
MA426 Elliptic curves

Instructions: The worksheets and other course handouts are available
from my website and from the shelves outside my office. The assignments
count for 15% of the credit. There are 5 worksheets, and I’ll take the total
marks by doing best 4 out of 5. Solutions must be handed in by deadline
TBA.

I would be grateful for comments on the worksheets or the course material.
Miles Reid

Assignment A

A.1. Let f(x) = x3 + ax + b be a cubic polynomial with coefficients in
R. It is known that f(x) has repeated roots if and only if the discriminant
∆ := 4a3 + 27b2 = 0. If f has a double root α, verify directly that

a = −3α2 ≤ 0 and b = 2α3,

so that α has the same sign as b. [Hint: write the coefficients 0, a, b of f in
terms of its roots using

(x− α)(x− β)(x− γ) = x3 + ax+ b.]

Sketch the singular real curve y2 = f(x) in the two cases α < 0 and α > 0.
Start from values of a, b giving a double root α < 0. Give a plausible

argument that increasing b slightly should lead to ∆ > 0 and f has one real
root only, and decreasing b slightly leads to ∆ < 0 and f has 3 real roots.
(Another useful mnemonic is that x3 − k2x has 3 real roots and obviously
∆ < 0, whereas x3 + k2x has 1 real and 2 imaginary conjugate roots and
∆ > 0.)

Sketch the corresponding nonsingular curves y2 = f(x) corresponding to
the neighbouring values of a.

A.2. Let S2 : (x2
1 + x2

2 + x2
3 = 1) ⊂ R3 be the round sphere. Show that

stereographic projection from the N pole N = (0, 0, 1) to the plane x3 = 0
given by (x1, x2, x3) 7→ 1

1−x3
(x1, x2, 0) is 1-to-1 from S2 \N to R2. Write

z =
x1 + ix2

1− x3

∈ C.
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This identifies S2 \ N with C. Now identify z = w−1 with an appropriate
projection of S2 from the S pole. [Hint: you just have to change a few signs
and make use of the equation of S2.]

The Riemann sphere is the z-plane and the w-plane (two copies of C)
glued by w = z−1. The point of the question is to see the abstract identifi-
cation of these two planes in terms of the standard sphere in R3.

A.3. Find the proof of Liouville’s theorem in your Complex Analysis lecture
notes. Give an alternative proof along the following lines: let f(z) be a
bounded holomorphic function on C. If a, b,∈ C and Γ is the boundary
circle of a big disc of radius R > |a|, |b| then calculate∮

Γ

f(z)dz

(z − a)(z − b)

by Cauchy’s integral formula. On the other hand, by arguing in the disc of
the variable w = 1/z, show (again by Cauchy’s integral formula) that the
integral is zero. Be careful to translate dz into the appropriate multiple of
dw where w = z−1. If you’re careless about this point, you might be able to
prove that a linear function such as z is constant.

A.4. Consider y2 = f(x) a cubic with a double root, say for simplicity
y2 = x(x − 1)2. Integrate

∫
dx
y

in terms of elementary functions. [Hints:

substitute t = y/(x−1) =
√
x; the answer involves partial fractions and log.]

(The point of the question is historical and etymological. Integrals of the
form

∫
dx√
f

with f(x) a cubic or quartic in x having no repeated roots are
called elliptic integrals. They cannot be expressed in elementary functions,
but instead give rise to elliptic functions and elliptic curves.

The arc length of the ellipse x2

a2 + y2

b2
= 1 leads to the integral∫

ds =

∫ √
1 + ( dy

dx
)2 dx, working out as a

∫
1− k2ξ2√

(1− ξ2)(1− k2ξ2)

with k2 = 1 − b2

a2 . Euler found out that this cannot be solved in terms of
elementary functions, but has lots of interesting functional equations that
led eventually to the group law on the torus y2 = (1− ξ2)(1− k2ξ2).)
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MA426 Elliptic curves

Assignment B

B.1. Let f be an elliptic function of order 2. Use Theorem 2.11, (II) and
(III) to prove the following:

1. For all c ∈ C, the function f(z) − c has either 2 zeros z = α1, α2 mod
L, or one repeated zero z = β with multiplicity 2 (so that f(z) − c ∼
(z − β)2 · invertible near β).

2. There exists some d ∈ C such that α1 +α2 = d in the first case, 2β = d
in the second (independently of c).

3. The case of a repeated zero z = β must happen for at least 3 distinct
values of c. When do you get 3 double zeros, and when 4?

4. If we shift the origin, and think of f as a function of z′ = z − d/2 then
f(z′) is an even function.

The point of the question is that you can prove that f has much the
same properties as the Weierstrass p function by using Theorem 2.11, (II)
and (III), without knowing anything about the construction of p.

B.2. Recall that we write w1/2, w2/2 and w3/2 = w1/2 + w2/2 for the 3
halfperiods of L, and set p(wi/2) = ei.

Figure out for yourself the proof that p(z)− ei has the double zero wi/2
(or read it up). Prove that ei 6= ej.

Prove that the derivative p′ of the Weierstrass p function satisfies the
differential equation

(p′)2 = 4(p− e1)(p− e2)(p− e3).

(Hint: Compare their zeros and poles, and the leading term at the pole.)
The point of the question is to give another derivation of the equation

(p′)2 = 4p3 − g2p− g3. Note that e1 + e2 + e3 = 0, 4(e1e2 + e2e3 + e3e1) = g2

and 4e1e2e3 = −g3.
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B.3. Continue the computation of 2.18 (where we derived the equation
(p′)2 = 4p3−60G4p−140G6), keeping the terms in z2 and z4, to deduce that

G8 = multiple of G2
4 (to be determined) (1)

G10 =
5

3
G4G6. (2)

In principle you can get a similar formula for every G2k. It would be quite
difficult to derive this result just from the definition.

B.4. Let f be an elliptic function, viewed as a map f :E = C/L → P
1
C
. If

z0 ∈ C is not a pole of f , set f(z0) = c; we say that f has ramification of
order m at z0 if z0 is an m-fold zero of f − c, that is, if

f(z)− c = (z − z0)m · invertible.

We say that z0 is a ramification point of f is m ≥ 1. Then f maps a disc
around z0 ∈ C to a disc around c ∈ C by z 7→ (z− z0)m. On the other hand,
if z0 is a pole of f , we say that f has ramification of order m at z0 if it has
pole of order m. Justify this usage (in terms of the parameter at infinity in
the image P1

C
).

Suppose that f has order d (defined in 2.12 of lectures). Prove that the
sum of m− 1 taken over every ramification point equals 2d.

[Hint: Do something quite different at the multiple zeros of f − c and
the poles of f to get this out. Write f ′ for the derivative; first considering
its poles, you calculate order f ′ as

∑
polesm + 1. By the basic property of

order, f ′ also has the same number of zeros counted with multiplicity; the
zeros of f ′ of order n − 1 are the ramification points of f of order n. Don’t
give up just before you get to the end!]

The point of this question is that E has Euler characteristic 0, and P1
C has

Euler characteristic 2. Suppose we give P1
C

a sufficiently fine triangulation
with vertices including all ramification points. If E → P

1
C

were an unramified
cover, you would find 2d for the Euler characteristic of E, and it is not hard
to see that a ramification point of order m decreases this by m − 1. So we
must have

∑
branch ptsm− 1 = 2d.
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Assignment C

C.1. Let x3+ax+b = (x−α)(x−β)(x−γ) so that, as usual, the elementary
symmetric functions in α, β, γ are

α + β + γ = 0, αβ + βγ + γα = a, αβγ = −b

Note that ∆ = (α−β)2(β−γ)2(γ−α)2 is a symmetric polynomial in α, β, γ.
It is known that any symmetric polynomial can be written in terms of the
elementary symmetric functions. By calculating this expression explicitly,
prove that ∆ = −(4a3 + 27b2).

So (once again), the cubic has distinct roots if and only if ∆ 6= 0. (By the
way, you can do the same calculations for a general cubic x3 + cx2 + ax+ b,
but the calculations become unwieldy.)

C.2. Consider the two curves defined (over some field K) by y2 + y =
x3 +x2 +x and y2 +y = x3−x. Verify directly that each curve is nonsingular
except in one characteristic. [Hint: do 2 and 3 separately. Then complete
the square and cube to get y2 = x3 + ax+ b with a, b ∈ Q, and calculate ∆.]

For each of these curves, write out all their Tate constants (see handout)
and calculate their discriminant ∆ according to Tate.

C.3. You know from coordinate geometry how to write the line joining
P1 = (x1, y1) and P2 = (x2, y2) in the form y = mx + c. Suppose C is the
curve y2 = x3 + ax + b and P1, P2 ∈ C; substitute y = mx + c to obtain a
cubic in x, defining the 3 points of intersection of L = P1P2 with C. Deduce
a formula for P1 + P2 (in the group law) of the form

x3 = m2 − x1 − x2, y3 = −mx3 − c (for x1 6= x2.)

In the same way, write down the tangent line to C at P = (x1, y1) in the

form y = mx + c [Hint: the slope must be given by m = ∂f/∂x
∂f/∂y

], and deduce
a formula for 2P in the group law of the form

x3 = m2 − 2x1, y3 = −mx3 − c.

[Harder] Think through the proof that the group law on C is associative
“on general points”.
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C.4. ([UAG], Ex. 2.11.) Consider the curve C : (z = x3) ⊂ k2; C is the
image of the bijective map ϕ: k → C by t 7→ (t, t3), so it inherits a group
law from the additive group k. Prove that this is the unique group law on C
such that (0, 0) is the neutral element and

P +Q+R = 0 ⇐⇒ P,Q,R are collinear

for P,Q,R ∈ C (with the usual conventions about multiple roots). [Hint:
you might find useful the identity

det

∣∣∣∣∣∣
1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣ = (a− b)(b− c)(c− a)(a+ b+ c).]

In projective terms, C is the curve Y 2Z = X3, our old friend with a cusp
at the origin and a flex at (0, 1, 0), and the point of the questions is that
the usual construction gives a group law on the complement of the singular
points.
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MA426 Elliptic curves

Assignment D

D.1. A rational Pythagorean triangle is a triple a, b, c ∈ Q with a2+b2 = c2.
An integer n that is the area 1

2
ab of a rational Pythagorean triangle is called

congruent. Prove that n is congruent if and only if there exist an arithmetic
progression x− n, x, x+ n consisting of three nonzero rational numbers each
of which is a perfect square. [Hint: try x− n = 1

4
(a− b)2.]

If this happens, the elliptic curve y2 = x(x − n)(x + n) obviously has a
rational point with y 6= 0. Prove the converse. [Hint: start from a point
P ∈ C(Q) that is not a 2-torsion point. The point 2P ∈ C(Q) is not the
point at infinity, and is a double. Now apply the criterion of Theorem 4.4.]

D.2. Fermat proved that u4 + v4 = w2 has no integer solutions other than
trivial ones: starting from a solution with coprime u, v, w, we mess around,
make a couple of normalising assumptions, and eventually get a new solution
r4 + s4 = t2 with u = r4 − s4, v = 2rst.

Consider the equation

u4 + v4 = w2 or v4 = (w − u2)(w + u2), (3)

where we view (u, v, w) 7→ (λu, λv, λ2w) as equivalent solutions. Write

v2

w − u2
=

(w + u2)

v2
=
x

2
,

u

v
=

y

2x
.

Solve for u2/v2 in terms of x, and show that

u2

v2
=

1

2

(
x

2
− 2

x

)
and therefore y2 = x(x2 − 4). (The descent in Fermat’s proof can be inter-
preted as 2-division on this elliptic curve.)

Invert this procedure, to go from a solution of y2 = x(x2−4) to a solution
of (1). Deduce that the elliptic curve C : y2 = x(x2−4) has no rational point
with y 6= 0, and that 2 is not congruent.
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D.3. Let g(x) = x3 + ax+ b and g1 = 3x2 + a = dg
dx

. Calculate successively
g2 = 3g − xg1, g3 = 3xg2 − 2ag1 and g4 = 9bg2 − 2ag3. If you’re lucky, you
should get g4 = 27b2 + 4a3 = −∆. Work backwards through the calculation
to deduce that

Ag +Bg1 = −∆, where A = −18ax+ 27b, B = 6ax2 − 9bx+ 4a2. (4)

Now observe that in turn B = −9xg + (3x2 + 4a)g1. We can use this to
get a simple derivation of −∆ as a combination of f = g2

1 − 8xg:

−∆ = (3x2 + 4a)(g2
1 − 8xg) + (−3x3 + 5ax+ 27b)g. (5)

Verify the identity

−x6∆ =
(

(a3 + 3b2)x2 − a2bx− 2ab2
)
f

+
(

(3a3 + 24b2)x3 + a2bx2 − (16ab2 + a4)x+ 2a3b
)
g.

(6)

(This can also be derived by the same kind of reasoning.)
The point of the question is to get −∆q6 = R(p, q)F (p, q)+S(p, q)G(p, q)

and −∆p6 = R′(p, q)F (p, q) + S ′(p, q)G(p, q). This kind of identity (with
6 7→ 7) was used in Lemma 4.12, (iii) to bound the cancellation that can
happen in x(2P ) = F (p, q)/G(p, q). The textbooks give a bigger formula for
−∆q7, with a much nastier derivation ([Knapp], p. 96, probably copied from
Silverman and Tate).

D.4. Write out all the integral points of C : y2+y = x3−x2 with |x|, |y| ≤ 2.
Calculate the sum and doubles of all these points, and show they form a
subgroup of C. (In fact this is the whole of C(Q).)
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Assignment E

E.1. Write

T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
for the usual generators of SL(2,Z). Sketch the fundamental domain

D :=
{
z
∣∣∣ |z| ≥ 1 and − 1/2 ≤ Re z ≤ 1/2

}
and its successive translates by

T, S, TS, ST, ST−1, ST−1S

From the figure (or directly) find the elements of SL(2,Z) fixing respectively
ω = exp(2πi

3
) and −ω = 1 + ω = −ω2.

Compare [Serre, Cours d’arithmétique, Chapter 7] for the (easy) proof
that D is the fundamental domain of SL(2,Z) and S, T are its generators.

E.2. Calculate the first 3 coefficients of G4, G6, ∆ and j using the standard
table of formulas given in Section 5.9 of the notes.

E.3. If p is a prime, show that Γ0(p) has fundamental domain consisting
of the p + 1 orbits D and ST i(D) for i = 0, . . . , p − 1, and its cusps (the
closure at {∞} ∪ Q of the fundamental domain) are just ∞ and 0. It has
index [SL(2,Z) : Γ0(p)] = p+ 1.

E.4. Write SL(2,Z/N) for the group of matrixes with coefficients in Z/N
with determinant 1 and Γ0(N)(Z/N) for the subgroup with bottom left entry
= 0. For N = 6, calculate the order of SL(2,Z/6) and Γ0(N)(Z/N).

Deduce that the index [SL(2,Z) : Γ0(6)] = 12. Write out a set of cosets,
and deduce a fundamental domain of Γ0(6) as a union of 12 translates of D

E.5. (Challenge question! compare [Knapp, p. 267, Example 5].) Write

η(τ) = exp
(πiτ

12

) ∞∏
n=1

(1− qn)
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so that ∆(τ) = (2π)12η(τ)24. It is known that

η(τ + 1) = exp
(πi

12

)
η(τ) and η(−1/τ) = (−iτ)1/2η(τ).

Thus, η is definitely not a modular form.
Prove that (η(τ)p/η(pτ))2 is a cusp form of weight p for Γ0(p); using ∆

deduce that if p ≡ 11 mod 12 then (η(pτ)η(τ))2 is a cusp form of weight 2
for Γ0(p).
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