + Q cannot distinguish the two points P, Q. In other words, $\varphi_D(P) = \varphi_D(Q)$.

Now suppose that g = 2, and let D be any divisor of degree 4. Show that $l(D - K_C) > 0$, so that D is linearly equivalent to K + P + Q. Prove that $\varphi_D \colon C \to \mathbb{P}^2$ either maps C to a quartic curve $\Gamma_4 \subset \mathbb{P}^2$ with a node at $\varphi(P) = \varphi(Q)$ (resp., cusp if P = Q), or is a double cover of a plane conic (in the case $D - K_C = g_2^1$, that is, $D = 2g_2^1$).

Exercise 3.7 (Past exam question) (i) Let $A \subset K$ be a subring of a field. If $y \in K$ is integral over A, prove that the subring $A[y] \subset K$ is a finite A-module (finitely generated as A-module).

Generalise the statement to the subring $A[y_1, \ldots, y_n] \subset K$ generated by finitely many integral elements. [The proof is not required.]

- (ii) Suppose now that $A \subset B \subset K$ with the subring B a finite A-module. Prove that any $b \in B$ is integral over A. [Hint: Choose generators of B over A, and write out the A-linear map of multiplication by b as a matrix with entries in A. Argue on the determinant of b times the identity minus this matrix.]
- (iii) Deduce from (i–ii) that the sum and products of elements of K that are integral over A are again integral over A, hence that the integral closure of A in K is a subring.
- (iv) Calculate the integral closure of the ring $A = k[x, y]/(y^3 x^8)$ in its field of fractions.

Explain briefly how taking normalisation (integral closure) provides the nonsingular model of the curve $C \subset \mathbb{A}^2$ given by $y^3 = x^8$.

Status: (i–iii) is bookwork; (iii) looks obvious, but depends on (ii), which is tricky to do directly. (iv) is unseen, but similar to material on the example sheets.

- Exercise 3.8 (Past exam question) (i) Give the definition of discrete valuation ring. Explain how it relates to the notion of nonsingular point of a curve C. Show how to define the divisor div f of a function $f \in k(C)^{\times}$, and explain what it means in terms of zeros and poles of f at points of C.
 - (ii) Let $C_a \subset \mathbb{P}^2$ be a nonsingular curve of degree a in \mathbb{P}^2 with homogeneous coordinates x_1, x_2, x_3 . Give the definition of multiplicity of intersection $\operatorname{mult}_P(C_a, L)$ of C_a with a line $L \subset \mathbb{P}^2$ at $P \in C$, and relate it to the divisor of $L/x_i \in k(C)^{\times}$ (for appropriate choice of x_i).

Write div L for the divisor on C corresponding to $\sum \text{mult}_P(C, L)$. Prove that the divisors div L for different L are all linearly equivalent.

From now on let $C = C_3$ be a nonsingular plane cubic curve. You may assume as given that g(C) = 1, and that every line $L \subset \mathbb{P}^2$ meets Cin 3 points counted with multiplicity.

(iii) Use RR to prove that any divisor D of degree 1 is linearly equivalent to P for a unique point $P \in C$. For $P_1, P_2, P_3 \in C$, give a geometric construction for the point Q that is linearly equivalent to $P_1 + P_2 - P_3$. (iv) Write A for the group of divisors of degree 0 modulo linear equivalence. For $O \in C$ a marked point, show that the map $P \mapsto [P-O] \in A$ defines a bijective map $C \to A$. Prove that C has a group law with O as unit element such that the sum $\sum \text{div } L$ of the 3 points of $L \cap C$ is constant.

Status: Bookwork. (iii) relates to the geometric construction of the group law.

- **Exercise 3.9 (Past exam question)** (i) Let C be a nonsingular projective curve. Define a divisor on C, linear equivalence of divisors, and the Riemann–Roch space $\mathcal{L}(C, D)$. Prove that if D_1 and D_2 are linearly equivalent then $\mathcal{L}(D_1) \cong \mathcal{L}(D_2)$.
 - (ii) Prove that for a given divisor D and any $P \in C$,

$$l(D-P) =$$
either $l(D) - 1$ or $l(D)$.

If $l(D) \neq 0$, prove that the second possibility occurs for at most a finite number of points of C.

- (iii) Give the full statement of the Riemann–Roch theorem, assuming the definition of the canonical divisor class K_C , and use it to prove the following assertions:
 - (a) deg $K_C = 2g 2$ and $l(K_C) = g$.
 - (b) For any integer n with $0 \le n \le g$, there exist n points P_1, \ldots, P_n such that $l(P_1 + \cdots + P_n) = 1$.
 - (c) For any integer m with $g-2 \le m \le 2g-2$, there exists a divisor D on C with deg D = m for which l(D) = m g.

Status: (i–ii) and (iii,a) is bookwork. (iii.b–c) are unseen, but follow from the methods of argument around the proof of RR.