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[1] The problem of internal inertio-gravity wave reflection
from an arbitrarily orientated uniform slope is solved in a
linear setting and with Coriolis effects fully included; that
is, the horizontal component (~f ) of the Earth rotation vector
is taken into account. A new criterion is derived for critical
reflection. The presence of ~f creates a specific anisotropy:
the criterion depends on the orientation of the bottom slope
in the horizontal geographical plane, while it does not
depend on the horizontal orientation of the incident wave.
Using an empirical-based bottom-slope distribution, the
probability of critical reflection is calculated for diurnal and
semi-diurnal internal-tide bands, for a range of latitudes and
for various values of stratification. The probability is largest
near the inertial latitudes, i.e., when the internal tides are
near-inertial. It is explained how the inclusion of ~f gives
significant changes in the probability near these latitudes,
especially for weak stratification. Citation: Gerkema, T.,

and V. I. Shrira (2006), Non-traditional reflection of internal

waves from a sloping bottom, and the likelihood of critical

reflection, Geophys. Res. Lett., 33, L06611, doi:10.1029/

2005GL025627.

1. Introduction

[2] Reflecting internal waves at a sloping bottom repre-
sent an important process in ocean dynamics; they can
create locally unstable stratification leading to the formation
of a front [Gemmrich and van Haren, 2001], and are
thought to play a significant role in ocean mixing [Garrett
and St. Laurent, 2002]. The latter effect is greatly enhanced
when reflection is (near) critical [Eriksen, 1998], in which
case the reflected wave becomes very intense; nonlinear
effects, including wave breaking, are then likely to occur.
Evidence of this intensification was shown by Eriksen
[1982] in internal-wave spectra. A vivid view of the over-
turning induced by near-critical reflection was recently
given in laboratory experiments [Dauxois et al., 2004].
[3] As pointed out by Eriksen [1998], gentle slopes are

disproportionately important for near-critical reflection and
induced mixing, because most of the internal-wave energy
lies in the low-frequency part of the internal-wave spectrum,
which is associated with near-horizontal propagation.
[4] The main purpose of this paper is to investigate the

likelihood of the occurrence of critical reflection in the real
ocean, using typical parameter values and an empirical-
based distribution of slopes.

[5] In the open ocean, topographic features lie predom-
inantly in the relatively weakly stratified abyss. It was
recently shown that the horizontal component of the Earth
rotation vector (to whose effects we refer as non-traditional)
strongly modifies the dynamics of low-frequency internal
waves, especially for weak stratification [Gerkema and
Shrira, 2005]. The problem of internal waves reflecting
from a slope has not been solved before with non-traditional
terms included; here we first derive the solution for linear
internal waves reflecting from an arbitrarily orientated
uniform slope. From this solution we obtain a new non-
traditional criterion for critical reflection, which we then
apply to estimate its likelihood for internal tides in the
ocean.

2. Reflection From a Uniform Slope

[6] Consider an incident internal wave of the form

w ¼ exp i kxþ lyþ mzþ stð Þ;

which upon reflection from a slope z = ax + by (x is the
west-east coordinate, y is south-north), yields an outgoing
wave

W ¼ Q exp i Kxþ LyþMzþ stð Þ:

The problem is to find Q, K, L, M as functions of k, l, m and
a, b. They follow from the requirements that (i) the normal
velocity vanishes at the slope, and (ii), both the incident and
reflected waves satisfy the dispersion relation for internal
inertio-gravity waves. At the slope, the velocity components
of the incident wave are proportional to

exp i kxþ lyþ m axþ byf g þ stð Þ

and those of the outgoing wave are proportional to

exp i Kxþ LyþM axþ byf g þ stð Þ:

The boundary condition of zero normal velocity means that
their superposition should vanish for all x, y (and t); for this
to be possible, we must require

k þ am ¼ K þ aM ; l þ bm ¼ Lþ bM :

Writing M = qm (q to be found), we obtain

K ¼ k þ a 1� qð Þm ; L ¼ l þ b 1� qð Þm : ð1Þ

The problem has thus been reduced to finding just two
coefficients: q and Q (as functions of k, l, m and a, b).
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[7] The incident wave with wavevector (k, l, m) has to
satisfy the dispersion relation for internal inertio-gravity
waves. This relation follows from the momentum equations
on the f, ~f -plane, i.e., with the non-traditional Coriolis terms
included [see, e.g., Leblond and Mysak, 1978; Gerkema and
Shrira, 2005], combined with the equations for conserva-
tion of mass and energy. The resulting dispersion relation is

Al2 þ 2Blmþ Cm2 þ Dk2 ¼ 0 : ð2Þ

with A = N2 � s2 + ~f 2, B = f~f , C = f2 � s2 and D = N2 � s2

[LeBlond and Mysak, 1978, equation 8.46]. Here N denotes
the buoyancy frequency; f = 2W sin f and ~f = 2W cos f,
where W is the Earth’s angular velocity and f the latitude.
(In the so-called Traditional Approximation, the terms with
~f are neglected.)
[8] The outgoing wave, with wavevector (K, L, M), too

has to satisfy the dispersion relation (2). This requirement
yields a quadratic equation for q whose roots are q = 1 (this
obviously is not the one we are looking for; it represents a
wave going through the sloping bottom), and

q ¼ A l þ bmð Þ2þD k þ amð Þ2

m2 Ab2 þ Da2 � 2Bbþ C
� � : ð3Þ

The amplitude factor Q of the outgoing wave is obtained by
requiring w +W = a (u + U) + b (v + V) at the slope z = ax +
by, thereby imposing the boundary condition. The hor-
izontal velocity components can be expressed in terms of
the vertical ones by using the momentum equations as given
by, for example, Gerkema and Shrira [2005]; this yields

u ¼ �u k; l;mð Þw ; v ¼ �v k; l;mð Þw; ;

U ¼ �u K;L;Mð ÞW ; V ¼ �v K; L;Mð ÞW ;

where �u(k, l, m) and �v(k, l, m) are given by

�u ¼ �
l ~f l þ fm
� �

þ iskm
is k2 þ l2ð Þ ; �v ¼

k ~f l þ fm
� �

� islm
is k2 þ l2ð Þ :

Using these expressions, the resulting Q is found to be

Q ¼ � a�u k; l;mð Þ þ b�v k; l;mð Þ � 1

a�u K;L;Mð Þ þ b�v K;L;Mð Þ � 1
: ð4Þ

With formulae (3) and (4), the description of the outgoing
wave is complete.

3. Criterion for Critical Reflection

[9] By definition, critical reflection occurs when the
group-velocity vector of the reflected wave is parallel to
the bottom slope. This happens when jqj ! 1, since, with
(1), we find that the wavevector (K, L, M) then becomes
parallel to the normal of the slope, (�a, �b, 1). This
implies that the group-velocity vector, being perpendicular
to the wavevector, indeed lies in the plane of the slope. (A
laborious inspection shows that jqj ! 1 coincides with jQj
! 1, as it should.)

[10] For jqj to become infinite, the denominator in (3)
must vanish:

Ab2 þ Da2 � 2Bbþ C ¼ 0: ð5Þ

This is the new criterion for critical reflection.
[11] For later convenience, we write a = g cos n and b =

g sin n, where n denotes the horizontal orientation of the
slope, and g its steepness. Without loss of generality, we can
assume g � 0. From (5), we then find an expression for the
critical slope:

g ¼
B sin nþ B sin nð Þ2�C A sin2 nþ D cos2 n

� �h i1=2
A sin2 nþ D cos2 n

: ð6Þ

Remarkably, the critical slope does not depend on the zonal
orientation of the incident wavevector, although it does
depend on slope orientation n, implying anisotropic
behaviour in the x, y-plane. Under the Traditional
Approximation, by contrast, we would have B = 0 and A
= D, and hence isotropy; (6) then reduces to the well-known
traditional criterion, see (8), with ~f = 0.

4. Probability of Critical Reflection

[12] A brief look at any topographic map of the ocean
makes clear that slopes are overwhelmingly gentle. To
illustrate this in a more quantitative way, we use the
database of Smith and Sandwell [1997]. In this database,
(square) cells have a longitudinal width of 1/30� at all
latitudes; as a consequence, the cell size decreases from
3.7 � 3.7 km at the equator down to 1.1 � 1.1 km at 72�.
This is noticeably smaller than the typical horizontal scale
of an internal-tide beam (for example, the observations by
Pingree and New [1991], give a scale of about 10km), and
so, the database can be considered appropriate for our
purposes. (We note that the database is based on depth
soundings as well as gravity anomalies; the latter taken
alone imply a somewhat coarser resolution than is suggested
by the actual gridding.)
[13] Combining data from a number of sections (as

detailed in the figure caption), we obtain the slope distri-
bution shown in Figure 1; as usual, the distribution has
been normalized such that the total enclosed area equals
one. (We note that the distribution extends further to the
right than shown in Figure 1.) Figure 1 demonstrates that
slopes are mostly gentle; in fact, 67% of the slopes is less
than 0.02.
[14] As an aside, we notice that the distribution is not

Gaussian, but is rather closer to a Cauchy type distribution;
for a really satisfactory fit, one has to resort to less common
types, such as the thick curve in Figure 1, showing a Burr
distribution [see, e.g., Stuart and Ord, 1994, p. 248].
[15] We now proceed as follows. First, we select a certain

frequency interval [s1, s2], for example, [O1, K1] (diurnal
tides), or [N2, S2] (semi-diurnal tides). Then, for a certain
latitude f, stratification N, and slope orientation v, we
employ (6) to determine the range of critical slopes [g1,
g2] that corresponds to this frequency range; here g1,2 =
g(s1,2, f, N, n). Using a given slope distribution D(g), as
illustrated in Figure 1, we finally obtain the probability of
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encountering the range of critical slopes, i.e., the probability
of critical reflection:

Pn ¼
Z g2

g1

dgD gð Þ: ð7Þ

On averaging over all slope orientations n, we obtain

P ¼ 1

2p

Z 2p

0

dnPn:

(Under the Traditional Approximation the dependence on
slope orientation n disappears; then it suffices to calculate
the probability for just one slope orientation.)
[16] We plot results for a range of latitudes, up to the

latitude where the lower bound of the frequency range
matches the local Coriolis parameter f (inertial latitude);
this latitude is 27.6� for the diurnal range [O1, K1], and
71.0� for the semi-diurnal range [N2, S2] (see Table 1). The
probability P for the diurnal range [O1, K1] is shown in
Figure 2; in the three panels, stratification N increases
downward. The probability decreases steadily toward the
equator; the lower the latitude, the steeper the slope must be
to result in critical reflection, and such steep slopes are
relatively rare (see Figure 1). Probabilities below 24� are
very small, and are therefore not shown.
[17] It is clear from Figure 2 that at sufficiently low

latitudes (e.g., 24�), the probability increases with increas-

ing N. This is because internal-wave energy propagates less
steeply for higher N, so they match more and more the
abundant gentle slopes needed for critical reflection. In the
immediate vicinity of the inertial latitude, however, the
probability decreases with increasing N. This is because
the lower bound O1 already matches the gentle slopes, while
the upper bound K1 becomes less steep for higher N; as a
result, the contribution from critical reflection from steeper
slopes is more and more lost as N increases.
[18] Overall, we see in each panel that the highest

probability occurs near the inertial latitude, i.e., for near-
inertial frequencies. An entirely similar result is found for
the semi-diurnal range [N2, S2], see Figure 3, except that the
inertial latitude for the lower bound now lies, of course,
much higher.

Figure 1. Slope distribution derived from the database of
Smith and Sandwell [1997]. Here the bar width is Dg =
0.001. This distribution is based on data from four
sections: south-north sections at 180�W, and 30�W, as
well as west-east sections at 10�S and 22�N (Atlantic
Ocean, including the continental shelves). The thick curve
shows a fit using a Burr distribution a(1 + gb)�c, with a =
91, b = 0.65 and c = 25.

Table 1. Diurnal and Semi-Diurnal Tidal Frequencies and

Corresponding Inertial Latitudes

Constituent Frequency, rad/s Inertial Latitude

O1 0.000067598 27.6�
K1 0.000072921 30.0�
N2 0.00013788 71.0�
M2 0.00014052 74.5�
S2 0.00014544 85.8�

Figure 2. Probability of critical reflection for the diurnal
frequency range [O1, K1], as a function of latitude. The
dashed line shows the result obtained under the Traditional
Approximation (~f = 0); the solid line shows the non-
traditional result. Various values of N are used: a) 2 � 10�4;
b) 5 � 10�4; c) 2 � 10�3rad/s.

Figure 3. As in Figure 2, but now for the semi-diurnal
range frequency [N2, S2].
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[19] The curves plotted in Figures 2 and 3 are in essence a
map of the distribution D(g) shown in Figure 1. This can be
seen most easily by considering a narrow frequency range
[s, s + ds]. The integral in (7) then reduces to

Pn ¼ D g s;f;N ; nð Þð Þ @g
@s

ds :

Apart from the averaging over n, we now see that the
variation of P with latitude f, is given by the distribution D
via the dependence of g on f (multiplied by the factor @g/
@s, which also depends on f).

5. The Role of ~f

[20] Figures 2 and 3 show clear differences between the
traditional result (~f = 0, dashed line) and the non-traditional
one ( ~f included, solid line). In line with the conclusions
drawn by Gerkema and Shrira [2005], non-traditional
effects are most noticeable for near-inertial waves, and for
weak stratification.
[21] From Figures 2 and 3 follows that non-traditional

effects increase the probability of critical reflection at low
latitudes (in other words, for wave frequencies sufficiently
high with respect to j f j, the inertial frequency), and lower it
in the immediate vicinity of the inertial latitude. This
behaviour is most readily explained by considering purely
latitudinal slopes, i.e., n = ±p/2, so a = 0 and b = ±g; the
slope now equals b (or �b if n = �p/2). For a fixed latitude
and stratification (f = 45�N, N = 5 � 10�4 rad/s), we show
b as a function of wave frequency s in Figure 4.
[22] For any band of frequencies outside the vicinity of f,

we see that ~f causes the critical slope to be less steep for n =
�p/2, and steeper for n = p/2. This can also be seen by
making a Taylor expansion of (6) about ~f = 0, which gives

g ¼ s2 � f 2

N2 � s2

� �1=2

þ f ~f sin n
N2 � s2

þ    : ð8Þ

This expression confirms that ~f decreases the steepness
of the critical slope for n = �p/2, while increasing it for n =
p/2. Since the slope-distribution D(g) is a decreasing
function (see Figure 1), the former outweighs the latter, and
hence ~f increases the overall probability of critical reflection.
[23] However, if we consider a frequency band [f, f + d],

we see that the range of gentle critical slopes covered by the
traditional curve (dashed line) is larger than that covered by
the non-traditional curve (solid line). This explains why the
probability is in that case larger under the Traditional
Approximation, and this is reflected in Figures 2 and 3 in
the vicinity of the inertial latitude.
[24] Finally, we note that since the inclusion of ~f gives

rise to an enlargement of the frequency range (as is clearly
visible in Figure 4), critical reflection can now also occur at
sub-inertial frequencies. (This range was not included in
Figures 2 and 3, because an average over all angles n was
taken, and the width of the range is different for different
angles; in fact, it vanishes for n = 0, p.)

6. Discussion

[25] The expressions derived in Sections 2 and 3, which
we applied here to internal-tide frequency bands, are quite
general and can be applied to any part of the internal inertio-
gravity spectrum, in various contexts. In fact, by considering
a range of latitudes, we also covered the near-inertial band, in
this case at the inertial latitudes of O1 and N2. The results
show that critical reflection is indeed most likely to occur at
near-inertial frequencies. (This is the case both with and
without the Traditional Approximation, despite the differ-
ences between the two.) From an oceanographic point of
view this is particularly interesting because internal-wave
spectra usually show a strong peak at the inertial frequency
[e.g., Fu, 1981]; it is the most energetic part of the spectrum.
[26] The empirical-based distribution of slopes used in

this paper (Figure 1) is well described by a Burr distribu-
tion, except perhaps in the tail, where the fit is less reliable
because it involves relatively few data points. (On theoret-
ical grounds, one might expect the tail to be given by a
Poisson distribution.) However, the precise behaviour of the
tail need not concern us here, for two reasons. First, the
probability of steep slopes is in any case very small.
Second, to have critical reflection at steep slopes, the wave
frequency needs to be relatively high. Since high-frequency
internal waves form the least energetic part of the internal-
wave spectrum (cf. the Garrett-Munk spectrum [e.g., Munk,
1981]), this reinforces the conclusion that the tail is of little
importance from a global energetics perspective. However,
if we were interested in a particular high-frequency band of
the internal-wave field, then the details of the tail would be
essential for the redistribution of energy between different
scales.
[27] The restriction to uniform slopes, adopted in this

paper, precludes effects of convexity. They may be impor-
tant for internal wave reflection and mixing; for example,
Gilbert and Garrett [1989] argued that mixing is more
likely for convex than for concave slopes. On the other
hand, if we allow for multiple reflections, then waves
reflected from a supercritical segment of a concave bottom
feature may eventually experience critical reflection. This
issue requires further study.

Figure 4. Critical slopes g = ±b as a function of wave
frequency s, at fixed latitude f = 45�N and for stratification
N = 5 � 10�4 rad/s. The upper half covers critical slopes
g orientated northward (n = p/2, hence b = g); the lower
half, slopes orientated southward (n = �p/2, hence b = �g).
The region between the horizontal dotted lines indicates
67% slope coverage (see Figure 1). The solid line gives the
non-traditional curve, while the dashed one is obtained
under the Traditional Approximation. [After Gerkema and
Shrira, 2005].

L06611 GERKEMA AND SHRIRA: LIKELIHOOD OF CRITICAL REFLECTION L06611

4 of 5



[28] In this paper we considered just the occurrence of
critical reflection. For a proper description of the actual
process of critical reflection, nonlinear and viscous effects
need to be included [see, e.g., Dauxois and Young, 1999].
The issue of its integral impact on the energy balance and
mixing in the deep ocean requires further study. At the
moment we are not aware of oceanographic data which
would unambiguously link enhanced mixing to critical
reflection of internal tides; one of our conclusions is that
we can now focus the search to vicinities of the inertial
latitudes (given in Table 1 for each of the tidal components).
We might expect more clear-cut manifestations at inertial
latitudes for the semi-diurnal band, i.e., around 70–75� and
around 86�, where there will be no interference with
enhanced mixing due to subharmonic resonance (in contrast
to the region near 30�).
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