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Abstract

This paper is a written version of my lecture “Rings and varieties”
at the Kinosaki algebraic geometry workshop in Oct 2000, and a series
of two lectures at Tokyo University in Dec 2000. It is intended to be
informative and attractive, rather than strictly accurate, and I expect
it to stimulate work in a rapidly developing field (as did its predecessor
Reid [R3]). The paper was prepared in a hurry to meet a deadline,
and one or two sections remain in first draft. I apologise to the reader
and the referee for any inconvenience caused.

The canonical ring of a regular algebraic surface of general type,
the graded ring over a K3 surface with Du Val singularities polarised
by an ample Weil divisor, or the anticanonical ring of a Fano variety is
a Gorenstein ring. In simple cases, a Gorenstein ring is a hypersurface,
a codimension 2 complete intersection, or a codimension 3 Pfaffian.
We now have additional techniques based on the idea of projection
in birational geometry that produce results in codimension 4 (and 5,
etc.), even though there is at present no useable structure theory for
the graded ring.

This paper applies graded ring methods, especially unprojection, to
the existence of Fano 3-folds and of Sarkisov birational links between
them. The 3-fold technology applies also to some extent to construct
canonical surfaces. A recurring theme is that unprojection often acts
as a working substitute for a structure theory of Gorenstein rings in
low codimension. I discuss what little I understand of the structure
of codimension 4 Gorenstein rings, and present a general and entirely
useless structure theorem. The final section of the paper contains
a brief outline of forthcoming joint work with Gavin Brown on C∗

covers of Mori flips of Type A, intended to illustrate the use of serial
unprojection.
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1 Introduction

On the geometric side, I am interested in the following problems:

1. Existence of Fano 3-folds

2. Sarkisov birational links between Fano 3-folds

3. Applications of 3-fold technology to canonical surfaces

4. Structure theory of Gorenstein rings in low codimension

5. C∗ covers of Mori flips.
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Question 1 is biregular as stated, but is frequently studied in birational terms,
notably by projection methods. As a first introduction to this idea, I spend
some time in Section 2 below on the trivial algebraic trick

(Bx− Ay = 0) 7→ (xs = A, ys = B)

that goes from a hypersurface to a codimension 2 complete intersection (c.i.),
contracting a divisor x = y = 0. This has many applications to constructing
new Fano varieties, and links between them. As described in Papadakis–Reid
[PR] and in 2.1–2.5, all the quadratic involutions of Corti–Pukhlikov–Reid
[CPR] and most of the construction of links in Corti and Mella [CM] are
here.

The main methods of constructing Fano 3-folds are:

(a) Graded ring methods,

(b) Birational methods,

(c) Embedding a variety in a symmetric space in the style of Mukai.

Method (a) is closely related to the question of projective embeddings. On
the algebraic side, the simplest cases are graded rings in low codimension with
a known structure: hypersurfaces, codimension 2 c.i.s, and codimension 3
Pfaffians.

Method (c) is currently a distantly perceived aspiration: we hope that
we can eventually understand the usually complicated system of equations
defining a variety in geometric terms, for example, as a section of a key
variety having an interpretation, say in terms of linear algebra or algebraic
groups. The key variety is often simpler and has more structure than its
lower dimensional sections. In this vein, Examples 7.1–7.6 obtain several
classic and modern constructions of surfaces and 3-folds as general sections
of bigger “key varieties”. This is perhaps a model for applications of 3-fold
techniques to older branches of geometry, such as canonical surfaces.

Definition 1.1 A Fano 3-fold (also Q-Fano 3-fold) is a variety X in the
Mori category (that is, X is projective and has at worst Q-factorial terminal
singularities) with ρ = rank PicX = 1 and −KX ample. The anticanonical
ring of X is

R = R(X,−KX) =
⊕
n≥0

H0(OX(−nKX)).
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It is known to be a Gorenstein ring (see for example [GW]).
An important case is when −KX generates the class group of X, that

is, ClX = Z · (−KX), corresponding to Fano’s varietà di prima specie. The
alternative is that −KX is divisible in ClX, or that ClX has a finite torsion
subgroup (for example, if X is an Enriques–Fano variety); it is then normally
more efficient to work with the slightly bigger ring

⊕
D∈ClX H

0(OX(D)),
which is graded by N⊕ torsion.

See [CPR], 3.1 for the definition of Sarkisov link of type II and Corti
[Co] for more general Sarkisov links. As explained there, a link X 99K X ′

of type II between Fano 3-folds involves first making an extremal extraction
Y → X (usually a point blowup), then running a 2-ray game or minimal
model program on Y until it finally contracts a divisor back down. All the
links constructed in [CPR] are made by calculating the anticanonical ring of
Y . That is, the birational question is attacked by biregular or graded ring
methods.

1.2 Projection through the ages

It is interesting that successive generations of algebraic geometers interpret
projection in several remarkably different ways.

(i) Historically, projection always means linear projection of a variety in
(unweighted) projective space Pn to a smaller Pn

′
. Projection from a

general linear centre disjoint from the variety is used in proving foun-
dational results such as Noether normalisation, or the existence of a
birational projection to a hypersurface, or to define the dimension,
function field or canonical divisor of a variety.

(ii) Generic projection allows us to assert that any variety has a birational
morphism to a hypersurface with ordinary singularities. Italian projec-
tion is a technique for studying a canonical surface S that goes back to
Enriques and was later developed by Ciliberto [Ci] and Catanese [Ca]–
[Ca2] and others. In modern terms, it consists of analysing the canoni-
cal ring R(S,KS) of S as a module over a polynomial ring k[x1, . . . , xn]
(preferably with n = 4, 5, etc.), where xi ∈ H0(KS) or H0(2KS) corre-
spond to some initial set of generators that define a generic projection
X → X ⊂ P3 or P4. For surfaces with pg = 4, taking a basis of H0(KS)
as generators (the 1-canonical map) is so natural and instinctive that
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it is often not perceived as a choice. If X is a canonical surface then
KX = OX(1), and the image X of a projection X → X ⊂ P

3 has
KX = O(d− 4), so that the difference between KX and KX has to be
accounted for by the normalisation of X along its double locus (called
“subadjunction”), the intersection of X with the adjoint of smallest
degree. See [Ca]–[Ca2] for details.

While in the hands of the maestri this method gives very interesting
examples and results, it is conceptually messy and computationally
unpleasant, and probably intractable. See Problem 7.7 for a comparison
between Italian and Gorenstein projection.

(iii) Meanwhile, del Pezzo exploited linear projections Sd 99K Sd−1 between
del Pezzo surfaces from a point P ∈ Sd, and Fano and later Iskovskikh
worked with linear projection of a Fano 3-fold V from a centre contained
in V , notably projection from a line πL : V 99K V ′. These take one
anticanonical variety to another, that is,

KV = OV (−1) and KV ′ = OV ′(−1)

and are cases of Gorenstein projection: for this to work involves the
discrepancy of the blowup coinciding exactly with the multiplicity of
the centre subtracted from the linear system (compare [PR], 2.7).

(iv) Mori and his followers (notably Takeuchi and Takagi) reworked Fano
and Iskovskikh’s study of Fano 3-folds in terms of extremal rays or
MMP. Instead of just doing the linear projection that comes instinc-
tively to someone versed in projective geometry, Mori views Fano’s
projection V 99K V ′ as first the blowup of a line Ṽ → V , followed by
a MMP or 2-ray game in the Mori cone of Ṽ , that finds and contracts
extremal rays to obtain first a flop, then a divisorial contraction to V ′.

(v) My view of projection is based on the work on Sarkisov links in [CPR]:
if X is a Fano 3-fold, and X1 → X a Mori extraction (usually a point
blowup), say with exceptional divisor E of discrepancy 1

r
, the anti-

canonical ring R1 = R(X1,−KX1) is a subring of R = R(X,−KX),
consisting of forms of degree d vanishing d

r
times on E (see Exam-

ple 9.13 for a particular case, and compare [CPR], 3.4). This ties in
closely both with Fano projections and with the Mori 2-ray game, but
in general, it does not directly predict anything about the algebra of
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R1 or the geometry of Y = ProjR1, or the rational map X 99K Y . In
good cases, X 99K Y may be a projection from one weighted projective
space (w.p.s.) to another, obtained by eliminating a single generator of
R of high weight; but we do not start out by assuming that, and more
complicated things happen in applications (see Examples 9.13–9.14).

In higher codimension, the idea of Kustin–Miller unprojection [KM], [PR]
often acts as a workable substitute for a structure theorem. I discuss this in
Sections 5–8 with some pretty applications. More complicated unprojections
not of Kustin–Miller type, with exceptional divisor that is not projectively
Gorenstein, can be used to similar effect (see Section 9), even when the
algebra is complicated and not really properly understood. The examples
of Type II unprojections discussed in Section 9 arising from Selma Altınok’s
work [A] are really nontrivial applications of these methods.

In Section 10, I explain an application of geometric ideas to the structure
theory of rings in codimension 4. Although I state a “structure theorem”,
the answer is still elusive, and my result is not yet explicit enough to have
any predictive power.

The idea of unprojection is just made for serial use. That is, it can be
used many times over in an inductive way to produce Gorenstein rings of
arbitrary codimension, whose properties are nevertheless controlled by just a
few equations as a new unprojection variable is adjoined. Section 11 discusses
briefly how this applies to the Z-graded rings over Mori flips (forthcoming
joint work with Gavin Brown).

1.3 Acknowledgments

Several items in what follows are derived from conversations with Selma
Altınok, Gavin Brown, Alessio Corti, Mori Shigefumi, Mukai Shigeru, Stavros
Papadakis and Takagi Hiromichi, and I refer in several places to results from
Papadakis’ forthcoming thesis [P]. I thank Takagi for providing me with
excellent lecture notes. My stay in Japan was generously supported by Kyoto
Univ., RIMS, and I am extremely grateful to Professors Kawamata, Miyaoka,
Mori and Saito Kyoji for invaluable assistance and friendly hospitality. This
paper was written during a short summer solstice visit to John Cannon’s
Magma group at the University of Sydney; I thank them for the invitation,
and for all the wonderful meals.
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2 The Bx− Ay argument

The most basic example of unprojection consists simply of replacing a hyper-
surface Bx − Ay = 0 that contains a codimension 2 c.i. x = y = 0 by the
codimension 2 c.i. xs = A, ys = B. Despite its trivial appearance, this trick
has many applications.

2.1 The unprojection variable s = A/x = B/y

Write P = P
n(a0, . . . , an) = Proj k[x0, . . . , xn] for the w.p.s. with weights

wtxi = ai. Let D : (x = y = 0) ⊂ Pn be a codimension 2 c.i.; here x, y could
be two of the coordinates xi, xj, or any two hypersurfaces with no common
components. Then any hypersurface containing D is of the form

X : (Bx− Ay = 0) ⊂ Pn(a0, . . . , an).

Assume that degA > wtx. Now define

Y : (xs = A, ys = B) ⊂ Pn+1 = Proj k[x0, . . . , xn, s],

where wt s = degA − wtx. Then Y contains the point “at infinity” of the
w.p.s. Ps = (0 : · · · : 0 : 1), where xi = 0 for all i, but s 6= 0.

There are two inverse birational maps: X 99K Y is the unprojection, or
the graph of s, obtained by adjoining the unprojection variable

s =
A

x
=
B

y
. (2.2)

The inverse Y 99K X corresponds algebraically to eliminating s. In terms of
geometry, it blows Ps up to a divisor D ⊂ X.

The following familiar setup is a special case of the Bx− Ay trick: let

L ⊂ S3 ⊂ P3

be a cubic del Pezzo surface containing the line L : (x = y = 0). Then the
defining equation of S3 is Bx − Ay, where A,B are quadratic polynomials
in P3. The condition for S3 to be nonsingular along L is that A,B have no
common zeros on L, so that s given by (2.2) is well defined, and defines a
morphism S3 → T4 = Q1 ∩Q2 ⊂ P4 to a del Pezzo surface of degree 4. This
is the contraction morphism of L provided by Castelnuovo’s criterion.
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However, the same equations apply much more generally: the hyper-
surface X : (Bx−Ay = 0) can be of any degree in a w.p.s. of any dimension,
and can be arbitrarily singular, provided only that x, y remains a regular
sequence. If A,B do not both vanish along any component of x = y = 0
(that is, if D : (x = y = 0) ⊂ X is a Weil divisor, or a Cartier divisor at
every generic point), then X 99K Y is birational.

2.3 Application to Sarkisov links

Consider an anticanonically embedded hypersurface

P(1, a1, a2) ⊂ Xd ⊂ P(1, a1, a2, a3, a4)

of degree d = degX = a1 + · · · + a4 containing a plane P(1, a1, a2). Here X
is one of the “famous 95”, but is not in the Mori category: it has equation
Bx3 − Ax4 = 0, and is not Q-factorial at points with A = B = x3 = x4.

Assume that a4 > a3. Then X is the midpoint of a Sarkisov link of type II

Z L99 X 99K Y, (2.4)

which is either one of the quadratic involutions of [CPR], 4.4–4.9, or of the
type studied by Corti and Mella [CM]. Both broken arrows are given by the
Bx−Ay trick: suppose that X is the hypersurface X : (Bx3−Ax4 = 0). The
rational map X 99K Y contracts the plane P(1, a1, a2) to the point Ps ∈ Y ,
with Y the graph of s = A

x3
= B

x4
, and

Yd−a3,d−a4 : (sx3 = A, sx4 = B) ⊂ P(1, a1, . . . , a4, a1 + a2).

This is a general codimension 2 c.i. of the stated degrees. If A = x4, then
the first equation sx3 = A eliminates x4, and Y is a general hypersurface
in P(1, a1, . . . , a3, a1 + a2). In this case X : (x2

4 + · · · = 0) has a biregular
involution, Y ∼= Z, and the link (2.4) is one of the quadratic involutions of
[CPR], 4.4–4.9.

On the other hand, Z is the graph of t = x4

x3
= B

A
(recall that a4 > a3).

Then X 99K Z contracts the divisor D : (x3 = A = 0), and Z is defined by
the equations x4 = tx3, At = B. Because of the first equation, Z is still a
hypersurface

Zd−a3 ⊂ P(1, a1, a2, a3, a4 − a3)

with defining equation F = A(x0, . . . , x3, tx3)t − B(x0, . . . , x3, tx3), that is,
At−B after the substitution x4 7→ tx3. Because of this, Zd−a3 is not a general

8



hypersurface of the stated degree. It is a Fano 3-fold in the Mori category,
but has a funny terminal singularity at the point Pt. At this point, the clas-
sification of Sarkisov links gets tangled up with the classification of divisorial
extractions in the Mori category, on which there has been considerable recent
progress; see Corti–Mella [CM], Kawakita [Ka]–[Ka2] and Takagi [T].

2.5 Corti–Mella

The typical case, and the starting point of [CM], is when Z = Z4 ⊂ P4 is a
quartic hypersurface with a singularity of analytic type xy = z3 + t3. Then
Z is algebraically factorial, so in the Mori category. Corti and Mella prove
that the (2, 1, 1, 1) and (1, 2, 1, 1) weighted blowups of the singular point
are divisorial extractions. Each of these blowups leads to a Sarkisov link of
type II as just described:

BlZ4

↙ ↘
Z4 (X5 ⊂ P(14, 2)) 99K Y3,4 ⊂ P(14, 22)

cont’g P2 : (x0 = y = 0) general element

(2.6)

I have only described the easy part of Corti and Mella’s argument, con-
structing the link (2.6) as an application of a fairly trivial piece of algebra.
The hard part of their work is to show that Z4 and Y3,4 are a birationally
rigid pair : that is, any Mori fibre space birational to them is biregular to Z4

or Y3,4. This is the problem of excluding links to any other Mori fibre spaces.
For this, in addition to the technology of [CPR] and Corti [Co2], they need to
prove that the only extremal extractions from the singular point xy = z3 + t3

are the (2, 1, 1, 1) and (1, 2, 1, 1) weighted blowups.

3 Varieties and graded rings, ProjR, Hilbert

series

Everyone knows the correspondence

X = ProjR,OX(1)←→ R =
⊕
n≥0

H0(X,OX(n)) (3.1)

between projective varieties and graded rings. See for example [EGA2] or
[Hartshorne], Chapter II. With the exception of Section 11, I assume that
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the ring is N-graded, that is, Rn 6= 0 only for n ≥ 0, and R0 = k (the ground
field k = C). The ring R is almost never generated in degree 1, so that
OX(k) is not necessarily determined by OX(1), and I should really specify
(X,

⊕
k∈ZOX(k)) on the l-h.s. of (3.1); for our purposes it is usually enough

to take OX(k) = OX(kD) for some ample Weil divisor.

3.2 Tutorial on Hilbert series

One of the standard applications of graded rings is when the Hilbert1 series
P (t) =

∑
Pnt

n is known, where Pn = dimRn (typically, by the Riemann–
Roch formula), and we can use it to guess a plausible form of R by generators
and equations, and hence a plausible model of X as a variety in a w.p.s. with
those generators and defining equations.

Example 3.3 X is a surface of general type with invariants pg = h0(KX),
q = h1(OX) and K2. I assume that q = 0, so that X is regular; using Kodaira
vanishing, this implies that H1(X,nKX) = 0 for all n, so that the graded
ring R(X,KX) is Gorenstein by [GW]. Then by Riemann–Roch

Pn =


1

pg

pg + 1 +
(
n
2

)
K2 for n ≥ 2.

The Hilbert series P (t) =
∑
Pnt

n is thus

P (t) = 1 + pgt+ (pg + 1 +K2)t2 + · · ·+
(
pg +

(
n

2

)
K2
)
tn + · · ·

I calculate (1− t)P (t) by long multiplication; this amounts simply to differ-
encing the coefficients of the power series:

(1− t)P (t) = 1 + (pg − 1)t+ (1 +K2)t2 + · · ·+ nK2tn + · · ·

Again multiply by 1− t:

(1− t)2P (t) = 1 + (pg − 2)t+ (K2 − pg + 2)t2 + · · ·+K2tn + · · · ,
1The letter P stands for Poincaré. The technique is so called because it was first used

systematically by Cayley and Sylvester in the context of invariant theory. I recently asked
a couple of math historians where to find Cayley and Sylvester’s treatment, and I am
indebted to them for the handy tip: read their collected works in the library.
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and again, to get

(1− t)3P (t) = 1 + (pg − 3)t+ (K2 − 2pg + 4)t2 + (pg − 3)t3 + t4. (3.4)

Notice that the polynomial is symmetric (“Gorenstein symmetry”), and the
sum of the coefficients is K2 = degX.

An important case is when pg ≥ 3 and |KX | is free; then there are elements
x1, x2, x3 ∈ H0(KX) that form a regular sequence for R(X,KX), and (3.4) is
the Hilbert function of the Artinian quotient ring R(X,KX)/(x1, x2, x3). In
particular, all the coefficients of (3.4) are ≥ 0. However, (3.4) holds without
any assumption on |KX |, for example, even if pg = 0.

I gave the above treatment of Hilbert series in a very simple case to
illustrate the method, but there are similar formulas and methods much
more generally. There is already, for example, quite a lot of experience of
working with Hilbert series on surfaces with quotient singularities or 3-folds
with canonical singularities; compare Altınok [A1] or Kawakita [Ka]–[Ka2].

Example 3.5 In Reid [R], I considered the algebraic surface X with pg = 3,
q = 0 and K2 = 4 arising as the universal cover of a Z/4 Godeaux surface.
Write R(X,KX) for the canonical ring of X. Its multiplied out Hilbert
polynomial2 is

(1− t)3P (t) = 1 + (pg − 3)t+ (K2 − 2pg + 4)t2 + (pg − 3)t3 + t4

= 1 + 2t2 + t4.

Thus the ring needs 3 generators x1, x2, x3 in degree 1, and 2 generators y1, y3

in degree 2 (at least). Putting in these generators gives

(1− t)3(1− t2)2P (t) = 1− 2t4 + t8 = (1− t4)2.

2I apologise for this unconventional use of terminology. Hilbert polynomial traditionally
means the polynomial PF (n) = χ(X,F(n)), which coincides with h0(X,F(n)) after all the
cohomology has died out, when n� 0. Here I am using multiplied out Hilbert polynomial
for the numerator of the Hilbert series P (t) =

∑
P (n)tn after a denominator

∏
(1 − tai)

has been chosen, corresponding to a choice of generators (x1, . . . , xn). Maybe it would be
better to say Hilbert numerator, or Cayley–Sylvester polynomial.

In most cases of interest for w.p.s., O(1) is not a line bundle, so PF (n) is usually not a
polynomial, but one of a choice of polynomials depending on n modulo the index.
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We note that this coincides with the multiplied up Hilbert polynomial of a
c.i. of two hypersurfaces3 of degree 4:

k[x1, x2, x3, y1, y3]/(f0, f2).

Thus a plausible model for R(X,KX) is X = X4,4 ⊂ P(13, 22). One sees that
a suitable choice of the two relations makes X nonsingular, and setting

xi 7→ εixi for i = 1, 2, 3 and yi 7→ εiyi for i = 1, 3

defines a fixed point free action of Z/4 on X, where ε = exp(2πi/4) is a
primitive 4th root of 1. In [R], I showed that every Z/4 Godeaux surface
is obtained in this way by dividing a surface X = X4,4 ⊂ P(13, 22) by this
group action.

Remark 3.6 I conclude this brief tutorial on Hilbert series with the relation
between the multiplied out Hilbert polynomial

∏n
i=0(1−tai)PR(t) = Q(t) and

the free resolution of the graded ring R = R(X,OX(1)) over the polynomial
ring A = k[x0, . . . , xn]. The generators xi are always chosen so that R is a
finite module over A. Geometrically, this means that the xi have no common
zeros on X and define a finite morphism π : X → X ⊂ P(a0, . . . , an). Then
π∗OX is a sheaf on P or on the image X whose Serre module is the ring
R =

⊕
H0(OX(n)). I write the sheaf π∗OX even when I mean the ring R.

(As explained in [PR], 2.4, the rigorous algebraic treatment works via the
coherent Lefschetz principle with the vertex of the affine cone over X, that is,
R localised at the “irrelevant” maximal ideal, but I don’t want to spend time
on this.) By the Hilbert syzygies theorem, there exists a finite free resolution

0← π∗OX ← L0 ← L1 ← · · · ← Lm ← 0, (3.7)

where each Li is a free graded module, that is, Li =
⊕
OP(−bi,j). Here L0 =

OP if and only if X = X is embedded as a projectively normal subvariety,
that is, k[x0, . . . , xn] � R(X,OX(1)). Each homomorphism Li+1 → Li is

3This is a basic exercise. [Hint: expand
∏

1
1−xi as the sum of all monomials in

k[x1, x2, . . . ], each with coefficient 1. Substitute xi 7→ tai , where wtx = ai to prove
that the Hilbert series of the weighted polynomial ring is

∏
1

1−tai . Cutting by a regular

element of degree d multiplies by (1− td), so a weighted c.i. has Hilbert series
∏

(1−td
j
)∏

(1−tai ) .]
For more practice, do the [Homework].
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a matrix whose entries are homogeneous of degrees bi+1,j − bi,k, so that the
homomorphism can be considered to be homogeneous of degree 0. Then

Q(t) =
n∏
i=0

(1− tai)PR(t) =
∑

(−1)itbi,j .

In other words, each direct summand OP(−bi,j) contributes a term tbi,j , with
the generators of OX (that is, L0) counting positively, the relations L1 neg-
atively, the first syzygies positively, second syzygies negatively and so on.
Unfortunately, the polynomial expression Q(t) does not entirely determine
the shape of the resolution (3.7). For example, a positive term may mean a
new generator, or a first syzygy between the relations, etc. See the sidestep
in Example 7.1 for a typical instance.

The really useful thing is Gorenstein symmetry . If R is Gorenstein, the
resolution (3.7) has length equal to the codimension m = c. Moreover,
Lc ∼= (L0)∨ ⊗OP(−k), where k is the adjunction number, that is,

ωX = ωPn ⊗OX(k) = OX
(
k −

∑
ai

)
,

and Lc−i ∼= L∨i ⊗ O(−k). In particular, the polynomial Q(t) is symmetric:
tm and (−1)ctk−m appear with the same coefficient. In writing out Q(t), I
usually indicate the final term (−1)ctk, but only write out the terms up to the
centre of Gorenstein symmetry, say something like 1−t3−3t4 +12t4−· · ·−t9.

Example 3.8 If X ⊂ P(a0, . . . , an) is a 5× 5 Pfaffian then

n∏
i=0

(1− tai)PX(t) = 1−
5∑
i=1

tbii +
5∑
i=1

tk−bii − tk

where bl = deg Pf l. For example, if X is a K3 surface in weighted P5 then
KX = 0, so that k =

∑
ai, and the entries in the skew matrix are k− bi− bj.

Thus the Pfaffian Pf l = Pfij.i′j′ (where {l, i, j, i′, j′} = {1, 2, 3, 4, 5}) has
degree

bl = 2k − bi − bj − bi′ − bj′ ,

and hence
∑5

i=1 bi = 2k = 2
∑6

i=1 ai.
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4 Constructing Fano 3-folds by unprojection,

first examples

Example 4.1 Given Π : (x1 = x2 = x3 = 0) ⊂ P5, construct a c.i. X2,3 ⊂
P

5 containing Π and as general as possible (preferably nonsingular, but see
below). Suppose that

X2,3 :

(
a1 a2 a3

b1 b2 b3

)x1

x2

x3

 = 0, (4.2)

with deg ai = 2, deg bi = 1.
To contract Π to a point, I construct a function (homogeneous form) with

pole on Π. There is a clever way of doing this (see Section 5), but I want to
start by explaining a stupid way. If I view (4.2) as 2 linear equations in 3
variables, they have a unique solution up to proportionality

x1 ∼ a2b3 − a3b2, etc.,

by Cramer’s rule. This suggests setting yxi = Ai, with Ai the 2 × 2 minors
of (4.2), so that

y = Ai/xi for i = 1, 2, 3

gives the required rational homogeneous form of degree 2 with ideal of de-
nominators (x1, x2, x3), the ideal of Π.

Adjoining y with the new equations yxi = Ai gives rise to a new variety
Y ⊂ P(16, 2) defined by the 5 Pfaffians of

y a1 a2 a3

b1 b2 b3

x3 −x2

x1

 of degrees


2 2 2 2

1 1 1
1 1

1

 . (4.3)

4.4 Notation

I write

M =


m12 m13 m14 m15

m23 m24 m25

m34 m35

m45


14



for a skew 5× 5 matrix. That is, I omit the diagonal terms (which are zero)
and the mji = −mij with i < j. If you are a beginner, you may prefer to
write out the diagonal zeros for a while until you get used to it. The 4 × 4
Pfaffians are say, deleting the 5th row and column,

Pf5 = Pf12.34 = m12m34 −m13m24 +m14m23.

In the above construction, y appears linearly in 3 of the Pfaffians (4.3),
such as Pf12.45 = yx1 − a2b3 + a3b2, as the constant of proportionality in
Cramer’s rule, and the 2 Pfaffians not involving y are the equations (4.2).

Of course, I lied about X2,3 being nonsingular. In fact, since X con-
tains the plane Π, it has a number of singularities and cannot be factorial.
Generically, the singularities are 7 nodes at the points A1 = A2 = A3 = 0.
We do not admit X as a Fano 3-fold in the Mori category because it is not
Q-factorial (compare [CPR], 4.1). At these points every numerator and de-
nominator of y = Ai/xi vanishes, so that y is not defined, and the rational
map X 99K Y involves first blowing up Π to make it a Cartier divisor before
contracting it.

As in 2.3, the nonfactorial variety X2,3 is the midpoint of a Sarkisov link:

P
2 L99 X2,3 99K Y. (4.5)

Here the left-hand map is obtained by restricting the linear projection map
P

5 99K P2 given by x1, x2, x3. Since over (λ1, λ2, λ3) ∈ P2 the two equations∑
λiai =

∑
λibi = 0

are linear and quadratic in xi, this is a conic bundle.
To be polite, I write out the broken arrows in the Sarkisov link (4.5):

Z L99 Ỹ

↙ ↘ ↙ ↘

P
2 X2,3 Y3,4

Here Ỹ → X is the blowup of the plane Π, a flopping extraction that makes
Π Cartier. Ỹ → Y is just the contraction of P2 in the nonsingular Ỹ to a
singularity of type 1

2
(1, 1, 1). The map Ỹ 99K Z is the flop of the curves over

the nonfactorial points of Π, and Z → P
2 is the conic bundle.
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Example 4.6 This example starts similarly, but with the gradings slightly
changed. However, the different grading makes a crucial difference to the
left hand side of the link. Let x1, . . . , x4, y1, y2 be homogeneous coordinates
on the w.p.s. P(14, 22), and consider the plane Π = P

2(x2, x3, x4) defined
by (x1 = y1 = y2 = 0). A general c.i. X3,4 ⊂ P5(14, 22) containing Π has
equations

X3,4 :

(
a b1 b2

c d1 d2

)x1

y1

y2

 = 0, (4.7)

with deg a = 3, deg bi = deg c = 2 and deg di = 1. As before, I introduce a
new variable

y3 =
b1d2 − b2d1

x1

= etc.

as the constant of proportionality in Cramer’s rule. This gives the new variety
Y ⊂ P(14, 23) defined by the Pfaffians of

a c −y2 y1

y3 b1 b2

d1 d2

x1

 of degrees


3 2 2 2

2 2 2
1 1

1

 .

As before, the rational map X 99K Y ⊂ P(14, 23) contracts the plane Π to a
singularity of type 1

2
. (I write 1

2
as an abbreviation for the index 2 singularity

1
2
(1, 1, 1) since no ambiguity is possible. The degrees can easily be predicted

from the multiplied out Hilbert polynomial 1 − 2t3 − 3t4 + 3t5 + 2t6 − t9,
compare [CPR], 7.2.2.)

So far, this is exactly the same as Example 4.1. However, the other side
of the link

Z L99
(

Π ⊂ X3,4 ⊂ P(14, 22)
)
99K Y ⊂ P(14, 23)

is completely different, mainly because the plane Π has defining equations
x1 = y1 = y2 = 0 of different weights: x1 has degree 1 and vanishes once on
Π, whereas the yi have degree 2 and still vanish only once on Π. Weight-for-
weight, x1 vanishes more. This is crucial in the strategy explained in 1.2, (v)
of constructing links via graded rings.

What happens is that the hyperplane x1 = 0 cuts X3,4 in Π ∪ F , where
the residual surface F is defined by

x1 = 0, rank

(
y2 b1 d1

−y1 b2 d2

)
≤ 1.
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This is a scroll passing through the two 1
2

singularities of X, with (y1 : y2)
the coordinate in the fibre. The other side of the link Z L99 X contracts F
to a line on a Fano 3-fold Z2,3 ⊂ P(16) passing through 2 ordinary double
points (Takagi, [T], Case 2.1). I take up this story again in Example 9.16 as
an example of an unprojection of Type III.

5 Kustin–Miller unprojection

The common theme of all the examples of Sections 2–4 was to make a new
variety as the graph of a homogeneous form s with pole along a divisor.
Unprojection does this systematically. The simplest case of unprojection
(“Type I”) is due to Kustin–Miller [KM] in the early 1980s and Papadakis–
Reid [PR].

5.1 The unprojection variable s ∈ Hom(ID, ωX)

The main idea is as follows: suppose that X and D ⊂ X are projectively
Gorenstein varieties, D has codimension 1 in X and dimX ≥ 2. Then the
adjunction formula for the Grothendieck dualising sheaf ωD automatically
provides a homogeneous form on X with pole along D. More precisely,
assume that

ωX = OX(kX) and ωD = OD(kD), with kX > kD.

Theorem 5.2 ([KM], [PR]) There is a rational section s of OX(kX−kD)
with pole on D that defines a rational map

X 99K Y ⊂ Pn[s] = Proj k[x0, . . . , xn, s]

taking D to Ps = (0 : · · · : 0 : 1). Moreover, Y is again projectively Goren-
stein.

Sketch proof The dualising sheaf of D is given by the adjunction formula:

ωD = Ext1
OX (OD, ωX).

Here the Ext is calculated by applying the derived functor of Hom to the
short exact sequence ID → OX → OD. Clearly Hom(OD, ωX) = 0 and
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Ext1(OX , ωX) = 0 because OX is locally projective, so that we obtain the
exact sequence

0→ ωX → Hom(ID, ωX)→ ωD → 0,

where the last map is the Poincaré residue map: if D is a Weil divisor,
it can be written in the vulgar form OX(K + D) → OD(KD). Now since
ωD = OD(kD), we can twist back to obtain

Hom(ID,OX(kX − kD))→ OD → 0.

Since also H1(ωX(i)) = 0 for all i by the projectively Gorenstein assumption,
we deduce that there exists an element

s ∈ Hom(ID,OX(kX − kD))

that has residue 1 ∈ OD. Thus s has divisor of poles exactly D. It is our
unprojection variable; it is the same thing as the elements s calculated in an
ad hoc way in Sections 2–4, but here it is derived in a systematic way from
Grothendieck duality, without any direct calculation.

See [PR] for the proof that Y is projectively Gorenstein. Note that if we
write IN(kX − kD) = s(ID) ⊂ OX(kX − kD) then N is the divisor of zeros of
s. Under X 99K Y , D is contracted to a point, and N maps isomorphically
to the hypersurface section s = 0 of Y . The point of the proof in [PR] is
that the isomorphism s : ID,X ∼= IN,X(kX − kD) (as ideals in the Gorenstein
scheme X) implies that D is projectively Gorenstein if and only if N is, and
then Y is projectively Gorenstein because its hypersurface section s = 0 is
isomorphic to N , hence projectively Gorenstein. �

Remark 5.3 When contracting a divisor D in a normal variety X, it is
traditional to assume that OD(−D) is positive in some sense; here I express
this as the comparison kX > kD between ωX and ωD. This comes to the
same thing for a Cartier divisor D by the adjunction formula, but is much
more powerful in general. We do not need to assume that X is normal (or
even reduced), or that D is even a Weil divisor (see [PR], Example 2.2).

The standard proof of Castelnuovo’s contractibility criterion consists of
persuading a line bundle L to be very ample outside D but trivial on D,
and to have a section that restricts to the generator 1 ∈ OD. This involves
nonsingularity, intersection numbers and cohomology vanishing.
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The construction of Theorem 5.2 works instead by finding a section

s ∈ Hom(ID, ωX ⊗OX(−kD))

whose residue on D generates ωD ⊗OX(−kD). There are no considerations
of nonsingularity, intersection numbers or cohomology vanishing, just direct
use of the projectively Gorenstein assumption on X. The extra power, as
so often in my experience, comes from using the raw form of Grothendieck–
Serre duality, without trying to interpret ωX and ωD in terms of differentials
Ωn
X or line bundles OX(KX + D) as we used to do in centuries past with

nonsingular varieties. See Section 9 for generalisations.

6 Applications to Fano 3-folds

Iano-Fletcher [Fl] lists the K3s and anticanonical Fano varieties whose graded
rings are hypersurfaces or codimension 2 c.i.s. There are the “famous 95”
families of hypersurfaces, and 84 (respectively 85) families of codimension 2
c.i.s. The odd one out here is the remarkable codimension 2 Fano 3-fold

X12,14 ⊂ P(2, 3, 4, 5, 6, 7)

that does not correspond to a family of K3s, because H0(−KX) = 0.
Examples 4.1 and 4.6 above are typical cases of unprojection from codi-

mension 2 c.i. to codimension 3 Pfaffian. Several dozen more can be found
by choosing a codimension 2 c.i. from [Fl], 16.7, Table 6 containing a suitable
plane P(a1, a2, a3) as a divisor. Altınok [A] lists the K3s whose graded rings
are codimension 3 Pfaffians (69 families) and codimension 4 rings (115 con-
firmed families, and another 23 plausible candidates that still require more
work). Many of her cases of codimension 4 K3s extend to Fano 3-folds (with
some effort). All but a handful of her codimension 3 and confirmed codimen-
sion 4 cases are obtained as Type I unprojections.

Remark 6.1 Both Fletcher’s and Altınok’s lists contain an implicit gener-
ality assumption that exclude, for example, the monogonal and hyperelliptic
degenerations such as X2,6 ⊂ P(13, 2, 3) and X2,4 ⊂ P(14, 2). It would be
interesting to plug this gap; linear systems on K3s are well behaved with
a small number of exceptions that are themselves clear-cut dichotomies, so
there should only be a couple of dozen new cases.
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While not so interesting in themselves, these huge lists of Fano 3-folds
are now acquiring some importance, and we search them repeatedly to dis-
cover regular patterns (for example, codimension 2 c.i.s that contain a plane
P(1, a1, a2) and have only terminal singularities, generalising Examples 4.1–
4.6), and then to find the first few cases where that pattern breaks down.
Compare Altınok’s Example 9.13, which looks like a weighted 5× 5 Pfaffian
on the basis of its Hilbert polynomial, but fails one little test; all of this can
easily be automated. It is a really worthwhile project to make a computer
database containing all the known information about the lists in searchable
form – at present, it might take several hours’ search and calculation to find,
say, a codimension 4 example X ⊂ P(12, 24, a7, a8) having 7 × 1

2
and some

singularity of index ≥ 5, with multiplied out Hilbert polynomial starting in
1− 3t2 − 4t5 + · · · , and expensive taste in cigars. A working first version of
this database, programmed by Gavin Brown but based largely on Altınok’s
thesis [A], will be included in the next export of Magma [Ma] in early summer
2001.

6.2 Takagi’s lists

In his Tokyo thesis [T], Takagi Hiromichi gives a systematic treatment of
Fano 3-folds with singularities of Gorenstein index 2 and h0(−KX) = g + 2
with genus g ≥ 2. This is a major achievement, comparable to the work
of Fano, Iskovskikh and others over several decades in the nonsingular case.
To simplify, assume that the only singularities are quotient singularities 1

2
.

Takagi’s lists include several cases of anticanonical 3-folds X embedded in
P

7(1a, 2b) with a + b = 8 as projectively Gorenstein codimension 4 sub-
varieties. Consider in particular the following numerical types:

genus singularities embedding Hilbert polynomial

g = 4 2× 1
2

X ⊂ P(16, 22) 1− t2 − 7t3 + 7t4 − · · ·+ t9

g = 3 3× 1
2

X ⊂ P(15, 23) 1− 6t3 − t4 + 12t5 − · · ·+ t10

g = 2 4× 1
2

X ⊂ P(14, 24) 1− 3t3 − 6t4 + 8t5 + · · ·+ t11

Takagi gives a rigorous geometric treatment of every variety with these
invariants. His work is in terms of Mori theory, so that, for example, he
constructs varieties, their blowups and morphisms between them using the
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MMP, rather than by calculating graded rings. However, he pointed out
to me that each of these numerical cases in codimension 4 gives rise to 2
different types of variety, and made the beautiful and almost certainly correct
prediction that these probably correspond to the two families of unprojection
treated by Papadakis [P], that we call Tom and Jerry . I verify this here in
the g = 4 cases (the g = 2 and g = 3 cases would make fun exercises).
In this case, projecting from either of the 1

2
singularities gives a Fano 3-fold

X ⊂ P(16, 2) with multiplied out Hilbert polynomial 1−t2−4t3 +4t4 +t5−t7,
which is a 5× 5 Pfaffian given by a matrix of degrees

2 2 2 2
1 1 1

1 1
1

 . (6.3)

This family of 3-folds X was constructed in Example 4.1 by unprojecting
a plane, but now I require that it contains another plane Π. By choosing
coordinates, I assume Π = P2(x4, x5, x6), defined by x1 = x2 = x3 = y1 = 0.

The point of Tom and Jerry is this:

There are two quite different ways of putting Π inside X.

Example 6.4 (Takagi, No. 4.4) The first method is to assume that the
bottom right 4× 4 block of the 5× 5 matrix consists of linear combinations
of the given regular sequence x1, x2, x3, y1:

M =


x4 x5 x6 p

x1 x2 y1

x3 ax2

bx1

 , with deg p = 2, deg a, b = 1. (6.5)

The Pfaffians of M then clearly belong to the ideal generated by x1, x2, x3, y1.
One sees in this case that (6.5) is the general solution: x1, x2, x3 and y must
appear with unit coefficients for reasons of degree, and any other terms can
be eliminated by row and column operations. (The terms that survive cannot
be eliminated: m24 = x2 and m35 = ax2 are “Pfaffian partners”, with no row
or column in common, and the same for m23 = x1 and m45 = bx1.)

This is the setup for a Tom unprojection. Theorem 5.2 asserts that there
exists an unprojection variable y2, a rational homogeneous form of degree 2
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with Π as its divisor of poles; however, it does not say how to construct y2.
This problem is solved for the general Tom unprojection in Papadakis’ thesis
[P]. Here the answer specialises to

y2x1 = ax4x6 − px5,

y2x2 = bx4x5 − px6,

y2x3 = bx2
5 + ax2

6,

y2y1 = abx2
4 − p2.

Remark 6.6 In this case, the whole set of 9 equations can be given as the
4× 4 Pfaffians of the following 6× 6 extrasymmetric matrix

x4 x5 x6 p y2

x1 x2 y1 p

x3 ax2 ax6

bx1 bx5

abx4

 .

The unprojection variable y2 goes in the top right-hand corner, from whence
it multiplies the 4×4 block containing the regular sequence x1, x2, x3, y1. The
matrix is symmetric about the antidiagonal, except that the 356 triangle of
entries m35,m36,m56 is multiplied by a and the 456 triangle by b. Of its 15
Pfaffians, the last 6 are just repetitions or simple multiples of the first 9.

The mechanism in geometry is that the Segre embedding P2×P2 ⊂ P8 is
a (nongeneral) linear section of Grass(2, 6) ⊂ P14; it is a Schubert cycle, the
lines of P5 meeting two copies of P2 spanning P5. Thus P2 × P2 is defined
by the Pfaffians of a 6 × 6 (nongeneral) skew matrix. In algebra, if N is a
generic 3×3 matrix, and we write N = A+B with A symmetric and B skew,
then the 2 × 2 minors of N generate the same ideal as the 4 × 4 Pfaffians
of the skew matrix

(
B A
−A B

)
. Multiplying a triangle such as the bottom right

triangle 456 by an indeterminate is a flat deformation.
An extrasymmetric matrix of this type appears fairly often with Tom

unprojections. To the best of my knowledge, it appeared first in Duncan
Dicks’ thesis [D] (see also [R1]). However, the general Tom unprojection
treated in Papadakis [P] is more general than this 6 × 6 extrasymmetric
format, so don’t waste too much time looking for the matrix if it does not
want to come out. (Compare the end of Example 7.1, which just fails to have
an extrasymmetric format.)
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Proposition 6.7 For general a, b, p, the variety X defined by the Pfaffians
of (6.5) is the midpoint of a link

P
2 L99 X 99K Y,

where X 99K Y is the unprojection discussed above that contracts Π to a
point of Y ⊂ P(16, 22), and X 99K P2 is a conic bundle defined by the linear
system |−KX − Π|, or equivalently, the ratio x1 : x2 : x3.

In other words, the Fano 3-fold Y and its link Y 99K P2 are in Takagi
[T], Case 4.4. I omit the proof. The main point to note is simply that the
Pfaffian equations

Pf3 : x6y1 = bx1x4 + x2p

Pf4 : x5y1 = ax2x4 + x1p

imply that y1 vanishes only once on Π so y1 /∈ H0(−2KX − 2Π). Thus the
ring R(X,−KX − Π) is the polynomial ring k[x1, x2, x3].

Example 6.8 (Takagi, No. 1.1) The other way of imposing the plane Π
on X is to assume that the 5×5 matrix M has first two rows with all entries
in the ideal (x1, x2, x3, y1); the general solution with degrees (6.3) is

M =


y1 a1 a2 a3

x1 x2 x3

x6 −x5

x4

 with (a1, a2, a3) = (x1, x2, x3)A, (6.9)

where A is a 3 × 3 matrix with linear entries. In other words, a1, a2, a3 are
linear combinations of x1, x2, x3 with coefficients of degree 1. Clearly all the
Pfaffians of M belong to (x1, x2, x3, y1), so that Theorem 5.2 again implies
that there exists an unprojection variable y2 with poles along Π.

This is the setup for a Jerry unprojection. The equations involving y2 are
treated in Papadakis [P]; in general they are much more complicated than
those for Tom, but they simplify considerably in the present case. The two
Pfaffians of (6.9) not involving y1 are bilinear in x1, x2, x3 and x4, x5, x6:

Pf23.45 = (x1, x2, x3)

x4

x5

x6

 = 0, and Pf13.45 = (x1, x2, x3)A

x4

x5

x6

 = 0.
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The equations (6.9) can be obtained from these two linear equations in
(x4, x5, x6) by solving by Cramer’s rule, with unprojection variable y1 as
constant of proportionality (that is, y1x4 = a2x3 − a3x2, etc.). On the other
hand, I can view them also as two linear equations for 3 unknowns (x1, x2, x3),
and solve them with y2 as constant of proportionality. As usual, this can be
written as a 5× 5 Pfaffian:

x3 −x2 x4 a′1
x1 x5 a′2

x6 a′3
y2

 , where

a′1a′2
a′3

 = A

x4

x5

x6

 .

The equation for y1y2 turns out to be

y1y2 = (x1, x2, x3)A†

x4

x5

x6

 ,

where A† is the adjoint matrix of A.
In this case, the Pfaffian equations say that y1 · (x4, x5, x6) are quadratics

in x1, x2, x3, so that y1 ∈ H0(−2KX − 2Π). Thus the ring R(X,−KX − Π)
is the graded ring k[x1, x2, x3, y1], and X is the midpoint of a link

Z L99 X 99K Y

where Z = P(13, 2) is the Veronese cone. Thus Y is Takagi’s Case 1.1.

Example 6.10 A more general Jerry unprojection (but still not the most
general, see Papadakis [P]) comes from the Pfaffian form:

M =


x a1 a2 a3

b1 b2 b3

z3 −z2

z1

 , where
(a1, a2, a3) = (y1, y2, y3)A,

(b1, b2, b3) = (y1, y2, y3)B,
(6.11)

with A,B generic 3 × 3 matrixes. This defines a codimension 3 Gorenstein
variety containing the codimension 4 c.i. (x, y1, y2, y3). The same bilinear
trick as in Example 6.8 puts the unprojection variable t into a set of Pfaffian
equations

y3 −y2 b′1 a′1
y1 b′2 a′2

b′3 a′3
t

 , where

a′1a′2
a′3

 = A

z1

z2

z3

 and

b′1b′2
b′3

 = B

z1

z2

z3

 .
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The “long equation” for xt turns out to be

xt = (y1, y2, y3)N(A,B)

z1

z2

z3


where N(A,B) is a biquadratic expression4 in the entries of A,B, and is
a moderately horrible mess (although presumably a covariant of the two
bilinear forms).

These equations define a flat deformation of the cone over the Segre em-
bedding of P1 × P1 × P1. To see this, I write the equations of the latter in
terms of a little 2× 2 cube labelled with the variables

y1 z3∣∣∣ ∣∣∣
z2 t

r r

r r

x y2∣∣∣ ∣∣∣
y3 z1

Then the equations of P1 × P1 × P1 are

xzi = yjyk, tyi = zjzk for {i, j, k} = {1, 2, 3},
and xt = yizi for i = 1, 2, 3.

Projecting from t gives 5 equations in the Pfaffian form
x y1 y2 0

0 y2 y3

z3 z2

z1

 ,

which is a specialisation of (6.11).

4Papadakis has calculated this more accurately, obtaining:

xt =
∑

(±1)yi1Ci2,j2Di3,j3zj1 summed over {i1, i2, i3}, {j1, j2, j3} = {1, 2, 3},

where C =
∧2

A and D =
∧2

B. Compare (11.4.3).
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7 Applications to surfaces of general type

Example 7.1 In Reid [R], I calculated the canonical ring of the universal
cover Y of a Z/3 Godeaux surface. This is a regular surface with pg = 2,
K2 = 3, so that, using the Hilbert series as explained in 3.2, you see that its
canonical ring R(Y,KY ) needs at least

2 generators x1, x2 in degree 1,
3 generators y0, y1, y2 in degree 2, and
2 generators z1, z2 in degree 3.

Then

(1− t)2(1− t2)3(1− t3)2P (t) = 1− 3t4 − 3t5 − 3t6

+ 2t6 + 6t7 + · · ·+ t15

(by Gorenstein symmetry, t15−k appears together with tk). The curious
sidestep −3t6 + 2t6 in this expression is explained as follows: in constructing
a plausible model, we expect (or can prove, see [R]) that |2KY | is free, and so
R(Y,KY ) is a finite module over the polynomial ring A = k[x1, x2, y0, y1, y2],
generated by 1, z1, z2. Therefore there must be at least 3 equations in degree
6, expressing z2

1 , z1z2, z
2
2 in terms of this basis.

The same ring can be obtained much more simply as a Tom unprojection.
Rather amazingly, it is then a deformation of the graded ring over the Segre
embedding of P2 × P2. For this, I start from the equations of P2 × P2 in a
slightly idiosyncratic form

rank

x0 y2 z2

z1 x1 y0

y1 z0 x2

 ≤ 1, that is,

xizi = yjyk

yizi = xjxk

zjzk = xiyi

for {i, j, k} = {1, 2, 3}.

The first step is to make these equations weighted homogeneous with wt xi,
yi, zi = 1, 2, 3. For this, introduce a new variable S with wtS = 3, and
modify the equations to

xizi = yjyk,

yizi = Sxjxk,

zjzk = Sxiyi.

(7.2)

Now project away from z0; in other words, separate the 9 equations (7.2) into
4 equations linear in z0, of the form

x0z0 = something, y0z0 = · · · , z0z1 = · · · , z0z2 = · · · ,
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and 5 equations not involving z0. It is easy to mount the latter as the Pfaffians
of the 5× 5 skew matrix: 

x1 x2 y1 −y2

y0 z2 0
0 z1

Sx0


I now vary the entries in the bottom right 4 × 4 block to make them into
general linear combinations of x0, y0, z1, z2:

M0 =


x1 x2 y1 −y2

y0 z2 r1x0

r2x0 z1

Sx0 − r0y0

 , with wt ri = 2. (7.3)

This is the data for a Tom unprojection, as in Example 6.4. The Pfaffians
of M0 are clearly contained in the ideal generated by the regular sequence
x0, y0, z1, z2, so they define a codimension 3 Gorenstein variety X in the
ambient affine space with coordinates xi, yi, zi, S, ri such that X contains the
codimension 4 c.i. D : (x0 = y0 = z1 = z2 = 0). This means that we can
unproject D in X by Theorem 5.2. As before, the explicit equations of the
unprojection can be read from Papadakis’ thesis:

x0z0 = y1y2 + r0x1x2,

y0z0 = Sx1x2 − r2x1y2 − r1x2y1,

z0z1 = Sx2y2 + r0r1x
2
2 − r2y

2
2,

z0z2 = Sx1y1 + r0r2x
2
1 − r1y

2
1.

(7.4)

It is easy to see that the set of 9 equations (7.3–7.4) is symmetric under
permuting {0, 1, 2}, so that they could be written in terms of the Pfaffians of
3 matrixes like M0. You can also try to mount them as a 6×6 extrasymmetric
Pfaffian (compare Remark 6.6):

x1 x2 −y2 y1 z0

y0 r1x0 z2 Sx1 − r1y1

z1 r2x0 Sx2 − r2y2

Sx0 − r0y0 r0r1x2

r0r2x1


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This matrix just fails to give the full set of equations: it only gives the
equation for x0z0 multiplied by S, r1, r2.

Note that these equations define a flat deformation of the affine cone over
the Segre variety, because they specialise to it on setting S = 1 and ri = 0.
My surfaces Y from [R] are obtained by setting

x0 + x1 + x2 = z0 + z1 + z2 = 0,

and ri = quadratic, S = cubic expressions in xi, yi, and the Z/3 action
by cyclic permutation of (0, 1, 2). There is a little cyclotomic change of
coordinates to go from the eigencoordinates of [R] to the cyclic permutation
coordinates here. The treatment of this example originated in the observation
that the equations written out in [R], pp. 86–87 as

R0 x2z1 + x1z2 = y1y2 − y2
0 + · · ·

R1 x2z2 = y0y1 − y2
2 + · · ·

R2 x1z1 = y0y2 − y2
1 + · · ·

S0 y2z1 + y1z2 = (x1x2 − x2
0)s + · · ·

S1 y2z2 = (x0x1 − x2
2)s + · · ·

S2 y1z1 = (x0x2 − x2
1)s + · · ·

(7.5)

take the much nicer form (7.2) if you replace them by their cyclotomic com-
binations R0 + εR1 + ε2R2 and S0 + εS1 + ε2S2 (taken over the 3 roots of
ε3 = 1), and change coordinates to x0 + εx1 + ε2x2, etc.

Example 7.6 Takagi’s list of Fano 3-folds includes

2 codim 4 families 2.2 and 3.3 X ⊂ P(14, 24) of degree 2 + 4× 1
2

= 4,

3 codim 5 families 2.3, 3.4, 5.1 X ⊂ P(14, 25) of degree 2 + 5× 1
2

= 9/2,

1 codim 6 family 2.4 X ⊂ P(14, 26) of degree 2 + 6× 1
2

= 5.

There are almost certainly rather simple unprojection constructions for each
of these varieties. They also have sections S ∈ |−2KX | that are canonical
surfaces with pg = 4 and K2

S = 8, 9, 10.

Problem 7.7 Canonical surfaces with invariants in this range have been
studied by Ciliberto [Ci] and Catanese [Ca]–[Ca2] from the point of view
of generic or “Italian” projection discussed in 1.2, (ii). These examples are
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interesting test cases to compare the methods and results of Italian versus
Gorenstein projection. Thus the treatment of Example 7.1 by Gorenstein
projection can be compared to the original treatment of [R], which is a kind
of Italian projection: it treats the canonical ring R(X,KX) as a module over
the subring k[x1, x2, y0, y1, y2] generated by 1 and the zi, with the equations
(7.5) as defining relations. As another example, it seems clear that Ciliberto’s
surfaces with pg = 4, K2 = 8 must either form two families, sections of
Takagi’s Cases 2.2 and 3.3, or only one family which is a section of both. I
would very much like to know which of these holds. Compare the del Pezzo
surface of degree 6, which is a linear section of both P1×P1×P1 and P2×P2.
This bifurcation of cases in going from surfaces to 3-folds seems to be at the
heart of the codimension 4 Gorenstein problem. Compare Problem 8.5.

8 Tom and Jerry: who are they?

Many examples of codimension 4 Gorenstein rings with a 9 × 16 resolution
seem to relate to P2×P2 or P1×P1×P1, although it seems hard at present to
say anything precise and general along these lines. Tom unprojections often
relate to P2×P2 and Jerry unprojections to P1×P1×P1, but the short names
have the advantage that they do not imply any immodest claim concerning
our current understanding of Gorenstein codimension 4.

Problem 8.1 Give an intrinsic treatment of Tom and Jerry.

Write C Grass(2, 5) ⊂
∧2
C

5 for the affine cone over Grass(2, 5), that is,
the generic 5× 5 Pfaffian variety. It is an almost homogeneous space under
GL(5,C), and in particular has an action of the centre (C∗)5, which gives
many choices of gradings.

A Pfaffian subvariety X ⊂ A in a regular local scheme A = SpecO is the
inverse image X = ϕ−1(C Grass(2, 5)) of C Grass(2, 5) under a morphism
ϕ : A →

∧2
C

5. To set up unprojection data, we want X to contain a given
codimension 4 c.i. D : (x1 = · · · = x4 = 0) ⊂ A. There is presumably no
loss of generality in taking the regular sequence x1, . . . , x4 ∈ O as part of a
regular system of parameters of O.

Tom and Jerry each achieve X ⊃ D by requiring that ϕ take D to a
Schubert cell:

Tom The condition on ϕ is that ϕ(D) consists of 2-dimensional subspaces
containing e1 = (1, 0, 0, 0, 0); or ϕ(D) ⊂ e1 ∧ C5. Algebraically, the
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skew matrix defining X has bottom right 4× 4 block contained in the
ideal of D:

ϕ∗(aij) ∈ (x1, . . . , x4) for i, j ≥ 2.

Jerry In this case, ϕ(D) must consist of 2-dimensional subspaces contained
in C3 = 〈e3, e4, e5〉 ⊂ C5; or ϕ(D) ⊂ Grass(2,C3). That is, two rows
and columns of the matrix are contained in the ideal of D:

ϕ∗(aij) ∈ (x1, . . . , x4) for i ≤ 2 or j ≤ 2.

The point of the problem, however, is to give also a description in intrinsic
terms of the unprojected variety and its equations. Compare Papadakis [P].

Problem 8.2 Do Tom and Jerry account for every set of unprojection data
D ⊂ X ⊂ A where D is a codimension 4 c.i. and X is a 5× 5 Pfaffian?

The cone C Grass(2, 5) over the whole Grassmann variety does not have
any divisors to unproject, so we are going to cut it down a bit by equations
forming a regular sequence, but probably not very general, until we get an
X with some interesting class group. But it is then a very strong restriction
to ask an effective divisor D in X to be a codimension 4 c.i. in the ambient
space.

Problem 8.3 Can all the currently known Gorenstein codimension 4 rings
with 9×16 resolution be accommodated within Tom and Jerry unprojection
structures?

Altınok’s treatment of codimension 4 K3 surfaces includes 23 candidates
that cannot be obtained as Type I unprojections from codimension 3 (see
Example 9.13). In Example 9.14, I discuss a Fano 3-fold, also derived from
Altınok’s work, that has a Type II projection, but no Type I projection.
However, it is quite conceivable that these cases could be part of a bigger
variety that does project nicely, by analogy with Example 7.6.

The case that I really do not know how to do at present is Duncan Dicks’
“rolling factors format” of Example 10.8 (see also Dicks [D] and Reid [R2],
Section 5). If this can’t be done, it possibly casts doubt on the whole senti-
ment of Problem 8.3.

One unresolved issue is whether Jerry (say) is a structure in its own
right, or a link or relation between two structures. Example 10.8 is a kind
of structure (“fat P1 × P1 × P1”) that at present I don’t know how to relate
to 5× 5 Pfaffians by a Jerry unprojection.
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Remark 8.4 Kustin and Miller remark that the generic (2k+ 1)× (2k+ 1)
Pfaffian is an unprojection (see [KM], p. 311): you can separate the variables
into m12 and the remaining mij, and view the two Pfaffians not involving
m12 as defining a codimension 2 c.i., and those involving m12 linearly as
unprojection equations. (See Example 4.1 for a 5× 5 case.)

I want to stress that this only works as stated for a sufficiently general
matrix. In fact, the generic (2k+1)×(2k+1) Pfaffian variety is the (k−1)st
secant variety of Grass(2, 2k+1), because a skew form of rank ≤ 2k−2 can be
written as a sum

∑
ei∧fi of k−1 forms of rank 2. The projection eliminates

the variable m12; for it to work, m12 must be algebraically independent of
the other mij. Geometrically, the point Pm12 = (1, 0, . . . , 0) must be in the
variety in order to act as a centre of a projection. In other words, a (possibly
nongeneric) (2k+ 1)× (2k+ 1) Pfaffian variety X can only have a projection
of Type I if it has a point of the smallest possible rank 2, that is, a point of
Grass(2, 2k + 1).

More generally, to see a variety as an unprojection, you must first find a
suitable centre of projection, and you may well have to put your variety in a
bigger one first before this is possible. This happened in both Example 7.1
and Example 7.6. Thus in Example 7.6, if you only consider the surface S,
you cannot see the 1

2
singularities of the 3-fold X, and thus its unprojection

structure. For example, in the codimension 4 cases, the 4 new generators
yi in degree 2 can be thought of as a dual basis to the 4 × 1

2
singularities.

If we take
∑4

i=1 yi = 0, we have lost all the possible centres of Gorenstein
projection.

A reasonable conclusion is that the dimension of a variety is not a very
significant invariant in these constructions, and it is a mistake to concen-
trate only on curves or surfaces or 3-folds. Instead, one should work with
notions such as codimension, coindex, genus, multiplied out Hilbert poly-
nomial, homological properties, etc., that are invariant or transform in a
simple way on taking a hyperplane section, and work for preference with a
“key variety” that is as fat as possible.

Problem 8.5 How do Tom and Jerry intersect? As with their celluloid
namesakes, scenes in which Tom and Jerry appear together are on the whole
more interesting than their solo performances. As mentioned at the end of
Problem 7.7, this includes the famous deformation theory of the del Pezzo
surface of degree 6.
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8.6 Why Pfaffians?

As I tell my students, mounting a set of half-understood equations in the
form of Pfaffians is much more fun than doing crosswords, and moreover, has
some intellectual content. Apart from personal addiction, there are several
other reasons why Pfaffians turn up throughout this kind of calculation:

1. They are an effective and simple way of handling syzygies. If you
have written down two or three equations, and suspect that you have
probably missed one or two more, you have to do things like x1f2−x2f1

to cancel some leading term and make the combination a pure multiple
of x3. At the end of it, you have f3 and f4 with some simple linear
identities. Most frequently, the equations themselves can be written as
2× 2 minors or 4× 4 Pfaffians in a way that gives the 3-term or 4-term
syzygies in an automatic way.

As we see in Section 11, there are serial unprojection rings of arbi-
trary codimension determined by a representative set of equations and
syzygies given as 5× 5 Pfaffians.

2. Most current questions on Gorenstein rings are concerned with small
codimension, meaning 3, 4, 5, 6, and in particular with unprojecting
from codimension 2 or 3 to codimension 4 or 5 or 6. The prominence
of Pfaffians in this study is not surprising in view of the Buchsbaum–
Eisenbud theorem. Pfaffians bigger than 5×5 tend not to appear in this
study because they give varieties of high coindex. The (2k+1)×(2k+1)
unweighted case already has coindex 2k − 2; for example, the simplest
Gorenstein graded ring over a surface with 7 × 7 Pfaffian structure is
the canonical surface S14 ⊂ P5.

3. The 4×4 Pfaffians are the Plücker equations defining Grass(2, n). There
is a natural progression 2 × 2 minors → Pfaffians → the quadratic
equations defining the codimension 5 spinor variety Spin(5, 10) ⊂ P15

(or orthogonal Grassmann variety, see Mukai [Mu]). Just as a 4 × 4
Pfaffian is a trinomial that you can think of as m12m34−|m13 m14

m23 m24 |, each
spinor equation is a 4-nomial that you can think of as

x1x2 − 4× 4 Pfaffian.

Problem 8.7 As a Pfaffian addict, I can’t wait to start on the codimension 5
rings, where the spinor equations play a similarly prominent role. According
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to Mukai [Mu], the spinor coordinates ξI on the spinor space (= even Clifford
algebra) C16 =

∧0(C5) ⊕
∧2(C5) ⊕

∧4(C5) are indexed by even subsets of
{1, 2, 3, 4, 5}. The equations defining the spinor variety Spin(5, 10) ⊂ P15 are
the 10 spinor equations N±i, typically

N1 = ξφξ2345 − ξ23ξ45 + ξ24ξ35 − ξ25ξ34

N−1 = ξ12ξ1345 − ξ13ξ1245 + ξ14ξ1235 − ξ15ξ1234.

Spin(5, 10) ⊂ P15 has coindex 3 and the multiplied out Hilbert polynomial
1− 10t2 + 16t3− 16t5 + 10t6− t8 (the same as for a canonical curve of genus
7, or a nonsingular Fano 3-fold of genus 7). In the unweighted case, as for a
nonsingular Fano 3-fold, a point projection has the wrong discrepancy (see
[PR], 2.7); a Fano style projection from a line should go to a 5 × 5 Pfaffian
containing a cubic scroll, providing the first case of a Type III unprojection
from codimension 3 to codimension 5.

That was the unweighted form. We can find many weighted homogeneous
forms, because the affine cone C Spin(5, 10) ⊂ C16 has an action of GL(5) and
of its centre (C∗)5. It would be interesting to find weighted K3s and Fanos
as sections of the weighted spinor varieties. This is the simplest structure for
codimension 5 Gorenstein rings, analogous to the codimension 4 structure
5 × 5 Pfaffian intersect a hypersurface (think of the del Pezzo surface of
degree 5). The next problem is then to find some nice examples of links by
projection from these varieties to lower codimension.

9 Harder unprojections

We can relax the assumption in Theorem 5.2: there is no special need for
the divisor D to be Gorenstein in order to unproject it. The best way to
think of this is from the top: Fano and the generations following him project
nonsingular Fano 3-folds from a line, a conic, or project doubly from a point
(compare the discussion in 1.2). From [CPR] and Takagi [T] onwards, we
can do more exotic projections from points or curves on Fanos in the Mori
category. The exceptional divisor is usually not projectively Gorenstein.

I discuss here two families of examples:

Type II In this case D is not projectively Cohen–Macaulay, because it is
not projectively normal, but the normalisation OD̃ = OD ⊕ OD · t
needs only one module generator, and moreover, OD̃ is Gorenstein.
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This arises in connection with the elliptic involution of [CPR], 4.10–
4.12 and 7.3, and with several interesting codimension 4 K3s and Fano
3-folds from Altınok’s lists [A]. See Examples 9.5–9.14. It is really a
generic phenomenon for slightly nonnormal embeddings P(a1, a2, b) ↪→
P(a1, a2, a3, . . . , an) between w.p.s.s.

Type III In this case, D is projectively Cohen–Macaulay, but ωD(n0) is
generated by two sections that define a fibre space structure ϕ : D → P

1.
That is, D is homologically like a cubic scroll, so Cohen–Macaulay but
not Gorenstein. The typical case is Fano’s projection of a Fano 3-fold
from a line, with the cubic scroll as exceptional divisor. Corti suggested
treating the inverse rational map as a new type of unprojection, and
calculated the first cases himself. See Example 9.16, where I conclude
the story begun in Example 4.6 based on Takagi, Case 2.1.

Remark 9.1 By assigning roman numerals, I am certainly not suggesting
a case division or classification. Rather, these are certain pathologies that
turn up frequently, and that we can begin to handle alongside the Kustin
and Miller Type I cases. Based on experience of projecting Fano 3-folds
from different centres (and seeking the unprojection giving the left-hand side
of the corresponding link), I believe that D can be really very bad from the
point of view of commutative and homological algebra. There are certainly
cases when D is a badly nonnormal scroll, or when OD̃ is Gorenstein but
needs many generators as an OD module.

Problem 9.2 Find the best theorem of the following shape. I state the
problem in the local setup. Compare [PR], 2.4 for the translation from local
to projective.

X is a local Gorenstein scheme and D ⊂ X a subscheme of pure
codimension 1. The adjunction formula for ωD gives the usual
exact sequence

0→ ωX → Hom(ID, ωX)→ ωD → 0.

Identifying ωX = OX interprets elements of the Hom as rational
functions on X with poles along D. Pick a set of generators
si ∈ Hom(ID, ωX), say with s0 = id: ID ⊂ OX = ωX . As in
[PR], Lemma 1.1, assume without loss of generality that the si
are injective and have divisor of poles exactly D.
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Define the unprojection (ring) of D in X by

OY = OX [s1, . . . , sn]/(relations) and Y = SpecOY . (9.3)

Then under suitable (fairly mild) conditions, Y is a Gorenstein
scheme.

It is part of the problem to say what the ideal of relations in (9.3) should be.
When it turns out that Y is birational to X, we could just take the relations
between the si holding in the total ring of fractions k(X), but in general Y
may have new components.

Maybe we should find the relations by studying a few examples; it would
be really cool if all the relations were determined by linear ones. Conjec-
ture 9.12 suggests that in some easy cases, we should look for linear relations
in the si and certain fairly simple and predictable quadratic relations yoked
to them by Pfaffians.

In the projective setup, in view of the applications, I want to assume that
D is a codimension 1 subscheme of a projectively Gorenstein scheme X, and
that there is a threshold value kD ∈ Z with kX > kD for which ωD(−kD) is
still generated by its H0, but the resulting linear system is not big, so that
the morphism ϕωD(−kD) contracts D to a smaller dimensional variety.

As before, this means that the elements si ∈ Hom(ID, ωX(−kD)) whose
residues generate ωD(−kD) become homogeneous forms with poles along D,
and have positive degree kX − kD under the identification ωX = OX(kX).

Remark 9.4 As in Remark 5.3, the assumption kX > kD is a negativity
condition on D ⊂ X. Note the fortunate circumstance that the si correspond
to generators of ωD(−kD) = ωD̃(−kD), which is good even if D is not normal.
A condition expressed in terms of OD would be much worse in this respect.
This is another advantage of the approach via Grothendieck–Serre duality.

In the modern view, we usually expect this kind of canonical threshold
to be a rational number. But kD ∈ Q does not seem to make sense here. (Or
could it somehow?)
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9.5 Key variety for Type II unprojections

I give a generic form for Type II unprojections, as a preparation for the
following examples. Consider the morphism

π : D̃ = Cn+1 → D ⊂ C2n+1

(x1, . . . , xn, t) 7→ (xi, yi = xit, z = t2)

that folds the t axis in half, identifying ±t. The image D is a nonnormal toric
variety, with coordinate ring the subring k[D] ⊂ k[x1, . . . , xn, t] obtained by
outlawing odd pure powers of t. Its equations are

rankN ≤ 1, where N =

(
y1 · · · yn x1z · · · xnz
x1 · · · xn y1 · · · yn

)
; (9.6)

that is, the n2 equations{
xiyj − xjyi for i < j,

yiyj − xixjz for i ≤ j,
where i, j = 1, . . . , n. (9.7)

The moral purpose of the equations (9.6) is of course to ensure that t =
yi/xi = xiz/yi is a well defined rational function on D with t2 = z.

I want to treat D as a key variety for a whole series of nonnormal varieties.
For n ≥ 2 it is not Cohen–Macaulay, because its normalisation happens in
codimension ≥ 2. Although OD is not Cohen–Macaulay as a ring or as a
OC2n+1-module, its normalisation π∗OD̃ is Gorenstein as a ring, and hence
as an OC2n+1-module. Moreover, ωD = π∗ωD̃

∼= π∗OD̃, since the dualising
sheaf is saturated in codimension 2. From now on, I suppress π∗. Thus ωD
is generated by the single element

s0 = dx1 ∧ · · · ∧ dxn ∧ dt

over the bigger ring OD̃ but needs two generators s0 and s1 = ts0 over
OD or over OC2n+1 . The Gorenstein OC2n+1 module OD̃ ∼= ωD has a nice
presentation:

0← OD̃ ← O⊕O · t N←−− 2nO P←−− 2
(
n
2

)
O ← · · ·

where N is the 2× 2n matrix of (9.6), viewed as relations (s1, s0)N = 0, and
P is made up of pairs of 4-term syzygies

−yj −xjz
yi xiz
−xj −yj
xi yi

 .
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Let X ⊂ C2n+1 be the general codimension n−1 c.i. containing D, defined
by n general linear combinations of the equations (9.7). Then (for n = 2, 3,
and I conjecture for all n), D unprojects in X by adjoining two elements
s0, s1 ∈ Hom(ID, ωX) with residue s0, s1 ∈ ωD.

There should be two proofs, exercises in generalising the respective con-
structions of [KM] and [PR]. For the former, we have 3 complexes

0 ← OX ← O fi←−− (n− 1)O ← · · ·y ∥∥ y
0 ← OD ← O mi,j←−− n2O ← · · ·⋂ ⋂ y
0 ← OD̃ ← O⊕O · t N←−− 2nO ← · · ·

resolving OX , OD and OD̃; of these, the top is the Koszul complex of the c.i.
X : (f1 = · · · = fn = 0), and the bottom is the resolution of OD̃, which has
length n+ 1 and Gorenstein symmetry because OD̃ is a Gorenstein module.
The middle complex is much messier, but we only need it as far as length
n+ 1, where it computes ωD = ωD̃.

The unprojection variables s0 and s1 come from putting together the
homomorphisms at the end of these complexes much as in [KM]: the linear
relations involving s0, s1 are

tN

(
s0

s1

)
= col(A1, . . . , An, B1, . . . , Bn),

where tN : (O⊕O·t)∨ → (2nO)∨ and the column vector is the nth composite
downarrowO → 2nO. There is also a single quadratic relation s2

0z−s2
1 = · · · ,

which is of course the tricky point referred to in Problem 9.2.
In what follows, I restrict to the cases n = 2, 3.

Example 9.8 The case n = 2 was worked out together with Corti in the
context of constructing elliptic involutions of Fano hypersurfaces, and is writ-
ten up in [CPR], 4.10–4.12 and 7.3. Then D ⊂ C5 has codimension 2, and the
hypersurface X ⊂ C5 containing D has equation a general linear combination

A(x1y2 − x2y1) +B(y2
1 − x2

1z) + 2C(y1y2 − x1x2z) +D(y2
2 − x2

2z)
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of the defining equations (9.7). To unproject D in X, write the adjunction
formula for ωD as usual

0→ ωX → Hom(ID, ωX)→ ωD → 0.

Then we need two new generators s0, s1 ∈ Hom(ID, ωX) to hit the two
generators s0, s1 of ωD. The linear relations between these are given by

y1 x1 x1C + x2D
y2 x2 x1B − x2C
x1z y1 x1A− y1C − y2D
x2z y2 x2A− y1B + y2C


s0

s1

1

 = 0. (9.9)

It so happens in this case that Y has codimension 3, and is the 5×5 Pfaffian
x1 x2 y1 y2

s0 −D −s1 + C
s1 + C B

s0z + A

 = 0. (9.10)

See [CPR], 7.3 for further discussion and applications. As explained in 9.5,
the matrix in (9.9) can be interpreted as a map between complexes in Kustin
and Miller style (although we did not know this at the time).

Example 9.11 When n = 3, the variety X ⊂ C7 is a codimension 2 c.i.
f = g = 0 containing the nonnormal variety D.

0← OX ← O f,g←−−− 2O
(−g
f

)
←−−− O ←− 0y ∥∥ y y

0← OD ← O mi,j←−− 9O ←− 20O ←− · · ·⋂ ⋂ y y
0← OD̃ ← 2O N←−− 6O P←−− 6O

tN←−−− 2O ← 0

Here 2O stands for O⊕O · t and its dual, N is the matrix of proportionality
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relations (9.6) for t, and

P =


x3z −x2z 0 y3 −y2

x1z −y3 0 y1

y2 −y1 0

x3 −x2

x1


its first syzygy matrix.

Conjecture 9.12 Sorry, there is no time to finish writing up this proof
properly. I have checked it in Magma [Ma]. The problem is to understand
better the quadratic relations between s0, s1.

In the case n = 2 of Example 9.8, the 5th Pfaffian in (9.10) is quadratic
in s0, s1:

Pf23.45 = s2
0z − s2

1 + As0 + C2 +BD.

This is not linear, and so not properly accounted for by the construction in
terms of maps between complexes. However, the Pfaffian syzygies in (9.10)
express each of x1, x2, y1, y2 times Pf23.45 as a combination of the linear rela-
tions (9.9).

The same must hold for all n: there is a single quadratic relation Q that
expresses s2

0z−s2
1 as an element of OX +OXs0 +OXs1, and Pfaffians syzygies

express Q times x1, . . . , xn, y1, . . . , yn as elements of the ideal generated by
the linear equations.

Example 9.13 (Altınok) Several of the harder cases in Altınok [A] can be
settled using these ideas. Consider a K3 surface X with

D2 = −2 + 7× 1

2
+

4

5
.

This relates closely to the example of a Fano 3-fold of genus −1 and singu-
larities 7 × 1

2
plus 1

5
(1, 1, 4). Simple-minded use of the Hilbert series as in

Altınok [A1] gives P(2, 2, 3, 4, 5, 5) with coordinates y1, y2, z, t, u1, u2 as the
first guess for the generators, and the multiplied up Hilbert function

(1− t2)2(1− t3)(1− t4)(1− t5)2P (t) =

1− t7 − 2t8 − t9 − t10 + t11 + · · · − t21
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suggests that, like so many of its colleagues before it, X is a Pfaffian with
matrix having weights 

2 3 3 4
4 4 5

5 6
6

 .

However, this is nonsense: the graded ring of X necessarily has a generator in
some degree ≡ 1 mod 5 to act as a local coordinate at its singularity 1

5
(1, 4).

Alternatively, in the alleged Pfaffian model, we can assume that the two
entries m25 and m34 are the degree 5 generators, say m25 = u1 and m34 = u2,
so that any Pfaffian must meet the (u1, u2) line at the two coordinate points.
At Pu1 , the only equations involving u1 are the 3 Pfaffians containing the
terms u1m13, u1m14 and u1m34; but m13 and m14 both have degree 3, and
are thus proportional, because there is only one generator in degree 3. Thus
in these degrees, a Pfaffian cannot be quasismooth, and in fact must have at
least an elliptic singularity at Pu1 .

In this case, the thing that really happens is a codimension 4 embed-
ding X ↪→ P(2, 2, 3, 4, 5, 5, 6) with coordinates y1, y2, z, t, u1, u2, v. It passes
through the point Pu1 and has a singularity of type 1

5
(4, 1) there, with t, v

as local coordinates. Notice how the nonnormality arises (compare [CPR],
3.4 for local eigencoordinates and their multiplicities on the blown up lo-
cus): the local eigencoordinate t at Pu1 has weight 4 for the grading of the
ring, and has Z/5 weight 4, so vanishes along the blown up curve E with
multiplicity 4

5
, which is just right. But the other local eigencoordinate v has

graded weight 6 but Z/5 weight 1, and so vanishes along the blown up curve
with multiplicity only 1

5
, and so is not in the subring R1 ⊂ R of the blowup

(compare the discussion in 1.2, (v), and [CPR], Example 4.11). Thus pro-
jecting from Pu1 eliminates v together with u1. The image of the projection
is the codimension 2 c.i. Y6,10 ⊂ P(2, 2, 3, 4, 5) containing the weighted line
P(1, 4) in a nonnormal embedding.

Consider the general embedding

P(1, 4) ↪→ P(2, 2, 3, 4, 5) given by

(x, t) 7→ (y1 = x2, y2 = 0, z = x3, t, u = xt),

or equivalently, the general homogeneous homomorphism from the poly-
nomial ring k[y1, y2, z, t, u] to k[x, t]. This maps onto every monomial except
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x, and so models the P(1, 4) extracted from the 1
5
(1, 4) singularity of X. On

the other hand, the equations of the image E are

y2 = 0 and rank

(
z u y2

1 y1t
y1 t z u

)
≤ 1.

This is in a family with the equations (9.6). If Y6,10 ⊂ P(2, 2, 3, 4, 5) is a
K3 c.i. containing E, it can be unprojected by adapting the method of 9.5.
An alternative strategy is first to construct the Fano 3-fold (see below), then
take its section by the single element of degree 1.

The related Fano 3-fold can be projected in a similar way to a Fano
3-fold W6,10 ⊂ P(1, 2, 2, 3, 4, 5) containing the nonnormal P(1, 1, 4), given by
the equations

rank

(
y2 z u xy1 y2

1 y1t
x y1 t y2 z u

)
≤ 1.

This unprojects as in Example 9.11 to a Fano V ⊂ P(1, 2, 2, 3, 4, 5, 5, 6).

Example 9.14 (Altınok) Anthony Fletcher discovered the codimension 2
c.i. X12,14 ⊂ P(2, 3, 4, 5, 6, 7) with H0(−KX) = 0 at the end of his 1988 Ph.D.
thesis [Fl0], as the result of a systematic search. At the end of her thesis 10
years later [A], Selma Altınok discovered 3 more plausible candidates for
Fano 3-folds having H0(−KX) = 0, with codimension at least 4. All three
of these are very interesting; we are fairly certain that they exist, and we
intend to write them up when time allows. Here I discuss the second of her
H0(−KX) = 0 cases. It has singularities 7× 1

2
, 1

3
(1, 1, 2), 1

8
(1, 3, 5) and genus

g = −2. That is, H0(−KX) = 0, and

(−KX)3 = 2g − 2 +
∑ a(r − a)

r
= −6 + 7× 1

2
+

2

3
+

3 · 5
8

=
1

24
.

The Hilbert function calculation (see [A1]) suggests the 8 plausible generators
in degrees 2, 3, 4, 5, 6, 7, 8, 9, and, assuming these, the multiplied out Hilbert
polynomial is

1 − 2t12 − t13 − 2t14 − 2t15 − t16 + 2t19 + 2t20 + 3t21 + · · ·+ t43

Note however, that although we have specified a singularity of type 1
8
(1, 3, 5),

the ring has no global element of degree 1 to act as a local eigencoordinate
(see [CPR], 3.4). This suggests that we look for a Type II unprojection.
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If we write u, v, w for coordinates of P(1, 3, 5) and x, v, y, w, z, t for coor-
dinates of P(2, 3, 4, 5, 6, 7), the general map P(1, 3, 5) ↪→ P(2, 3, 4, 5, 6, 7) is
the embedding given by

x = u2, v = v, y = uv, w = w, z = uw, t = u7.

That is, we omit u, u3, u5 from the polynomial ring k[u, v, w], so that this
is a pullback from the D of Example 9.11. Thus, provided that the general
Y12,14 containing the image Π ∼= P(1, 3, 5) is reasonably nonsingular, the
construction of Example 9.11 applies to this to construct X.

Problem 9.15 The nonsingularity calculation is always the nasty part of
these constructions. The equations of the image Π = P(1, 3, 5) are

rank

(
y z t vx wx x4

v w x3 y z t

)
≤ 1,

that is,

y2 = v2x, yw = vz, yz = vwx, yx3 = vt, yt = vx4,
z2 = w2x, zx3 = wt, zt = wx4, t2 = x7

These are equations of degree 8, 9, 10, 10, 11, 12, 12, 13, 14. A general c.i. Y12,14

containing Π ∼= P(1, 3, 5) is given by choosing two general linear combinations
of these, and it seems likely that Y12,14 has only fairly mild singularities on Π.
You should get most of this from Bertini’s theorem. You can also try it by
computer algebra: plug in random coefficients, write out the equations and
its ideal of 2× 2 minors, and try to prove that the singularity locus defined
by this is contained in Π and consists of fairly mild singularities.

Example 9.16 (Takagi) This is an example of unprojection of Type III.
As we saw in Example 4.6, a codimension 2 c.i. X3,4 ⊂ P5(14, 22) containing
the plane Π : (x1 = y1 = y2 = 0) has defining equations f = g = 0, where

(f, g) =
(
x1 y1 y2

)a c
b1 d1

b2 d2

 = 0,

with deg a = 3, deg bi = deg c = 2 and deg di = 1. The hyperplane (x1 = 0)
intersects X in the plane Π together with a residual component F defined by

F :
{
x1 = 0 and rank

(
−y2 b1 d1

y1 b2 d2

)
≤ 1
}
. (9.17)
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I show how to unproject F by introducing two homogeneous forms s1, s2

of degree 1 on X with poles along F , related by linear equations only. I
calculate s1, s2 and the relations between them by copying the method of
Kustin and Miller [KM]. This generalisation of [KM] is based on a suggestion
of Alessio Corti, who calculated nonsingular Fano 3-folds of genus g = 6, 7
by unprojecting a cubic scroll in a Fano of genus g − 2.

The resolution of OF in the hyperplane (x1 = 0) is given by the 2 × 3
matrix in (9.17) and its minors. Set h = b1d2 − b2d1 for the 3rd equation.
One sees that in the whole space, the resolution of OF is

0← OF ← O
v←− O(−1)⊕ 2O(−3)⊕O(−4)

M←−

2O(−4)⊕ 3O(−5)
U←− 2O(−6)← 0,

where v = (x1, h, g,−f), and M,U are


h g −f ad1 − b1c ad2 − b2c
−x1 0 0 −y2 y1

0 −x1 0 b1 b2

0 0 −x1 d1 d2

 ,


−y2 y1

b1 b2

d1 d2

x1 0
0 x1

 .

Now to calculate Ext1(OF , ωX), I write out the homomorphism from the
resolution of OX to that of OF :

OX ← O g,−f←−− O(−3)⊕O(−4)

(
f
g

)
←−− O(−7) ← 0y ‖

y y
OF ← O v←−− O(−1)⊕ 2O(−3)

⊕O(−4)
M←−− 2O(−4)

⊕3O(−5)
U←− 2O(−6),

where the two downarrows are
0 0
0 0
1 0
0 1

 and


0
−a
−c
y1

y2

 .
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Thus I introduce two unprojection variables s1, s2 corresponding to the sum-
mands of 2O(−6), and write out the linear equations as

−y2 y1

b1 b2

d1 d2

x1 0
0 x1


(
s1

s2

)
=


0
−a
−c
y1

y2

 .

Remark 9.18 This type of unprojection adds two new generators s1, s2, so
could be used to go from codimension 2 to codimension 4 (with resolution
7 × 12 or smaller). However, it so happens in this case that two of the
equations eliminate y1 = s1x1 and y2 = s1x1. Thus the unprojection takes

X 99K Z2,3 :

(
a+ b1s1 + b2s2 = 0
c+ d1s1 + d2s2 = 0

)
⊂ P5(x1, . . . , x4, s1, s2). (9.19)

As in 2.3, the image is not the general Z2,3 because s1, s2 only appear in
the equations (9.19) either explicitly, or via the substitution yi 7→ x1xi. If
for example b1 = y1 + · · · and b2 = −y2 + · · · then X meets the (y1, y2) line
in two 1

2
singularities at y1 = ±y2, and the first equation of (9.19) is

x1(s1 − s2)(s1 + s2) = −a. (9.20)

Thus Z2,3 contains the (s1, s2) line L, and in general has two ordinary double
points at s1 = ±s2.

The inverse map Z2,3 99K X is a good example of how the classical idea of
linear projection has to be modified to deal with singularities (compare 1.2,
(v)). The linear projection from the (s1, s2) line L is the map defined by
x1, . . . , x4; in addition to blowing up L, this blows up the two ordinary double
points, so is not a primitive extraction in the Mori category. Instead, we
make the graded ring by imposing the nth symbolic power of the ideal IL
on |−nKZ |; this means that we eliminate s1, s2, but add y1 = x1s1 and
y2 = x1s2, which vanish twice at the general point of L by (9.20).

10 Gorenstein in codimension 4 – the elusive

structure theory

Unprojection has played the role of a substitute for a structure theory for
Gorenstein rings in codimension 4 (or 5, etc.) throughout the above. We
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have seen in many examples that it can frequently be used as a reasonably
effective way of working with graded rings in low codimension, despite the
absence of a general structure theory.

Here I want instead to discuss what we actually know about the struc-
ture theory. Most of what I say is almost obvious, but I have not seen it
written down in this form. Suppose for simplicity that the ambient space
A = SpecOA is a regular local scheme with 1

2
∈ OA that is complete (or

Spec of a polynomial ring localised at the origin, with everything graded in
positive degrees). Let X ⊂ A be a Gorenstein subscheme of codimension
c = 2, 3, 4, 5, 6, etc., and write

0 ← L0 ← L1 ← L2 ← · · ·
‖ ‖ ‖

OX ← OA
fi←−− (k + 1)OA

M←−− mOA ← · · ·
(10.1)

for a free resolution. That is, (f1, . . . , fk+1) is a minimal set of defining
equations, and (f1, . . . , fk+1)M = 0 the complete set of m first syzygies. For
example, if codimX = 4 then m = 2k, and we have a (k+ 1)× 2k resolution
for some k = 3, 5, 6, 7, . . .

The point to notice is that, somewhat paradoxically, the matrix M of first
syzygies always has more structure and contains more information than the
equations fi themselves. In what follows, please bear in mind the case c = 3:
then the Buchsbaum–Eisenbud theorem says that k is even, say k = 2n, M
is a skew (2n+ 1)× (2n+ 1) matrix, and its 2n× 2n minors are the products
Pfi Pfj of the diagonal 2n×2n Pfaffians fi = Pfi, and thus they generate the
square of the ideal IX . A rough qualitative deduction from this is that when
the rank of M drops, it drops by c − 1 all at one go, and its submaximal
minors vanish c− 1 times on this locus. This holds generally.

Theorem 10.2 (i) rankMP = k at every (scheme theoretic) point P ∈
A \X.

Assume in addition that X is locally c.i. at every generic point of X
(this certainly holds if X is reduced). Then

(ii) MP has rank ≤ k + 1− c at every point P ∈ X (where c = codimX),
with equality where X is l.c.i.
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(iii) The ideal sheaf generated by the k × k minors of M restricted to the
l.c.i. locus equals IXc−1, the (c − 1)st power of IX . Thus every k × k
minor of M vanishes c − 1 times at every generic point of X, so that
the ideal they generate is contained in the symbolic power IX

[c−1].

Problem 10.3 (1) Is the ideal of k×k minors equal to IX
c−1 in commonly

occurring examples? This always holds in codimension 3. For Goren-
stein codimension 4, one checks that the ideal of submaximal minors
of M is the cube of IX in several of the more popular cases. It would
be fairly simple to try out a few more cases by computer algebra.

(2) Does the analog of the conclusion (iii) holds without the l.c.i. assump-
tion, for example, when X ⊂ A is a badly nonreduced cluster (that is,
0-dimensional scheme).

Proof Almost obvious. Localised at P /∈ X, the ideal sheaf IX = OA, so
that each homomorphism in (10.1) splits locally as projection and inclusion
of direct summands.

Next, localised at any point P ∈ X at which X is l.c.i., the ideal sheaf IX
is generated locally by c equations x1, . . . , xc, with the remaining k + 1 − c
equations expressed as local OA-linear combinations of the xi. This means
that the matrix of syzygies has a square block of size k + 1 − c with unit
determinant:

M ∼



unit block of

size k + 1− c
0 0

0
Koszul matrix of

x1, . . . , xc
0


.

Now the set of (c− 1)× (c− 1) minors of a Koszul matrix of a sequence
x1, . . . , xc is identically equal to {0} union the set of monomials of degree
c− 1 in x1, . . . , xc. For example, if c = 4, the Koszul matrix is

0 x3 −x2 −x4 0 0

−x3 0 x1 0 −x4 0

x2 −x1 0 0 0 −x4

0 0 0 x1 x2 x3

 ;
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and obviously, every 3 × 3 minor of this is zero or a cubic monomial, and
every cubic monomial appears. �

10.4 Codimension 4

In this case, the whole resolution (10.1) is of the form

0 ← L0
f←−− L1

M←−− L2 ← L3 ← L4 ← 0

‖ ‖ ‖

L∨2
M∨←−−− L∨1

f∨←−− L∨0

with M a (k+ 1)× 2k matrix. The Buchsbaum–Eisenbud symmetriser trick
gives the identifications L4 = L∨0 and L3 = L∨1 , and gives a symmetric perfect
pairing L2 × L2 → L4

∼= OA making the identifications commute.

Lemma 10.5 Under the stated conditions, L2 together with its perfect pair-
ing is isomorphic to 2kOA with the standard quadratic form ( 0 I

I 0 ).

Proof I can find an isotropic vector in L2 by successively lifting from the
residue field A/m to A/mn, as in the proof of Hensel’s lemma. That is why I
assumed A is complete. If v ∈ L2 is a solution mod mn, using the fact that the
pairing is nondegenerate, I can edit it to v+v′ with v′ ∈ L2⊗(mn/mn+1) which
is a solution5 mod mn+1. Then just copy the usual reduction of quadratic
forms in linear algebra. �

Thus the dual map L3 → L2 is given by ( 0 I
I 0 ) tM , and the condition for

the composite L3 → L2 → L1 to be zero (to give a complex) is then simply
that

M ( 0 I
I 0 ) tM = 0.

In other words, the rows of M are k + 1 vectors in L2 over OA that
are isotropic with respect to the standard quadratic form. Recall that an
isotropic linear subspace of a nondegenerate quadratic form has dimension
≤ k, so that, any k+1 vectors spanning an isotropic subspace must be linearly
dependent. If I have a matrix M over an ambient space A representing a
family of k+ 1 vectors that span an isotropic subspace, and if M has generic

5This “proof” needs expanding.
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rank k, the linear relation holding between the vectors is generically unique,
so that cokerM is a rank 1 sheaf over A.

Theorem 10.6 (“Structure theorem”) Under the above assumptions:

(iv) For given k ≥ 3, write

V =
{
M
∣∣∣M (

0 I
I 0

)
tM = 0

}
⊂ MatC(k + 1, 2k).

Thus V is the universal family of complexes L1 ← L2 ← L3 with the
Gorenstein symmetry described under 10.4.

If X ⊂ A is a codimension 4 Gorenstein subscheme in a regular local
ambient space A over C, with (k + 1)× 2k resolution, then the middle
terms of the complex resolving OX (plus choices of bases) defines a
morphism ϕ : A → V with the properties that ϕ(P ) is a matrix of
rank k for P in codimension ≤ 3, the complex pulled back to A is exact
at L2, and (cokerM)∗∗ is a locally free sheaf of rank 1.

(v) The converse of (iv) holds.

Proof There is almost nothing to prove. Given X ⊂ A, it has a resolution,
so a map to V with the stated properties. For the converse, everything is
contained in the assumptions, that is, the several conclusions stated in (iv):
given a map to V , I get a complex L1 ← L2 ← L3 with the Buchsbaum–
Eisenbud symmetry property, and the rest of the complex L0 ← L1 comes
for free from the inclusion cokerM ↪→ (cokerM)∗∗, using the statements
in (iv). This inclusion defines an ideal sheaf defining a subscheme X with
support in codimension ≥ 4, and the complex is exact of length 4, hence X
is a Gorenstein subscheme of codimension 4. �

Remark 10.7 The theorem says that a Gorenstein subscheme X ⊂ A in
codimension 4 with (k+1)×2k resolution is the degeneracy locus of a family
M of k+1 vectors spanning an isotropic subspace, with the family satisfying
suitable “generality” assumptions. In other words, all you have to do is
“something generic in linear algebra”. The theorem is thus a formal analog
of the Buchsbaum–Eisenbud theorem in codimension 3. The rank, exactness
and locally free assumptions can all be expressed in terms of the height (or
codimension) of ideals of minors of M .
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The theorem is unfortunately completely useless in practice, since it does
not prescribe any way of actually filling in the matrix M over an ambient
space A. For example, a initial result on Gorenstein codimension 4 is that
there are no ideals with 5 as their minimum number of generators. I do not
know how to derive even this elementary result from my so-called structure
theorem. Part of the difficulty is that we are talking not just about the
universal variety V , but about maps M from A to V .

Example 10.8 (Dicks’ format) Dicks [D] proposes a universal “rolling
factors” format for Gorenstein varieties with 9× 16 resolution (see also Reid
[R2], Section 5). For this, consider some regular ambient space A in which

4∑
i=1

αizi ≡
4∑
i=1

βiyi (10.9)

holds “as an identity”. He writes down the system of 9 equations

rank

(
y0 y1 y2 y3

z0 z1 z2 z3

)
and

∑4
i=1 αiyi = 0∑4
i=1 αizi ≡

∑4
i=1 βiyi = 0∑4

i=1 βizi = 0

The last 3 equations are in rolling factors format , meaning that we go from
the first to the second and from the second to the third by substituting yi 7→ zi
in one factor. Note that Dicks’ identity (10.9) is precisely the condition for
the 9 rows mi of the syzygy matrix

y2 −z2 −y3 z3 . . . . . . . . β0 α0 −β1 −α1

−y1 z1 . . y3 −z3 . . . . β0 α0 . . −β2 −α2

. . y1 −z1 −y2 z2 . . β0 α0 . . . . −β3 −α3

y0 −z0 . . . . −y3 z3 . . β1 α1 −β2 −α2 . .

. . −y0 z0 . . y2 −z2 β1 α1 . . −β3 −α3 . .

. . . . y0 −z0 −y1 z1 β2 α2 −β3 −α3 . . . .

. . . . . . . . . z3 . z2 . z1 . z0

. . . . . . . . z3 −y3 z2 −y2 z1 −y1 z0 −y0

. . . . . . . . −y3 . −y2 . −y1 . −y0 .


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to span an isotropic subspace of the standard quadratic form ( 0 I
I 0 ). In fact,

all the scalar products mi · mj cancel out by trivial skewsymmetry, except
that v1 · v6, v2 · v5, v3 · v4 work out to be plus or minus

∑
αizi −

∑
βiyi.

To achieve the condition (10.9), one way is to take a 4 × 4 symmetric
matrix (aij) and set αi =

∑
aijyj and βi =

∑
aijzj. This system of equations

includes the case of a hypersurface Xd,d+2 ⊂ P
1 × P3 ⊂ P

7 in the Segre
embedding: indeed, take coordinates t1, t2 in P1 and x0, . . . , x3 coordinates
in P3. The equation of Xd,d+2 is given by a bihomogeneous form

h ∈ Sd(t1, t2)⊗ Sd+2(x0, . . . , x3).

I can write h (in many ways) as a quadratic form h =
∑
aijxixj in the

xi, with coefficients aij that are bihomogeneous of degree (d, d) in t1, t2 and
x0, . . . , x3. Then the substitution t1xi 7→ yi, t2xi 7→ zi expresses

f0 = t21h =
∑

aijyiyj, f1 = t1t2h =
∑

aijyizj, f2 = t22h =
∑

aijzizj.

Note that specialising
∑
aijxixj 7→ x0x2 − x1x3 exhibits these equations as

a flat deformation of the affine cone over P1 × P1 × P1.
The “identity” (10.9) in whatever ring the αi, βi, yi, zi have their values

illustrates the problem implicit in Theorem 10.6 of how to map a regular
ambient space A into the singular variety V that is the universal space of
complexes. When yi, zi are not independent, there are of course many other
ways of satisfying (10.9), and this format includes other anticanonical divisors
in scrolls. Compare Stevens [S].

11 Gm covers of Mori flips of Type A

11.1 Introduction

This section is a brief outline of a joint paper in preparation with Gavin
Brown [BR], that develops the ideas of my old preprint and notes “What
is a flip?” [wF] and Brown’s thesis [B], [B1]. The idea is to study a Mori
flip X ↘ Y ↙ X+ in terms of the Z-graded ring R(Y,KY ) arising as the
canonical and anticanonical algebra of the two sides of the flip. The Z-graded
ring R = R(Y,KY ), or the corresponding affine variety SpecR together with
the Gm action coming from the Z-grading is called the Gm cover of the flip
(I write Gm = C∗ for the multiplicative group).
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If we assume that the general elephant S ∈ |−KY | of the flip is a Du
Val singularity, the Gm cover of S is an affine Gorenstein 3-fold that we
can take as a known object. For a Type A flip it is a toric variety. The
problem translates into how to deform this to a 4-fold whose Gm quotient
has only terminal singularities. We carry out this deformation by introducing
a class of “double-headed toric varieties” VABLM (the terminology is currently
under construction – we apologise to the reader for any discomfort and hope
to resume normal service shortly). These are affine 6-folds, determined by
combinatorics and serial unprojection, that have a 4-parameter family of Gm

actions, and that play the role of “key varieties” containing the Gm covers
of Mori flips of Type A. (Here I only give examples, but we conjecture that
all Mori flips of Type A can be covered in this way.) The main point of this
section is to introduce the varieties VABLM as examples of serial unprojection,
and I really only discuss the basic setup and our main results as far as required
to make this point.

Although our work could in principle be presented as a logically self-
contained treatment of flips (modulo assumptions or conjectures on the exis-
tence of flips, and the nature of their general elephant), it is more reasonable
to see it as an attempt to get to grips with and reinterpret a brilliant calcu-
lation of Mori [M] dating back to the early 1980s, describing flips of the Mori
category whose general elephant is an An singularity. Mori has explained this
calculation to me on several occasions since 1986, and it provides motivation,
logical foundation and a frequently invoked sanity check for our work.

Definition 11.1.1 I adopt the following narrow definition of 3-fold flips,
that is sufficient for present purposes: a flipping contraction is a projective
morphism f : X → Y , where X is a quasiprojective 3-fold with Q-factorial
terminal singularities, f contracts a single irreducible curve C ⊂ X to a point
P ∈ Y and is an isomorphism on the complement, and −KX is relatively
ample for f . A Mori flip is a diagram

X X+

↘ ↙
Y

(11.1.1)

where X → Y is a flipping contraction and X+ → Y a projective morphism
from a quasiprojective 3-fold with Q-factorial terminal singularities extract-
ing a single curve C+ with KX+ relatively ample on X+. We assume that
Y = SpecR0 is affine, or even a local analytic neighbourhood of P ∈ Y .
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For any nonzero element t ∈ H0(Y,OY (−KY )), the divisor div t = S ⊂ Y
is a Gorenstein surface, called an elephant of Y . It is a theorem of Mori and
Kollár and Mori that for a general choice of t the elephant S is a Du Val
singularity. It follows from this that t defines a diagram of subvarieties

S− S+

↘ ↙
S

⊂
X X+

↘ ↙
Y

(11.1.2)

with S− ⊂ X and S+ ⊂ X+ also the divisor of t, and S− → S and S+ → S
crepant partial resolutions of the Du Val singularity of S.

The flip (11.1.1) is of Type A if its general elephant S ⊂ Y is a Du Val
singularity of Type A.

For simplicity in setting up the graded ring, assume first that KX is a
generator of the class group of X (the more general case is discussed in
Remark 11.2.2). Define

Rn = H0(Y,OY (nKY )) =

{
H0(X,nKX) if n ≤ 0,

H0(X+, nKX+) if n ≥ 0,
(11.1.3)

(the multiplication is most easily defined at the level of OY (nKY )) and set

R =
⊕
n∈Z

Rn, R− =
⊕
n≤0

Rn, and R+ =
⊕
n≥0

Rn.

Then R is a Z-graded Gorenstein ring. Both R− and R+ are finitely generated
rings, and according to [wF], the flip diagram (11.1.1) is the Z-graded ProjR,
meaning that X = ProjY R−, Y = SpecR0 and X+ = ProjY R+. The
grading of R defines an action of Gm on the corresponding affine variety
SpecR, and the three varieties Y , X andX+ are different GIT interpretations
of the quotient (SpecR)/Gm under different notions of “stability”. The case
when R is a hypersurface treated by Gavin Brown [B], [B1] already leads to
examples of flips with an interesting diversity of behaviour.

11.2 Mori’s codimension 2 example

Consider the codimension 2 c.i. V ⊂ C6 defined by

x1y0 = xe0u
α + tµe and x0y1 = uβ + xd1t

λd, (11.2.1)
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where x0, x1, y0, y1, t, u are coordinates on C6 and d, e, α, β, λ, µ are given
positive integers, with λ, µ coprime. Write

R = C[V ] = C[x0, x1, y0, y1, t, u]/(equations (11.2.1)).

for the coordinate ring of V . Specify a monomial Gm action on C6 and on V
by setting

u 7→ u
t 7→ g−1t

and

x1 7→ gλx1

y1 7→ gµy1

x0 7→ g−µx0

y0 7→ g−λ−µey0

for g ∈ Gm.

This makes R into a Z-graded ring, assigning weights

wtu = 0, wt t = −1,

wtx1 = λ, wt y1 = µ, wtx0 = −µ, wt y0 = −λ− µe.
(11.2.2)

In fact, since the two equations (11.2.1) are assumed to be homogeneous, the
given weights of u and t determine everything up to a finite torsion ambiguity
(this is discussed further in Remark 11.2.2).

We can now calculate the Z-graded ProjR and obtain a flip diagram
(11.1.1): R− is clearly generated over R0 by the generators of negative weight
x0, y0 and t, and a pure power of t appears in the first equation of (11.2.1),
so that X = ProjY R− is covered by two affine pieces:

Xx0 6=0 =

(
x1y0 = uα + tµe

y1 = function

) / 1

µ
(λ,−λ, 0,−1),

Xy0 6=0 =

(
x1 = xe0u

α + tµe

x0y1 = uβ + (xe0u
α + tµe)dtλd

) / 1

λ+ µe
(−µ, µ, 0,−1).

The fractional notation 1
µ
(λ,−λ, 0,−1) means the cyclic group Z/µ acting

on x1, y0, u, t by the characters ελ, ε−λ, 1, ε−1, where ε = exp 2πi
µ

. This is the
standard way of choosing an affine cover and inhomogeneous coordinates on
each affine piece of a Gm quotient, just as for w.p.s.s (compare Fletcher [Fl],
5.3). Both of these are standard terminal singularities of Type A, so that
ProjR is a Mori flip of Type A.
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Remark 11.2.1 One observes in this and other examples that uα, uβ, tλ, tµ

appear as indivisible tokens. It thus simplifies the notation to replace them
by independent variables A,B,L,M , giving rise to the codimension 2 c.i.
VABLM ⊂ C8(x0, x1, y0, y1, A,B, L,M) defined by

x1y0 = xe0A+M and x0y1 = B + xd1L. (11.2.3)

Thus VABLM is a 6-fold; in fact, VABLM ∼= C
6, because we can just solve for

M and B. We can view VABLM as a “key variety”, and (11.2.1) as obtained
by pulling back the key variety by a morphism A = uα, B = uβ, L = tλe,
M = tµd.

In the general notation for the two-headed toric 6-folds VABLM introduced
below, the equations (11.2.3) are encoded in the pair of rectangles

A e •

0 •

x0 y0

x1 y1

• 0 B

• −e

and
0 •

L − d •

x0 y0

x1 y1

• d

• 0 M

Remark 11.2.2 In setting up the graded ring over a flip in (11.1.3), mainly
for simplicity of notation, I assumed that KX is a generator of the class
group of X. More generally, KX may be divisible in ClX, or ClX may have
torsion, so that KX is only a Q-generator. As mentioned in Definition 1.1,
in this case we just use the slightly bigger ring

R(Y ) =
⊕

D∈ClX

H0(Y,OY (D)),

which is graded by ClX ∼= Z⊕ torsion.
The more general case is conveniently illustrated in Mori’s Example 11.2.

Choose positive integers d, e, α, β, λ, µ with λ, µ coprime, and a common fac-
tor δ | hcf(d, e). Define a codimension 2 c.i. V = SpecR ⊂ C6, replacing
(11.2.1) by

x1y0 = xe0u
α + tµe/δ and x0y1 = uβ + xd1t

λd/δ.

Write µn for the cyclic group of nth roots of 1. The more general monomial
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action of Gm × µde on C6 and on V is given by6

u 7→ u
t 7→ g−δt

and

x1 7→ gλε1x1

y1 7→ gµε2y1

x0 7→ g−µε2
−1x0

y0 7→ g−λ−µeε1
−1y0

for g ∈ Gm and ε1 ∈ µd, ε2 ∈ µe. This just takes into account the finite
ambiguity in the weights mentioned in (11.2.2).

The key variety VABLM itself is not affected by the generalisation, only
the pullback and the choice of the group action. For this reason I suppress
the generalisation in most of what follows (it is easily restored).

11.3 One long rectangle

As explained in (11.1.2), the general elephant of a flip X ↘ Y ↙ X+ of
Type A is a diagram of subvarieties S− ↘ S ↙ S+, with S a Du Val
singularity of Type An, and the two sides S− ↘ S ↙ S+ crepant partial
resolutions extracting at most one curve. (The general elephant S− ⊂ X
need not contain the flipping curve, in which case S− → S is an isomorphism.
Compare Remark 11.5.1.)

The Gm cover of the elephant S− ↘ S ↙ S+ is a Gorenstein affine
toric 3-fold Vu = Spec k[σ ∩ M ] whose cone of monomials σ ⊂ MR is the
quadrilateral cone of Figure 11.3.1. Here the xi, yj and u are monomial
generators, with u the unique internal generator. (The dualising sheaf of an
affine toric variety V is isomorphic to the ideal of internal monomials, so V
is Gorenstein if and only this ideal is principal.) In Figure 11.3.1, the tags
ai, bj down the sides represent tag equations

xi−1xi+1 = xaii with ai ≥ 2 for i = 1, . . . , k − 1,

yj−1yj+1 = y
bj
j with bj ≥ 2 for j = 1, . . . , l − 1.

(11.3.1)

The top two corners are annotated by powers of u, which modify their tag
equations to

x1y0 = xa0
0 u

α and x0y1 = yb00 u
β with α, β ≥ 0. (11.3.2)

6This treatment is too hurried. I have notes and a letter from Mori somewhere doing it
properly. I should choose n = lcm(d, e), and ε1 ∈ µn, ε2 ∈ µn in a coherent way in order
that the action of Gm × µn has isolated fixed points and corresponds to the dual of the
class group of Y .

55



uα
a0 • x0

a1 • x1

... • ...

ak−1 • xk−1

u?
ak •

xk

y0
• b0

uβ

y1 • b1

... • ...

yl−1 • bl−1

yl • bl
u?

Figure 11.3.1: A Gorenstein cone σ in M = Z
3. The origin is behind the

page; the monomials xi, yj and the internal generator u are not coplanar.

The monomials down either side of the rectangle (11.3.1) form the Newton
polygon of a surface cyclic quotient singularity, and are thus governed by
standard rules in terms of the Hirzebruch continued fraction [a1, . . . , ak−1]
and [b1, . . . , bl−1]. The restriction ai, bj ≥ 2 comes from this. All this follows
easily because any two consecutive monomials vi, vi+1 around the perimeter
of (11.3.1) together with the internal generator u form a Z-basis of the lattice
of monomials M .

On the other hand, the tags at the world’s four corners a0, ak, bl, b0 cannot
all be ≥ 2. In fact, each tag equation corresponds to a change of basis vi

vi+1

u

 =

 0 1 0
−1 ai ?
0 0 1

vi−1

vi
u


in M , where ? is the annotation u? at the corners. Circumnavigating (11.3.1)
by successive changes of bases gives

∏ 0 1 0
−1 ai ?
0 0 1

 = id3, in particular
∏(

0 1
−1 ai

)
= id2. (11.3.3)

The tag equations so far (11.3.1–11.3.2) determine each xi and yj as a Laurent
monomial in x0, y0, u. Writing out these Laurent monomials allows us to
calculate all the equations between the generators x0, . . . , xk, y0, . . . , yl, u,
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and in particular the powers of u annotating the tag equations at the bottom
corners. Write

k[Vu] = k[σ ∩M ] = k[x0, . . . , xk, y0, . . . , yl, u]

for the ring generated by these monomials, the affine coordinate ring of the
Gorenstein toric 3-fold Vu.

uα
a0 •

a1 •

... •

d •

u?
0 •

• 1
uβ

• b1

• ...

• bl−1

• −d− 1
u?

Figure 11.3.2: Main case: the corner tags have signs a0 > 0, b0 = 1, ak = 0
and bl < 0, and the side tags form complementary continued fractions.

Convexity considerations and combinatorics of concatenated continued
fractions (compare Craw and Reid [CR], Section 2) reduce us to just a few
cases. The main one is the rectangle of Figure 11.3.2 with tags forming
complementary continued fractions

[a0, a1, . . . , ak−2] =
n

q
and [b1, b2, . . . , bl−1] =

n

n− q
(11.3.4)

for some n and q. This is a well known way of fixing up identities such as
the second of (11.3.3); see for example [CR], Figure 4 or [Rie], §3, pp. 220–3.
However, as Jan Stevens taught us, it is also a way of deconstructing the
continued fraction, successively eliminating the tag 1 and decrementing its
two neighbours. For example, take n = 11 and q = 7; then 11

7
= [2, 3, 2, 2]

and 11
4

= [3, 4]. Concatenating the two continued fractions with a 1 gives
[2, 3, 2, 2, 1, 4, 3], that deconstructs by replacing 2, 1, 4 by 1, 3:

→ [2, 3, 2, 1, 3, 3]→ [2, 3, 1, 2, 3]→ [2, 2, 1, 3]→ [2, 1, 2]→ [1, 1] = 0.

Compare [CR], §2. My main point is:
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uα+β

a0 − 1
aaaaaaaaaa

•

a1 • • b1 − 1
uβ

Figure 11.3.3: Projecting from y0

the same calculation gives successive Gorenstein projections of
the toric coordinate ring k[Vu] down to a codimension 2 complete
intersection.

In fact, if y0 has the tag b0 = 1 then also x0, y1 and u base M . This is
basically the same reason that allowed us to assume that ai, bj ≥ 2 down the
sides (if ai = 1, I can eliminate xi as a generator), but here eliminating y0

cuts down the cone σ, so makes a birational change to Vu.
To see the effect of this change in more detail, note that because y0 has

the tag b0 = 1, it occurs linearly in 3 tag equations:

x1y0 = x0u
α, y0y2 = yb11 and x0y1 = y0u

β

(and also in long equations y0xi for i ≥ 2 and y0yj for j ≥ 3, but we do not
need these). To eliminate y0, I multiply the first two equations by uβ and
substitute y0u

β = x0y1 in each, then cancel a power of x0 or y1 respectively,
to get the new tag equations

x1y1 = xa0−1
0 uα+β and x0y2 = yb1−1

1 uβ.

In words, chop off the top right-hand corner of σ, giving the new Goren-
stein quadrilateral cone σ′ with top corners given as in Figure 11.3.3. Note
that the two monomials adjacent to the recently executed y0 have their tags
decremented by 1, but inherit a factor of uβ in their annotation.

Under the current assumption that [a0, a1, . . . , ak−2] and [b1, b2, . . . , bl−1]
are complementary continued fractions, one of a0−1 and b1−1 is again equal
to 1, allowing me to eliminate x0 or y1 by another Gorenstein projection, and
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so on. The serial projection ends with a rectangle

up
d− 1 •

0 •

• 0
uq

• −(d− 1)

where the exponents p, q of u are linear combinations of α and β determined
by cumulatively multiplying the annotations. This rectangle represents the
codimension 2 complete intersection

xk−1yl = uq, xkyl−1 = xd−1
k−1u

p.

11.4 A pair of long rectangles

Example 11.4.1 I illustrate in a simple codimension 4 case how to deform
a Gorenstein toric variety by projection and unprojection to obtain the Gm

cover of a Mori flip. The quadrilateral cone of monomials and its tag equa-
tions are as follows:

uα
1 •

x0

2 • x1

d • x2

u2α+β
0 • x3

y0
• 2

uβ

y1 • −(d− 1)

=⇒

x1y0 = x0u
α x0y1 = y2

0u
β

x0x2 = x2
1

x1x3 = xd2

x2y1 = u2α+β x3y0 = xd−1
2 uα

for some α > 0 and β ≥ 0.

Remark 11.4.2 The bottom right equation x3y0 = xd−1
2 uα is nonstandard:

because the tag b1 = −(d− 1) is negative, the regular tag equation would be

x3y0 = y
−(d−1)
1 u?, (11.4.1)

which is not a polynomial equation. I therefore replace y−1
1 by x2u

? using the
bottom left equation, getting the modified tag equation x3y0 = xd−1

2 u?. This
replaces the negative exponent of the corner monomial y1 with a positive
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exponent of the monomial x2 opposite the corner . We certainly pay for this
substitution when we do syzygies, although I do not know how to express
this sentiment mathematically.

Note also that (11.4.1), rewritten as x3y0y
d−1
1 = u?, is a general feature

of the monomial rectangle (11.3.1) that may at first sight seem somewhat
unexpected: the internal monomial u chooses to live right in one corner,
namely in the convex hull of yl, xk, yl−1.

I deform this ring by guessing the two equations at the top:

x1y0 = x0u
α + t2λ+µ and x0y1 = y2

0u
β + x1t

λ (11.4.2)

where t is an elephantine deformation parameter (t = 0 will be the anti-
canonical section for the Z-grading). There is nothing very special about the
exponents of t: they are a priori arbitrary coprime integers satisfying some
inequalities and possibly divisibility conditions; the point of writing them in
this form is to make the bottom two equations and the Z-grading pretty.

Now (11.4.2) is a codimension 2 c.i. that contains the codimension 3 c.i.
(x0, y0, t

λ). It thus unprojects by Theorem 5.2. The unprojection variable
x2 satisfies 3 new equations given by a game of Pfaffians similar to that of
Example 4.1:

y1 −x1 −y0u
β x2

y0 −tλ −uα

x0 −tλ+µ

x1

 =⇒


x0x2 = x2

1 + y0u
βtλ+µ

x2y0 = x1u
α + y1t

λ+µ

x1y1 = y0u
α+β + x2t

λ

These 5 equations define a Gorenstein codimension 3 variety that contains
the codimension 4 c.i. (x0, x1, y0, t

λ). This again unprojects by Theorem 5.2,
adjoining x3. In fact, it is a Jerry unprojection (see Example 6.8): rows and
columns Nos. 3 and 4 of the Pfaffian matrix (all entries except for the 125
triangle) are in the ideal (x0, x1, y0, t

λ).
As in Example 6.8, there is an easy trick to derive x3 as a rational function,

namely elimination of x0 (a projection). Notice that x0 appears linearly in 3
of our 5 Pfaffians; the two not involving x0 are the above equations

x2y0 = x1u
α + y1t

λ+µ and x1y1 = y0u
α+β + x2t

λ.

These define a codimension 2 c.i. that contains two separate codimension 3
c.i.s, namely the ideal of denominators (x2, y1, u

α) of x0 and the new one
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(x1, y0, t
λ) that is the ideal of denominators of x3. I indulge myself in just

one final round of Pfaffians:
y1 −x2 −uα+β x3

y0 −tλ −uα

x1 −y1t
µ

x2

 =⇒


x1x3 = x2

2 + y1u
α+βtµ

x3y0 = x2u
α + y2

1t
µ

x2y1 = u2α+β + x3t
λ

The first of these equations proves that if we make a deformation of
the ring in Example 11.4.1, starting from the top two equations (11.4.2)
and adopting the above style of unprojection, then necessarily d = 2. As
in Example 6.8, we do not really have a good way of deriving the “long
equation” for x0x3. As far as we know, it is not contained in a Pfaffian in
any useful way. Messing around with explicit syzygies eventually gives

x0x3 = x1x2 + y0y1u
βtµ + uα+βtλ+µ. (11.4.3)

There is a unique way of putting a Z-grading on this set of equations with
wtu = 0, wt t = −1, provided that 3 | µ. Namely,

wtx3 = λ > 0, wt y1 = µ/3 > 0, and

wtx2 = −µ/3, wtx1 = −λ− 2µ/3,

wtx0 = −2λ− µ, wt y0 = −λ− µ/3.

The Gm quotient is the flip diagram X ↘ Y ↙ X+, where

X = ProjR− =

(
x1y0 = x0u

α + t2λ+µ

x0y1 = y2
0u

β + x1t
λ

)/
Gm

is covered by the two affine pieces x0 = 1 and y0 = 1 and

X+ = ProjR+ =

(
x3y0 = x2u

α + y2
1t
µ

x2y1 = u2α+β + x3t
λ

)/
Gm

is covered by the two affine pieces x3 = 1 and y1 = 1.
This is a Mori flip of Type A, with t = 0 the general elephant, and u = 0

the general hyperplane section. For example, the y0 = 1 affine piece of the
left-hand side X is the hyperquotient singularity(

x1 = x0u
α + t2λ+µ

x0y1 = uβ + (x0u
α + t2λ+µ)tλ

)/ 1

wt y0

(wtx0,wt y1, 0, 1).
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If we look up the weights, we see that this is

(x0y1 = uβ + · · ·+ t3r)
/1

r
(−a, a, 0, 1), with r = λ− µ

3
, a =

µ

3
,

which is a standard Type A terminal singularity.

11.5 Conclusions from this example

The rectangle of Example 11.4.1 defines an affine Gorenstein toric 3-fold Vu;
I have shown how to deform it to a 4-fold Vu,t with a Gm action such that
Vu,t has isolated singularities modulo the action and isolated fixed points.
Requiring isolated fixed points means that the corner equations contain pure
powers of t (possibly after a substitution). The deformation style adopted
keeps track of the powers of t by introducing the right-hand rectangle of

A
1 •

2 •

d •

A2B
0 •

• 2
B

• −(d− 1)

and

L2M
0 •

2 •

2 •

L
1 •

• −1

• 2
M

Figure 11.5.1: The pair of long rectangles for Example 11.4.1

Figure 11.5.1, having different top and bottom corner tags and annotations,
but identical torso. This imposes d = 2 on the original rectangle.

As in Remark 11.2.1, the final expression only contains u and t within
the tokens uα, uβ, tλ, tµ. Replacing

uα 7→ A, uβ 7→ B, tλ 7→ L, tµ 7→M

in the equations (say, taking the top two equations to x1y0 = x0A + L2M
and x0y1 = y2

0B + x1L) gives an affine Gorenstein 6-fold VABLM with a reg-
ular sequence A,B,L,M ∈ k[VA,B,L,M ] such that the codimension 2 sections
VAB : (L = M = 0) and VLM : (A = B = 0) are the toric 4-folds with
respective cones of monomials documented by the long rectangles of Fig-
ure 11.5.1. There is a 4-dimensional torus G4

m with a monomial action on
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VABLM , namely, the subgroup of the diagonal group G8
m acting on C8 with

coordinates x0, x1, y0, y1, A,B, L,M that leaves semi-invariant the top two
equations x1y0 = x0A+ L2M and x0y1 = y2

0B + x1L.

Remark 11.5.1 At the start of Example 11.4.1, the assumption on β was
only that β ≥ 0. If β > 0 then P1(x0 : y0) is contained in the elephant and
the point Py0 = (0 : 1) ∈ Vu is a terminal singularity of index (−wt y0). If
β = 0, the top right equation contains a pure power of y0, so that Py0 /∈ Vu.
In this case, S− → S of (11.1.2) is an isomorphism. This is Mori’s distinction
between cases kA2 and kA1, having respectively two and one singularities of
index > 1 on S. In this case the angle at y0 in the left-hand long rectangle
straightens out, so that the elephant is represented by a “long triangle”.

11.6 Pairs of long rectangles and serial unprojection
via pentagrams

The combinatorial classification of pairs of long rectangles is solved in Brown
and Reid [BR]. We obtain a number of families labelled by Roman numerals:
the case of Figure 11.5.1 is currently called III(1, 0). Each pair gives rise to
a two-headed toric 6-fold VABLM by the serial unprojection method outlined
below, with the properties sketched in 11.5. We still have some work to do to
identify our treatment with Mori’s calculation [M], but the pairs II(d, e, k) of
Figure 11.6.1 seem to be most closely related to it. The figure illustrates

A
d •
e •
d •
...

d •
0 •

• 1
B

≡ 2× (d− 2)
• 3
≡ 2× (e− 3)
• 3

...
≡ 2× (e− 2)
• −(d− 1)

and

0 •
•
•

...

•

L
e •

• −(e− 1)
≡
•
≡
•

...
≡
• 1

M

Figure 11.6.1: The pair of long rectangles II(d, e, k).

the case k even and d, e ≥ 4. The two rectangles have the same torso
tags (excluding tops and tails): k terms e, d, e, d, . . . , d down the left and
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k blocks 2, . . . , 2, 3 of d− 2 and e− 2 terms each down the right, giving rise
to complementary continued fractions

[e, d, . . . ] =
n

q
and [2, . . . , 2, 3, 2, . . . ] =

n

n− q

as in (11.3.4).

Remark 11.6.1 (1) The two rectangles correspond to the elephant t = 0
and the general section u = 0 of a flip. Mori has proved that if the
elephant is of Type A then the section is a cyclic quotient singularity,
this is where VABLM gets its two toric heads from.

(2) We would be interested to know if the VABLM have already been studied
elsewhere. We hope that they have other descriptions; it is conceivable
that they are quasihomogeneous varieties for some slightly bigger group
than G4

m, for example, something with a unipotent radical such as
two copies of

(
Gm Ga
0 Gm

)
. All those Pfaffian equations of VABLM that

become binomial (toric) on cutting to VAB and VLM might to have
something to do with extending toric varieties to quasihomogeneous
varieties modelled on GL(2).

(3) It should be reasonably straightforward to extend much of the appa-
ratus of toric geometry to deal with the VABLM . Invariant divisors,
coherent cohomology, Betti cohomology and Hodge theory, derived cat-
egories, Gromov–Witten invariants, mirror partners. . . Get on with it,
this isn’t a research grant application!

(4) It seems likely that the two-headed toric varieties VABLM can also act
as key varieties in other contexts. For example, we expect that they can
be given nice positive gradings, and so act as key varieties for projective
varieties coming from serial unprojection constructions, as illustrated
in Examples 7.1–7.6. This could extend the range of our artillery for
attacking surfaces and 3-folds, bringing other interesting targets within
range.

Example 11.6.2 I illustrate serial unprojection with a little workout in the
case k = 2, and get a final fix (ultimo Pfaffiano! ). The bullets down the
left side of the rectangle in Figure 11.6.2 are monomials x0, x1, x2, x3. To
avoid going into double suffixes, I write y0, . . . , yd and then z0, . . . , ze for the

64



monomials down the right side, with an overlap of 3:

yd−2 = z0, yd−1 = z1 is the monomial with tag 3, and yd = z2.

I start work on the right-hand rectangle (the cone of monomials for VLM),
with the initial objective of discovering the annotations at its top corners.
The bottom right tag is a 1, so that I can project from ze as in Figure 11.3.3
(but bottom-up this time), then successively from ze−1, . . . , z2. By the rules
given around Figure 11.3.3, the new tag at x3 is decremented by 1 at each
projection, and the annotation at x3 inherits a factor of M , so that after
e − 1 steps the tag is 1 and the annotation is LM e−1, giving successive tag
equations

x1x3 = xd2, x2z1 = x3LM
e−1, x3z0 = z2

1M.

The last projection of z2 decrements the tag at z1 from 3 to 2, and gives z1

an annotation of M .
Now x3 can be projected: I chop it off, and its annotation LM e−1 is

multiplied into that of x2 and z1 = yd−1. The score at half-time is:

0 •

e •

LM e−1
d− 1 •

• −(e− 1)

≡ 2× d− 2

• 1
LM e

Next project from yd−1, . . . , y2. At each point the annotation LM e of yi is
passed on to that of yi−1, and is multiplied into the tag of x2. Since we
project d− 2 times, the tag of x2 decrements down to 1, and its annotation
multiplies up to

LM e−1 × (LM e)d−2 = Ld−1Mde−e−1.

A
d •
e •
d •
0 •

• 1
B

≡ 2× (d− 2)

• 3

≡ 2× (e− 2)

• −(d− 1)

and

0 •
•
•

L
e •

• −(e− 1)

≡
•
≡
• 1

M

Figure 11.6.2: The pair of long rectangles II(d, e, k).
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Finally project x2, so that its annotation is passed on to x1 and multiplied
into that of y1 to give LdMde−1. This leaves us with a rectangle representing
the two equations

x1y0 = LdMde−1 and x0y1 = xe−1
1 Ld−1Mde−e−1

at the top corners of the right-hand rectangle.
Merging the right hand side of these with those at the top corners of the

left-hand rectangle gives the top equations for the 6-fold VABLM :

x1y0 = xd0A+ LdMde−1 and x0y1 = y0B + xe−1
1 Ld−1Mde−e−1. (11.6.1)

Now this is where the fun really starts. Consider the series of 5× 5 Pfaffians
x2 −B −xe−1

1 yi

x1 −LM e −xd−i0 ABi−1

x0 −xi−1
2 Ld−iM (d−i)e−1

yi−1



=⇒



x1yi−1 = xd−i+1
0 ABi−1 + xi−1

2 Ld−i+1M (d−i+1)e−1

x0yi = yi−1B + xe−1
1 xi−1

2 Ld−iM (d−i)e−1

x2yi−1 = xd−i0 xe−1
1 ABi−1 + yiLM

e

x1yi = xd−i0 ABi + xi2L
d−iM (d−i)e−1

x0x2 = xe1 +BLM e

for i = 1, . . . , d−1. When i = 1, the first two equations are just (11.6.1), and
the final three, linear in x2, are the equations defining the unprojection of the
codimension 3 c.i. (x0, y0, L

d−1Mde−e−1) in the codimension 2 c.i. (11.6.1).
For i ≥ 2, the matrix is easily read off the pentagram of Figure 11.6.3,

(a). We start from the two known equations for x0x2 and x1yi−1. The
5 points of the pentagram are x2, x1, x0, yi−1, yi. We write these cyclically
around the superdiagonal and top right of the matrix, so that adjacent ver-
texes do not multiply in Pfaffians, but vertexes that are two apart do so, as
in the pentagram: the new unprojection variable yi goes in the top right,
from whence it will multiply x0, x1 and the middle entry m24, but not x2

or yi−1. The remaining matrix entries are uniquely determined by requiring
that Pf12.34 is the known equation for x0x2 and Pf23.45 the known equation
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x1

x2

x3

zi

zi−1

(c)

Figure 11.6.3: Pentagrams for II(2, d, e)

for x1yi−1 with the middle entry m24 = LM e the hcf of the terms BLM e

and xi−1
2 Ld−i+1M (d−i+1)e−1 in those two equations (taking a factor smaller

than the hcf would lead to a nonnormal variety). The 3 new Pfaffians deter-
mine the new unprojection variable yi as a rational function, and one proves
via Theorem 5.2 that it defines a Gorenstein variety with coordinate ring
generated by x0, x1, x2, y0, . . . , yi, A,B, L,M .

For 1 ≤ i ≤ d− 2, suppose by induction that these equations hold for i;
then projecting from yi−1 deletes the first three equations, leaving the last
two as a codimension 2 c.i. containing (x0, x1, LM

e). Thus we can introduce
a new unprojection variable yi+1, with three new relations contained in the
same set of equations with i 7→ i+ 1.

The rest is similar. At the end of the first half, the first series of Pfaffians
culminates at i = d− 1 with the equation

x1yd−1 = x0AB
d−1 + xd−1

2 LM e−1.

At half-time, we use this together with the equation for x0x2 as input to
a 5 × 5 Pfaffian matrix corresponding to the pentagram (b), switching to

67



z1 = yd−1 for the second half:
x2 −BM −xe−1

1 x3

x1 −LM e−1 −ABd−1

x0 −xd−1
2

z1



=⇒
x0x3 = xe−1

1 xd−1
2 + z1BM

x1x3 = xd2 + ABdM

x2z1 = xe−1
1 ABd−1 + x3LM

e−1

Notice that the middle term of the matrix m24 = LM e−1 has slipped down
to the hcf of two terms in the input equations Pf12.34 and Pf23.45.

The two last equations form the input to the series of Pfaffians corre-
sponding to the pentagram Figure 11.6.3, (c) that play during the second
half: 

x3 −ABd −xd−1
2 zi+1

x2 −M −xe−i−1
1 AiBd−i

x1 −xi3LM e−i−1

zi


This works by induction as before, and I leave it at that.
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