
MA4J8 Commutative algebra II

4 Weeks 4–5: Dimension theory

4.1 Introductory discussion

I treat dimension theory (originally due to Krull) following [Matsumura,
Chap. 5] and [A&M, Chap. 11]. I mainly work with Noetherian local rings.
These conditions are convenient to use, and cover most of the cases we need
in practice.

Depending on what branch of mathematics we study, dimension means
different things: until recently, applied math textbooks commonly used
phrases like “∞2 solutions”, to indicate that points depend on 2 contin-
uous parameters. The number of algebraically independent variables in a
ring or field extension. And so on. The following three different interpre-
tations hint at what I am trying to do in commutative algebra. I will set
them up correctly later in this chapter. The main point is to establish that
three alternative technical definition of dimension of Noetherian local ring
coincide in appropriate situations.

Informal view of dimension

(1) Dimension n means that a ball of radius r has volume const.× rn. Or
the number of lattice points in a simplex of size n grows as

∼
(
r + a bit

n

)
∼ rn

n!
+ lower order terms. (4.1)

(2) You can cut down an n-dimensional body by a hyperplane (setting a
single equation equal to zero) to get down to n− 1 dimensions, and so
on to dimension 0, meaning a point or a finite set of points.

(3) We have already seen Krull dimension n, the length of the longest
chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn in a ring, or the longest
chain of irreducible subvarieties

point ⊂ curve ⊂ surface ⊂ · · · ⊂ n-fold (4.2)

in a variety. Krull dimension 0 (together with Noetherian) is a charac-
terisation of an Artinian ring (or field if it is an integral domain), and
Krull dimension 1 is part of the characterisation of DVRs or Dedekind
domains.
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4.2 Graded rings

I work mostly with N-graded rings and modules, where N = {0, 1, 2, . . . }.
(Gradings by more general semigroups are also useful in other contexts.)

A graded ring is a ring R =
⊕

n≥0Rn, where the Rn are additive sub-
groups and the ring multiplication takes Rn1 ×Rn2 → Rn1+n2 .

It follows of course that R0 is a subring, with 1R ∈ R0, and each Rn is an
R0-module. Also, J =

∑
n≥0Rn is an ideal and R/J = R0. Elements of Rn

are homogeneous of degree n. Any f ∈ R is uniquely expressible as a finite
sum f =

∑
n fn with fn homogeneous of degree n. It is the homogeneous

component or homogeneous piece of f .
For dimension theory, we almost always restrict to the case that R0 is

an Artinian ring, or even just R0 = k is a field. (More general rings are used
in other contexts.)

Lemma 4.1 (Standard fact) A graded ring R is Noetherian if and only
if

(i) the subring R0 is Noetherian , and

(ii) R is generated as an R0 algebra by finitely many homogeneous elements
xi ∈ Rdi.

Both implications are straightforward – please think them through as an
exercise.

Why graded rings? A general point in algebra is that a grading on a
vector space or on a module is more or less the same thing as a representation
of the multiplicative group Gm(k) = GL(1, k), or more familiarly, C×. The
most common such representation is the equivalence relation defining Pn.

Projective space Pn =
(
kn+1 \ {0}

)
/∼, where ∼ is the equivalence class

x ∼ λx for λ ∈ Gm(k), has homogeneous coordinates (x0, . . . , xn): a point
P ∈ Pn corresponds to a ratio (x0 : x1 : · · · : xn). Like the sound of one
hand clapping, the individual xi is not a meaningful function (it varies in
an equivalence class), but the ratio xi : xj or the “rational function” xi/xj
is (partially defined and) well defined where xj(P ) 6= 0.

If f ∈ k[x0, . . . , xn] is homogeneous of degree d, changing all xi 7→ λxi
changes f(x0, . . . , xn) 7→ λdf , so the condition f(P ) = 0 is well defined.
The degree d homogeneous component of k[x0, . . . , xn] thus appears as the
λd eigenspace of the action of λ, or the character space of the Gm action on
k[x0, . . . , xn].
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Implicit in this is the key point that the algebraic group Gm is reductive.
A representation of Gm splits into 1-dimensional representations, and every
1-dimensional representation of Gm is a dth power homomorphism

Gm → Gm = GL(1, k), given by z 7→ zd for some d ∈ Z. (4.3)

The informative slogan “a grading on a module or vector space is the same
thing as a representation of Gm” is also a useful formal result:

Proposition 4.2 Making a vector space V into a representation of Gm is
exactly the same thing as putting a Z-grading on V , that is, writing

V =
⊕
d∈Z

Vd, where λ ∈ Gm acts on Vd by v 7→ λdv. (4.4)

4.3 Graded modules and graded ideals

Given R as above, a graded module over R is an R-module M with a grading
M =

⊕
nMn, with the ring operation doing Rn1 ×Mn2 → Mn1+n2 . We

sometimes need to allow the grading of M to have finitely many negative
pieces Mn with −s ≤ n < 0. Worrying about the negative terms tends
to mess up the statement of results, and we mostly assume n ≥ 0. (It’s
not a big deal, since we can always shift the degrees by passing from M to
M [d] =

⊕
Md+n.)

A homogeneous ideal or graded ideal I ⊂ R is a particular case of graded
submodule. It is an ideal I ⊂ R with the property that I =

∑
In where

In = I ∩ Rn. Another way of saying this: for every element f ∈ I, write
f =

∑
fn in the graded structure of R; then all the homogeneous pieces fn

of f ∈ I are also in I.
In the I ←→ V correspondence between subvarieties V ⊂ Pnk and graded

ideals I in k[x0, . . . , xn] (the homogeneous coordinate ring of Pn), graded
ideals I with V (I) = {0} ⊂ kn+1 define ∅ ⊂ Pnk , and we usually disparage
them as “irrelevant ideals”, and ignore them. The Nullstellensatz implies
that

I is irrelevant ⇐⇒ (x0, . . . , xn)N ⊂ I for some N , (4.5)

that is, (x0, . . . , xn) ⊂ rad(I).
A relevant graded ideal defines an invariant subvariety Vaff(I) ⊂ kn+1

made up of nonzero orbits of the Gm action (lines through 0 ∈ kn+1),
so points of Pn. This is the affine cone over the projective subvariety
Vproj(I) ⊂ Pn.
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4.4 Hilbert series

For the present, consider an N-graded ring R =
∑
Rn with the additional

condition that R0 is Artinian (the model case is simply a field). A finite
module N over R0 has finite length l(N) = lengthR0

(N) (it is finite over an
Artinian ring). If R0 = k is a field, l(N) is just the k-vector space dimension
of N .

Suppose also that R is Noetherian, so generated over R0 by finitely many
homogeneous elements {xi ∈ Rdi}: then

R = R0[x1, . . . , xr]/IR, (4.6)

where IR is the ideal of all relations in R between the xi.
The usual “straight” case is when all di = 1. When the di take differ-

ent values, we use weight (or weighted degree) as another word for degree,
to avoid the ambiguity between homogeneous and weighted homogeneous
monomial: a monomial

∏
xaii has weight

∑
aidi.

For given weight n, there are only finitely many monomials
∏
xaii of

weight
∑
aidi = n, so each homogeneous piece Rn of R is a finite module

over R0, therefore of finite length l(Rn). This gives us something to count.
The same applies to a finite R-module M : each Mn is a finite R0-module,

because Mn is generated by finitely elements of degree ≥ −s for some integer
s (usually s = 0). In any case Rn is generated over the Artinian ring R0 by
finitely many module monomials, so that length(Mn) is a finite number.

Definition 4.3 (Hilbert series) Assume for simplicity that Mn = 0 for
n < 0. Write

Pn(M) = lengthR0
(Mn) for n ∈ Z, and

P (M, t) =

∞∑
n=0

Pn(M)tn.
(4.7)

The integer valued function n 7→ Pn(M) is the Hilbert function of M . The
generating series P (M, t) for the Pn(M) is the Hilbert series of M . It is a
formal power series in t. Its big selling point is that it holds the infinitely
many coefficients Pn(M) in a closed form, giving a lot of useful information
for little effort.

If M has homogeneous pieces Mn in negative degrees with −s ≤ n < 0,
the result is similar, but we need to replace the formal power series with a
formal Laurent power series (starting with P−s(M)t−s).
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Theorem 4.4 Let R be as in (4.6) and M a finite R-graded module (and
again for simplicity, Mn = 0 for all n < 0). Then the formal power series
P (M, t) is a rational function of t with denominator

∏r
i=1(1 − tdi), where

di = weightxi. That is,

P (M, t) =
H(M, t)∏r
i=1(1− tdi)

, (4.8)

with H(M, t) ∈ Z[t] a polynomial with integer coefficients. In different con-
texts, we call it the Hilbert numerator of M .

As before, if M has nonzero pieces Mn with −s ≤ n < 0, a similar result
still holds, but with H(m, t) ∈ Z[t, t−1] a Laurent polynomial with terms of
negative degree down to −s.

The “straight” homogeneous case Although it is not the only case of
interest, a key case for graded rings and modules is when all the generators
xi have degree di = 1. It is a “well known fact” (proved below) that

1

(1− t)r+1
=
∑
n≥0

(
n+ r

n

)
tn. (4.9)

To get the hang of this, write it out for r = 0, 1, 2. The formula is memorable
for me as the number of forms of degree n on Pr.

Corollary 4.5 Assume that the numerator H(M, t) of P (M, t) is a poly-
nomial of degree D and that all the di = 1. Then for n ≥ D, the term
Pn(M) is a polynomial in n.

In this case after we cancel powers of 1 − t, (4.8) can be rewritten as
N(t)
(1−t)d with N a polynomial in t not divisible by 1 − t, so that N(1) 6= 0.

Then N(1) > 0, and the order of growth of Pn(M) for n� 0 is

N(1) · nd−1

(d− 1)!
+ lower order terms. (4.10)

The number d in Corollary 4.5 (with M = R) is the dimension of the
graded ring R. It can also be defined as 1 plus the order of pole at t = 1 of
P (R, t) in (4.8). The order of growth, the dimension d and the leading term
N(1) in (4.10) are key ingredients in the main theorem of this chapter.
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Proof of corollary Write

H(M, t) = a0 + a1t+ · · ·+ aDt
D (4.11)

for the numerator. The power series expansion of P (M, t) = H(M,t)
(1−t)r+1 is then

the product of the polynomial (4.11) times the power series (4.9)
For n ≥ D, the tr term in this product is the sum of D + 1 terms

D∑
i=0

ait
i ×
(
n− i+ r

n

)
tn−i (4.12)

Each summand here is a coefficient that is a polynomial in n multiplied by
tn. Therefore the coefficient of tn is a polynomial in n. (For n < D the
formula handles the terms with i < D − n incorrectly.) Q.E.D.

Proof of Theorem 4.4 The method of proof is induction over the number
r of generators of R. If r = 0 then M is a finite graded module over the
Artinian ring R0, so it is a sum of finite length R0-modules Mn in finitely
many degrees n, and P (M, t) is just a polynomial (or a Laurent polynomial
if M has some pieces Mn in degree n < 0).

Inductive step The main step in the proof is the following induction:
consider the multiplication map by xr:

mxr : M →M (4.13)

This increases degrees by dr. It defines the exact sequence

0→ K →M
xr−→M → N → 0. (4.14)

Now the kernel K = kermxr ⊂ M is the submodule annihilated by xr.
Therefore it is a graded module over R = R/(xr). Also, by construction,
N = cokermxr = M/(xrM) is a graded R-module annihilated by xr.

Note that M is a graded module over R, whereas by what I just said,
K and N are graded modules over the quotient ring R = R/(xr), which is
a graded R0-algebra of the same shape as (4.6), but now with only r − 1
generators.

Thus by induction on r, I can assume that the result is already known
for both K and N , so their Hilbert series are of the form

P (K, t) =
H(K, t)∏r−1
i=1 (1− tdi)

,

P (N, t) =
H(N, t)∏r−1
i=1 (1− tdi)

.

(4.15)
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where the numerators are polynomials with integer coefficients.
Since mxr increases degrees by dr, the exact sequence (4.14) breaks up

according to weighted degrees as exact sequences

0→ Kn−dr →Mn−dr
xr−→Mn → Nn → 0. (4.16)

of R0-modules of finite length, one for each n.
This implies the equality

l(Mn)− l(Mn−dr) = Nn −Kn−dr for each n. (4.17)

Now summing (4.17) times tn gives

(1− tdr)P (M, t) = P (N, t)− t−drP (K, t). (4.18)

This is the result we wanted. Indeed, both terms on the r-h.s. are of the
form polynomial (or possibly Laurent polynomial) divided by

∏r−1(1− tdi ).
Therefore P (M, t) is a polynomial divided by

∏r(1− tdi). Q.E.D.

4.5 From graded to filtered: Hilbert–Samuel function

The aim is to apply the theory of graded rings and modules and their Hilbert
functions and Hilbert series to general Noetherian local rings.

A basic step is the passage from

(1) a Noetherian local ring A,m to

(2) the same ring with an I-adic filtration {In} (for an ideal I not too far
from the maximal ideal, see below), and on to

(3) the associated graded ring R = GrI A =
⊕∞

n=0 I
n/In+1

We will see that the graded ring GrI A satisfies the assumptions of Sec-
tion 4.4, so that the results on its Hilbert series are applicable to derive
results on A. The Hilbert–Samuel function of A and I is defined and calcu-
lated in terms of the Hilbert series of GrI A.

Definition 4.6 (m-primary ideal) LetA,m, k be a Noetherian local ring.
An ideal I of A is m-primary if mn ⊂ I ⊂ m for some n ≥ 1. It is equivalent
to say that I ( A and rad I = m, or that m = (x1, . . . , xk) and I contains
some power xmi

i of every generator of m.
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Background An ideal I is primary if fg ∈ I implies either f ∈ I or
gN ∈ I for some N > 0. In other words, the only way of getting into I by
multiplication is to multiply by an element of rad I. If I is primary then
P = rad I is prime (check this if you haven’t seen it before) and we say that
I is P -primary. In our context, it is straightforward to check that m-primary
is equivalent to the above definition. See [UCA, Chap. 7] for a more leisurely
treatment of primary ideals and primary decomposition.

For example: if P ∈ X is a point on an affine algebraic variety over k,
and A = OX,P the local ring of X at P , then

I ⊂ A is m-primary⇐⇒ every f ∈ I has f(P ) = 0, and

every xi ∈ mP has some power xni
i ∈ I.

(4.19)

In the geometric example, by the Nullstellensatz, this means P ∈ X is an
isolated point component of the algebraic set V (I).

The quotientm/mn is anA-module of finite length: in fact, eachmi/mi+1

is a finite dimensional vector space over the residue field k = A/m. If I is
m-primary, the quotients A/In (together with their submodules or quotient
modules) are Artinian, that is, 0-dimensional, and do not have any associ-
ated primes P other than m.

Every Jordan-Hölder sequence for A/In has all quotients isomorphic to
the residue field k = A/m. The length of an I-primary module is the number
of occurrences of k = A/m as Mi/Mi+1 in a JH filtration.

We work with the I-adic filtration A ⊃ I ⊃ · · · ⊃ In ⊃ · · · and its
associated graded ring R = GrI A =

⊕
n≥0 I

n/In+1. Its degree 0 term
R0 = A/I is Artinian, and R is generated in degree 1 over R0.

It might be natural for some purposes to work only with I = m. However,
some proofs require that the order of growth is independent of which primary
ideal we take. If I and J are two m-primary ideals then there are natural
numbers a, b such that Ia ⊂ J and Jb ⊂ I.

Definition 4.7 The Hilbert–Samuel function of A with respect to I is de-
fined by

HSIA(n) = length(A/In+1) =

n∑
i=0

l(Ii/Ii+1). (4.20)

(Both [A&M] and [Ma] use χIA.) The r-h.s. says that this is the cumulative
sum of the Hilbert series of the associated graded ring GrI(A).

It is often a headache to decide between d and d + 1. The Hilbert
function Pn(GrIA) of (4.7) is the length of the graded piece In/In+1, so is an
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individual term in a sum. It has the leading term N(1) · nd−1

(d−1)! of (4.10). The

HS function of (4.20) is the cumulative total of these
∑

i≤n length(Ii/Ii+1),

and has leading term N(1) · nd

d! .
For example, consider A = k[x1, . . . , xr] with I equal to the maximal

ideal m = (x1, . . . , xr). The Hilbert function counts the homogeneous mono-
mials in (x1, . . . , xr) of degree equal to s, whereas the Hilbert–Samuel func-
tion counts the homogeneous monomials of degree ≤ s. Thus

Ps(A) =

(
r + s− 1

s

)
=

(
r + s− 1

r − 1

)
with cumulative sum HSmA =

(
r + s

s

)
=

(
r + s

r

)
.

(4.21)

The HS function of a finite A-module M is defined in the same way
in terms of the I-adic filtration InM and the associated graded module
GrI(M) =

⊕
(IiM)/(Ii+1M).

When discussing completion, we have so far been interested in the inverse
system A/In and the inverse limit Â = lim←−A/I

n that defines the I-adic
completion. The focus here is on the associated graded ring R = GrI A =∑

n≥0 I
n/In+1 and its modules

∑
InM/In+1M .

Lemma 4.8 Let A,m, k be a Noetherian local ring and I and m-primary
ideal. Then R = GrI A =

⊕∞
n=0 I

n/In+1 is a graded ring of the form (4.6),
with all generators in degree 1.

Proof The degree 0 piece of GrI A is R0 = A/I, which is an Artinian ring
as discussed above.

The degree 1 piece is R1 = I/I2. The ideal I is finitely generated
(since A is Noetherian). Each In/In+1 is a module over R0 = A/I, because
multiplication by an element of I takes In to In+1, so to 0 in In/In+1.
Moreover the degree n part In/In+1 of GrI R is generated by monomials of
degree n in the generators of I, so is a finite R0 module, and is also of finite
length. This proves the lemma. �

Check up on prerequisites From now on, I assume known the theory of
Hilbert series of a graded ring (as in 4.2–4.4 above) and the Hilbert–Samuel
function of an I-adic filtration. Also, the material around Definition 4.6 of
an m-primary ideal I.
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Our trio of definitions Let A,m, k be a Noetherian local ring. We work
with the 3 following quantities:

d(A) = order of growth of l(A/mn), or of the Hilbert–Samuel function HSn(A).
Or the order of pole at t = 1 of the Hilbert–Samuel function HSA(t).
This is called the HS dimension of A.

δ(A) = smallest number of generators of an m-primary ideal I = (s1, . . . , sδ).
Any such set {s1, . . . , sδ} is called a system of parameters, and δ is the
s.o.p. dimension of A

This means that we can take the quotient A/(s1, . . . , sδ) and get an
Artinian or 0-dimensional ring, and δ is the minimum such number.

dimA = Krull dimension, the maximum length of chain of prime ideals.

In what follows, we eventually prove the dimA ≤ d(A) ≤ δ(A) ≤ dimA.
Of these, the first inequality is the hardest. It uses the numerical properties
of HS(A) in a rather subtle way. The remaining equalities are comparatively
simple follow-your-nose kind of algebraic arguments.

It follows directly from the definition that if I, J are both m-primary
then there are a, b such that

Ia ⊂ ma ⊂ J and Jb ⊂ mb ⊂ I. (4.22)

Thus the order of growth of the Hilbert–Samuel function and the I-adic
topology of a finite module M is independent of the choice of I.

Proposition 4.9 (Definition of HS dimension d(A)) The HS function
HSIA(n) is a polynomial of degree d in n for n � 0. Its leading term is

N(1) · nd

d! with N(1) > 0, where that of the Hilbert function of GrI(A) is
N(t)
(1−t)d (see Corollary 4.5).

The same statement holds for modules: the HS function HSIM (n) is a

polynomial for n � 0, of degree d and with leading term N(1) · nd

d! where

P (GrI(M), t) = N(t)
(1−t)d−1 .

The d appearing here is the HS dimension d(A), respectively d(M), one
of the above trio of definitions.
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Using HS dimension to bound dimension The following lemma is
clever bean-counting on the numerics of HSIA(M). It is the first step in the
technical proof of dimM ≤ d(M).

Lemma 4.10 ([Ma, Theorem 13.3]) A, I as above, M a finite module
and N ⊂ M a submodule with quotient M/N . Then the HS dimensions of
these three modules satisfy

d(M) = max{d(N), d(M/N)}. (4.23)

Morever, in the case of equality d(N) = d(M/N), the leading coefficient of
HS(M) equals the sum of leading coefficients of the submodule HS(N) and
the quotient module HS(M/N).

The proof is a skillful application of the full form of the Artin–Rees
lemma.

Proof Take the I-adic filtration of the terms in the short exact sequence
0→ N →M →M/N → 0. Starting with the quotient,

(M/N) / In(M/N) = M/(N + InM). (4.24)

Viewing N + InM as an intermediate submodule

InM ⊂ N + InM ⊂M (4.25)

expresses M/InM as an extension of the successive quotients

(N + InM) / InM and M/(N + InM). (4.26)

The second term is the r-h.s. of (4.24). The first term is isomorphic to
N/(InM ∩ N) by the second isomorphism theorem. Putting this together
gives

l(M/InM) = l
(
N/(InM ∩N)

)
+ l
(
(M/N)/In(M/N)

)
. (4.27)

The l-h.s. is HSM (n) (ignore the n in place of n + 1), and the equation
displays it as a sum of the first term, which is something to do with the
I-adic filtration on N , plus HSM/N (n).

Now the Artin–Rees lemma gives a precise relation between the growth
of the first term l

(
N/(InM ∩ N)

)
and that of HSN (n) = l(N/InN): there

exists c such that InM ∩N = In−c(IcM ∩M) for all n ≥ c. Hence

InN ⊂ InM ∩N ⊂ In−cN, (4.28)

11



and the length of N/(InM ∩ N) is sandwiched between HSIN (n − c) and
HSIN (n). Therefore it has the same order of growth as the polynomial
HSIN (n), and the same leading term.

Now (4.27) gives that the HS dimension d(M), equal to the order of
growth of l(M/In), is the maximum of the order of growth of the two terms
on the right, which is the maximum of d(N) and d(M/N). This is (4.23).
Moreover, if all three of the HS have the same order of growth, (4.27) gives
that the leading terms must add up. This proves the lemma. �

Corollary 4.11 Let A be a local Noetherian integral domain and x ∈ A a
nonzero element. Then the HS dimensions satisfy

d(A/(x)) ≤ d(A)− 1. (4.29)

Proof Apply the lemma to the ideal xA ⊂ A, and the quotient module
A/(x). Since A is an integral domain and x 6= 0, the principal ideal (x) = xA
is a submodule of A isomorphic to A.

This implies they have the same HS dimension, the same order of growth
of HS(n) and the same leading term. Therefore, by the lemma, A/(x) must
have smaller order of growth.

In more detail, write HS(A) = NA

(1−t)d and HS(xA) = NxA

(1−t)d for the

Hilbert–Samuel functions of A and xA. The numerators NA and NxA are
polynomials of the same degree with the same leading term N(1) > 0,
so subtracting one from the other cancels the leading term. Therefore
NA(1) − NxA(1) = 0 and so NA − NxA is divisible by 1 − t. This can-
cels one power of (1− t) in the denominator. Thus A/(x) has HS dimension
d(A/(x)) ≤ d(A)− 1. �

4.6 Proof of dimA ≤ d(A)

This is the hard implication of the main theorem: the Krull dimension dimA
of a Noetherian local ring A is bounded by its HS dimension d(A). The proof
is by induction on the HS-dimension d(A).

0th Step. d(A) = 0 implies dimA = 0. If d(A) = 0 then l(A/mn) is
eventually constant. Therefore mn+1 = mn, and Nakayama’s lemma gives
mn = 0. Then m is the only prime ideal of A so dimA = 0. In fact if P ( m
is a prime ideal, an element x ∈ m \ P maps to a nonzero element of the
integral domain A/P , which contradicts x nilpotent in A.
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Induction step Suppose now that d(A) > 0. If dimA = 0 we are home,
so assume that dimA > 0. Let

P0 ( P1 ( · · · ( Pe (4.30)

be an increasing chain of prime ideals of A.
For the induction, pick x ∈ P1 \P0. It maps to a nonzero element y = x

of the integral domain A/P0, and we apply Corollary 4.11 to y ∈ A/P0.
To do this, set B = A/(P0 + xA) = (A/P0)/(y) and write π : A→ B for

the quotient map. Corollary 4.11 gives d(B) ≤ d(A)− 1, so induction gives
dimB ≤ d(B). Now consider the rest of the chain

P1 ( · · · ( Pe. (4.31)

For i > 0, the images π(Pi) are ideals of B with B/π(Pi) = A/Pi, so
they are prime, and form a chain of prime ideals of B of length e− 1.

Therefore e − 1 ≤ dimB ≤ d(B) ≤ d(A) − 1, which gives e ≤ d(A).
This applies to every strictly increasing chain of prime ideals of A, therefore
dimA ≤ d(A). Q.E.D.

The same result holds for a finite module M over A, arguing on AssM
so that M has a module isomorphic to A/P , and applies the result for A
itself – [Ma], p. 99 says “it is easy to see”.

Theorem 4.12 (Main theorem) The 3 definitions of dimension coincide

dimA = Krull dimension: maximum length of chain of primes

d(A) = HS dimension: order of growth of HS(n) = l(A/In+1).

δ(A) = minimal number of generators

of an m-primary ideal I = (x1, . . . , xδ).

(4.32)

We have already done dimA ≤ d(A). The other implications are more
straightforward and formal.

Proof of d(A) ≤ δ(A) Suppose that δ(M) = δ, and let I = (x1, . . . , xδ)
be an m-primary ideal. Then A/I has finite length l(A/I), and Ii/Ii+1 is
generated as A/I-module by monomials in (x1, . . . , xδ) of degree ≤ n for
all i < n. We know that the number of these is at most

(
δ+n
n

)
, so that

HSIA(n) ≤ l(A/I)
(
δ+n
n

)
, and therefore d(A) ≤ δ(A)
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Proof of δ(A) ≤ dimA If dimA = 0 then m is nilpotent, so that 0 is
already m-primary, that is δ(A) = 0. So we can assume that dimA = s > 0.

The argument is just a couple of lines, but it assumes some background
points. Let’s do the overall argument first, then explain the prerequisites
that are involved.

Step 1 There are chains of prime ideals P0 ⊂ · · · ⊂ Ps of length s. Only

finitely prime ideals P
(i)
0 can be the bottom of such a chain. In fact P0 must

be a minimal prime, since otherwise the chain would extend down to a chain
of length s + 1. A Noetherian ring has only finitely many minimal primes.
(See Appendix on Zariski topology for this.)

Step 2 Each of the P
(i)
0 is strictly contained in m. Therefore there exists

x ∈ m not contained in any Pi. (See Appendix on prime avoidance for this.)

Step 3 If x ∈ m but x /∈
⋃
P0(i) then dimA/x ≤ s − 1. In fact write

π : A → A/x; then a prime Q of A/x has inverse image π−1(Q) in A that
contains x, and this excludes all the bottom P0(i). Therefore a chain of
them cannot start at any of the P0(i), so has length ≤ s− 1.

Step 4 Complete the proof. By induction, we can assume that δ(A/x) ≤
dimA/x ≤ s− 1. This means that the local ring A/x,m/x has an (m/(x))-
primary ideal with generators x2, . . . , xs. Therefore (x, x2, . . . , xs) is an m-
primary ideal of A,m generated by s elements, so δ(A) ≤ s.

This completes the proof of the main theorem.

Appendix: Reminder on Zariski topology The statement is: A Noethe-
rian ring A has only finitely many minimal prime ideals Pi. This as an
exercise in the Zariski topology – I should have done it in the prerequisites
at the start of the course. The prime ideals correspond to the irreducible
components of the Zariski topology on SpecA.

The Zariski topology on SpecA has closed sets V (I). If A is Noetherian,
this is a Noetherian topology – any descending chain of closed sets eventually
terminates (because they are V (I), and the I have the a.c.c.) The d.c.c.
implies that any set of closed sets has a minimal element.

A closed set is irreducible if V (I) is not V (I1)∪V (I2) with strictly smaller
closed sets V (Ii). This holds if and only if V (I) = V (P ) for a prime ideal
V (the argument is the same as for affine varieties). It follows that every
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closed set is a finite union of irreducible closed sets. So the whole of SpecA
is a finite union of V (Pi) where the Pi are the minimal primes.

If you find this problematic, either take it on trust, or see [UCA, 5.12–
5.13].

Appendix: Prime avoidance If I, J1, J2 ⊂ A are subgroups in an
Abelian group, it is more-or-less obvious that I ⊂ J1 ∪ J2 implies that
I ⊂ J1 or I ⊂ J2.

For pick x1 ∈ I \ J2 and x2 ∈ I \ J1. If I ⊂ J1 ∪ J2 we must have
x1 ∈ J1 and x2 ∈ J2. Now x1 + x2 ∈ I, and hence x1 + x2 ∈ J1 or J2. This
contradicts the choice of either x1 or x2.

The result for more than 2 prime ideals is [A&M, 1.11, p. 8], but I always
find it an absolute bastard to remember or to figure out from scratch.

Lemma 4.13 If an ideal I is contained in a finite union of prime ideals⋃n
i=1 Pi then I is contained in one of the Pi.

The contrapositive: if I is not contained in any of the Pi, then I is not
contained in their union.

We can assume by induction that I is not in the union of any n − 1 of
the Pi. So for each i, pick xi ∈ I \

⋃
j 6=i Pj . Since xi ∈

⋃n
i=1 Pi, necessarily

xi ∈ Pi.
Now xj /∈ Pi for all j 6= i, so the product

∏
j 6=i xj is not in Pi (here we

use the assumption that the Pi are prime). Now the sum of the products∑
i

∏
j 6=i

xj (4.33)

is a sum of element in I (in fact in In−1) but is not in any Pi. (All but one
term is in Pi, and the nth definitely not.) This contradicts the assumption
that I ⊂

⋃
Pi.
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