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Flow driven by shear or convection in a rotating frame.
Ekman layer can become unstable giving cat’s eye rolls

(Ponty, Gilbert, Soward 2001).
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Fig. 3. Growth rate Re p as a function of k for R = 500 and the flow (2.4) and (2.5).
The points k = 2.5 and k = 5 are highlighted.

Fig. 4. Magnetic field as in figure 2 but with plots of isosurfaces, Bz = Bz0 (blue),
Bz = −Bz0 (red) and, in (b) only, |B| = B0 (green). In (a) k = 2.5 and we have
Bz0 = 0.5 maxBz (with max Bz " 0.6 max |B|), and in (b) k = 5 and the levels
Bz0 = 0.65 maxBz, B0 = 0.65 max |B| are used (with maxBz " 0.1 max |B|).

Fig. 5. Magnetic field as in figure 4(b) with k = 5, but with plots of isosur-
faces, Bx = Bx0 (yellow), Bx = −Bx0 (green), By = By0 (red), and By = −By0

(blue). Here Bx0 = 0.25 maxBx and By0 = 0.28 maxBy, with Bx0 " max |B| and
By0 " 0.25 max |B|.

We consider a flow taking the incompressible form

u = (ψy,−ψx, w), ψ = ψ(x, y), w = w(x, y). (2.3)

Our first example is the flow depicted in figure 1,

ψ = −ay2 + b cos x

a + b cos x
+

b

b− a
, w = cψ, (2.4)

with
a = 5, b = −1, c = 1. (2.5)

This flow is designed to be broadly similar to the flows seen for the Ekman
instability (Hoffman, Busse and Chen, 1998; Ponty, Gilbert and Soward, 2001,
2003). Note however that in this flow the velocity w is constant on stream lines
of constant ψ, The quantities ψ and w are zero at the hyperbolic stagnation
point (π, 0) in the (x, y)-plane and on the corresponding separatrices, negative
in the channels, and positive in the cat’s eyes, where the sense of the motion
is anticlockwise. This feature that w = w(ψ) is not the case in general for an
Ekman instability, and this has implications for the way in which the field is
folded at large R in a flow such as (2.4). We will therefore consider a flow (3.7)
below, which relaxes this condition.

A typical view of a cat’s eye mode is shown in figure 2(b) from a run with
k = 5 and R = 500. For contrast, figure 2(a) shows a Ponomarenko mode with
k = 2.5 and the same value of R. Plotted in each case is the Bz component
of field, in the (x, y)-plane, for a typical slice of constant z. Although the two
pictures have some features in common, in particular blobs of each sign of
field, in figure 2(b) the field has structure on the separatrices and hyperbolic
points seen in the stream line pattern of figure 1. The growth rate of magnetic
modes is shown in figure 3 as a function of k for R = 500.

In figure 4 we show the magnetic field in three dimensions for these two cases.
Again (a) shows the k = 2.5 Ponomarenko mode, and (b) the k = 5.0 cat’s
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Ponomarenko and 
separatrix modes

and their links to other numerical and asymptotic studies. We consider kine-
matic dynamo action in a number of idealised flows; although these flows are
not solutions of the Navier–Stokes equations with realistic boundary condi-
tions, they allow a comprehensive exploration of the dynamo properties of
general classes of flows, at modest computational cost. This is a well-used ap-
proach in dynamo theory; we may for example mention modelling of the Riga
dynamo experiment (Gailitis et al., 2000) by the Ponomarenko (1973) dy-
namo, the Karlsruhe experiment (Stieglitz and Müller, 2001) by the Roberts
(1972) dynamo, and the Von Kàrmàn sodium experiment (Bourgoin et al.,
2001; Marie et al., 2002) by the Taylor–Green dynamo (Nore et al., 1997;
Ponty et al., 2005).

The paper is structured as follows. Section 2 studies a cat’s eye mode present
in the flow of figure 1, a plane layer bounded in the coordinate y, and elucidates
the basic stretch–fold–shear mechanism by which the magnetic field can be
amplified. For computational efficiency, and to compare with previous work, we
then move to a doubly periodic geometry in section 3. Here there are multiple,
parallel rows of cat’s eyes, separated by channels. We vary the wavenumber
k, and R, to see the different types of modes that can be excited and their
properties. For large-scale magnetic modes with k ! 1, the α-effect becomes
applicable, as determined by Childress and Soward (1989), and we compare
our results with this theory in section 4. Finally section 5 offers concluding
discussion.

2 Cat’s eye modes in a plane layer

We solve the induction equation, written in the form

∂tB = ∇× (u×B) + ε∇2B, ∇ · B = 0, (2.1)

for a given flow u(x, y) having scale and turnover time of order unity. Here
R = ε−1 is the magnetic Reynolds number, taken to be large, with 0 < ε! 1.
We consider eigenmodes with wavenumber k,

B = b(x, y)ept+ikz + complex conjugate. (2.2)

The flow considered below is defined in the plane layer −1 ≤ y ≤ 1, and
periodic in x, period 2π. We impose insulating boundary conditions on the
magnetic field, which therefore matches to a potential field satisfying ∇×B =
0 for y > 1 or y < −1. In practise the choice of magnetic boundary condition
is unimportant, as the modes we consider are (for large R) localised in the
body of the fluid, away from the boundaries.
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Fig. 1. Stream lines of constant ψ(x, y) are shown for the flow (2.4). The flow is
periodic in the x-direction.

Fig. 2. Magnetic field in the flow (2.4) with R = 500. In (a) there is a Ponomarenko
mode with k = 2.5, and in (b) a cat’s eye mode with k = 5. In each case Bz is plotted
in the (x, y)-plane with positive field yellow/red and negative field blue/black.

These steady two-dimensional flows, which possess all three components of
velocity, u = (u1, u2, u3)(x, y), are sufficiently complicated to function as kine-
matic dynamos. In the case of Ekman instabilities, kinematic dynamo action
was studied by Ponty, Gilbert and Soward (2001). The magnetic fields may be
taken proportional to eikz, with a wave-number k along the axes of the cat’s
eyes. At a fixed, large magnetic Reynolds number R, magnetic field modes
are unstable over a wide range of values of k. For moderate k, the unstable
magnetic fields generally take the form of Ponomarenko modes. The field is
confined to stream surfaces localised within each cat’s eye and takes the form
of spiralling tubes of field in three dimensions (see figures 2(a) and 4(a)).
This type of dynamo action was first studied in a cylindrical geometry by
Ponomarenko (1973) (see also the related model of Lortz, 1968) and since by
Solovyev (1985), Gilbert (1988), Ruzmaikin, Sokoloff and Shukurov (1988),
Soward (1990), and Gilbert and Ponty (2000), amongst others.

For larger k the dominant mode takes a different form, of a magnetic field
localised along the network of separatrices and hyperbolic stagnation points
(see figures 2(b), 4(b) and 5). It appears to grow more strongly than the
Ponomarenko modes at large R and has a smaller spatial scale. A mode with
this general form may be called a ‘separatrix mode’, as it localises on the
network of separatrices and thrives on the exponential stretching at hyperbolic
points in the network. We will take the term ‘separatrix mode’ to refer to any
such mode that localises in this way at large R; however there can be different
subfamilies depending on the topology of the separatrices.

One important subfamily is that of ‘Roberts modes’, which are found in
the flow of Roberts (1972) and have been studied at large R analytically in
Soward (1987) and numerically in a related flow by Plunian, Marty and Ale-
many (1999). In these cases there is a doubly periodic network of separatrices,
bounding square cells, and a mean field on large scales possessing both x and y
components. On the other hand, for the cat’s eye geometry depicted in figure
1 the network of separatrices is periodic in just one direction, and defines a
row of cat’s eyes in the (x, y)-plane. We therefore adopt the term ‘cat’s eye
mode’ for a mode such as that in figure 2(b) where the field localises along a
single row of cat’s eyes; such modes constitute a subfamily of the separatrix
mode family, distinct from the Robert’s mode subfamily.

The aim of this paper is to elucidate the properties of these cat’s eye modes,
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R = ε−1 is the magnetic Reynolds number, taken to be large, with 0 < ε! 1.
We consider eigenmodes with wavenumber k,
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Fig. 1. Stream lines of constant ψ(x, y) are shown for the flow (2.4). The flow is
periodic in the x-direction.

Fig. 2. Magnetic field in the flow (2.4) with R = 500. In (a) there is a Ponomarenko
mode with k = 2.5, and in (b) a cat’s eye mode with k = 5. In each case Bz is plotted
in the (x, y)-plane with positive field yellow/red and negative field blue/black.

These steady two-dimensional flows, which possess all three components of
velocity, u = (u1, u2, u3)(x, y), are sufficiently complicated to function as kine-
matic dynamos. In the case of Ekman instabilities, kinematic dynamo action
was studied by Ponty, Gilbert and Soward (2001). The magnetic fields may be
taken proportional to eikz, with a wave-number k along the axes of the cat’s
eyes. At a fixed, large magnetic Reynolds number R, magnetic field modes
are unstable over a wide range of values of k. For moderate k, the unstable
magnetic fields generally take the form of Ponomarenko modes. The field is
confined to stream surfaces localised within each cat’s eye and takes the form
of spiralling tubes of field in three dimensions (see figures 2(a) and 4(a)).
This type of dynamo action was first studied in a cylindrical geometry by
Ponomarenko (1973) (see also the related model of Lortz, 1968) and since by
Solovyev (1985), Gilbert (1988), Ruzmaikin, Sokoloff and Shukurov (1988),
Soward (1990), and Gilbert and Ponty (2000), amongst others.

For larger k the dominant mode takes a different form, of a magnetic field
localised along the network of separatrices and hyperbolic stagnation points
(see figures 2(b), 4(b) and 5). It appears to grow more strongly than the
Ponomarenko modes at large R and has a smaller spatial scale. A mode with
this general form may be called a ‘separatrix mode’, as it localises on the
network of separatrices and thrives on the exponential stretching at hyperbolic
points in the network. We will take the term ‘separatrix mode’ to refer to any
such mode that localises in this way at large R; however there can be different
subfamilies depending on the topology of the separatrices.

One important subfamily is that of ‘Roberts modes’, which are found in
the flow of Roberts (1972) and have been studied at large R analytically in
Soward (1987) and numerically in a related flow by Plunian, Marty and Ale-
many (1999). In these cases there is a doubly periodic network of separatrices,
bounding square cells, and a mean field on large scales possessing both x and y
components. On the other hand, for the cat’s eye geometry depicted in figure
1 the network of separatrices is periodic in just one direction, and defines a
row of cat’s eyes in the (x, y)-plane. We therefore adopt the term ‘cat’s eye
mode’ for a mode such as that in figure 2(b) where the field localises along a
single row of cat’s eyes; such modes constitute a subfamily of the separatrix
mode family, distinct from the Robert’s mode subfamily.
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ABC flow (C=0)

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate
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and their links to other numerical and asymptotic studies. We consider kine-
matic dynamo action in a number of idealised flows; although these flows are
not solutions of the Navier–Stokes equations with realistic boundary condi-
tions, they allow a comprehensive exploration of the dynamo properties of
general classes of flows, at modest computational cost. This is a well-used ap-
proach in dynamo theory; we may for example mention modelling of the Riga
dynamo experiment (Gailitis et al., 2000) by the Ponomarenko (1973) dy-
namo, the Karlsruhe experiment (Stieglitz and Müller, 2001) by the Roberts
(1972) dynamo, and the Von Kàrmàn sodium experiment (Bourgoin et al.,
2001; Marie et al., 2002) by the Taylor–Green dynamo (Nore et al., 1997;
Ponty et al., 2005).

The paper is structured as follows. Section 2 studies a cat’s eye mode present
in the flow of figure 1, a plane layer bounded in the coordinate y, and elucidates
the basic stretch–fold–shear mechanism by which the magnetic field can be
amplified. For computational efficiency, and to compare with previous work, we
then move to a doubly periodic geometry in section 3. Here there are multiple,
parallel rows of cat’s eyes, separated by channels. We vary the wavenumber
k, and R, to see the different types of modes that can be excited and their
properties. For large-scale magnetic modes with k ! 1, the α-effect becomes
applicable, as determined by Childress and Soward (1989), and we compare
our results with this theory in section 4. Finally section 5 offers concluding
discussion.

2 Cat’s eye modes in a plane layer

We solve the induction equation, written in the form

∂tB = ∇× (u×B) + ε∇2B, ∇ · B = 0, (2.1)

for a given flow u(x, y) having scale and turnover time of order unity. Here
R = ε−1 is the magnetic Reynolds number, taken to be large, with 0 < ε! 1.
We consider eigenmodes with wavenumber k,

B = b(x, y)ept+ikz + complex conjugate. (2.2)

The flow considered below is defined in the plane layer −1 ≤ y ≤ 1, and
periodic in x, period 2π. We impose insulating boundary conditions on the
magnetic field, which therefore matches to a potential field satisfying ∇×B =
0 for y > 1 or y < −1. In practise the choice of magnetic boundary condition
is unimportant, as the modes we consider are (for large R) localised in the
body of the fluid, away from the boundaries.
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(1972) dynamo, and the Von Kàrmàn sodium experiment (Bourgoin et al.,
2001; Marie et al., 2002) by the Taylor–Green dynamo (Nore et al., 1997;
Ponty et al., 2005).

The paper is structured as follows. Section 2 studies a cat’s eye mode present
in the flow of figure 1, a plane layer bounded in the coordinate y, and elucidates
the basic stretch–fold–shear mechanism by which the magnetic field can be
amplified. For computational efficiency, and to compare with previous work, we
then move to a doubly periodic geometry in section 3. Here there are multiple,
parallel rows of cat’s eyes, separated by channels. We vary the wavenumber
k, and R, to see the different types of modes that can be excited and their
properties. For large-scale magnetic modes with k ! 1, the α-effect becomes
applicable, as determined by Childress and Soward (1989), and we compare
our results with this theory in section 4. Finally section 5 offers concluding
discussion.

2 Cat’s eye modes in a plane layer

We solve the induction equation, written in the form

∂tB = ∇× (u×B) + ε∇2B, ∇ · B = 0, (2.1)

for a given flow u(x, y) having scale and turnover time of order unity. Here
R = ε−1 is the magnetic Reynolds number, taken to be large, with 0 < ε! 1.
We consider eigenmodes with wavenumber k,

B = b(x, y)ept+ikz + complex conjugate. (2.2)

The flow considered below is defined in the plane layer −1 ≤ y ≤ 1, and
periodic in x, period 2π. We impose insulating boundary conditions on the
magnetic field, which therefore matches to a potential field satisfying ∇×B =
0 for y > 1 or y < −1. In practise the choice of magnetic boundary condition
is unimportant, as the modes we consider are (for large R) localised in the
body of the fluid, away from the boundaries.

3

k k

R
e 

p

R
e 

p



B_z in x-y plane

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6



|B|^2 averaged over 
z, in x-y plane

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate

6



Criterion for 
Ponomarenko modes

Fig. 11. In (a) the wave number k and (b) the growth rate Re p, for the fastest
growing cat’s eye mode, are plotted against R. The dotted line in (a) shows the
scaling k ∝ R1/2.

at k " 3.8, for which the corresponding magnetic field is shown in figures 9(a)
and 10(a). This is clearly the cat’s eye mode we have already seen in the plane
layer simulation; the magnetic field is localised along individual rows of cat’s
eyes, and vanishes within the channels and within the cat’s eyes.

Reducing k, there is then a series of peaks in the range 0 < k < 2. These
appear to be Ponomarenko modes, and two with m = 3 and m = 1 are de-
picted in figures 9(b,c) and 10(b,c). Ponomarenko modes localise on stream
surfaces of constant ψ in the limit of large R, and vary as eimϑ+ikz where ϑ
is an angle coordinate on the closed stream line in the (x, y)-plane defining
the stream surface. The stream surface itself is given by a resonance condition
mΩ′(ψ) + kw′(ψ) = 0, where Ω(ψ) is the angular velocity around the stream
line. This theory of smooth Ponomarenko dynamos at large R was estab-
lished for cylindrical geometry by Gilbert (1988) and Ruzmaikin, Sokoloff and
Shukurov (1988), and generalised by Soward (1990) and Gilbert and Ponty
(2000). A given stream surface can only support a growing mode provided the
geometrical condition

∣∣∣∣∣
Ω′′(ψ)

Ω′(ψ)
− w′′(ψ)

w′(ψ)

∣∣∣∣∣ < 4
|αm|
γ

(3.4)

is met, using the notation of Gilbert and Ponty (2000) which should be referred
to for definitions of αm and γ. Checking this criterion numerically for the cat’s
eye flow with the parameters (3.3) indicates that Ponomarenko dynamo action
can only occur on stream surfaces with |ψ| > ψc " 0.943. The stream lines
ψ = ±ψc are shown dotted in figure 7. It may be seen that the Ponomarenko
modes in figures 9(b,c) and 10(b,c) are localising in the cat’s eyes inside those
stream surfaces, and the cat’s eye mode in 9(a) and 10(a) in the region |ψ| < ψc

containing the separatrices.

This confirms that the cat’s eye modes seen are distinct from the Ponomarenko
modes. Another important feature is the scaling of growth rates as a function
of k at large R. Whereas the fastest growing Ponomarenko mode has the
scalings

m, k = O(R1/3), Re p = O(R−1/3), (3.5)

and spatial scale across stream surfaces of order R−1/3 (e.g., Gilbert and
Ponty, 2000), the cat’s eye mode has faster growth rates and smaller scales.
Figure 11 shows the wave number and growth rate for the fastest growing cat’s
eye mode. There appears to be a scaling of

k = o(R1/2), Re p = o(1), (3.6)
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Growing Ponomarenko modes can only occur if this purely 
geometrical condition is satisfied: generation overcomes 
enhanced diffusion (Soward 1990, Gilbert & Ponty 2000). 

These localise on stream 
surfaces satisfying:



maximum growth 
rates

Fastest growing modes for each value of R:
maximise Re p over k for given R.
Appear to have

as far as we can tell numerically (cf. Soward  1997).
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(2000). A given stream surface can only support a growing mode provided the
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∣∣∣∣∣
Ω′′(ψ)

Ω′(ψ)
− w′′(ψ)

w′(ψ)

∣∣∣∣∣ < 4
|αm|
γ

(3.4)

is met, using the notation of Gilbert and Ponty (2000) which should be referred
to for definitions of αm and γ. Checking this criterion numerically for the cat’s
eye flow with the parameters (3.3) indicates that Ponomarenko dynamo action
can only occur on stream surfaces with |ψ| > ψc " 0.943. The stream lines
ψ = ±ψc are shown dotted in figure 7. It may be seen that the Ponomarenko
modes in figures 9(b,c) and 10(b,c) are localising in the cat’s eyes inside those
stream surfaces, and the cat’s eye mode in 9(a) and 10(a) in the region |ψ| < ψc

containing the separatrices.

This confirms that the cat’s eye modes seen are distinct from the Ponomarenko
modes. Another important feature is the scaling of growth rates as a function
of k at large R. Whereas the fastest growing Ponomarenko mode has the
scalings

m, k = O(R1/3), Re p = O(R−1/3), (3.5)

and spatial scale across stream surfaces of order R−1/3 (e.g., Gilbert and
Ponty, 2000), the cat’s eye mode has faster growth rates and smaller scales.
Figure 11 shows the wave number and growth rate for the fastest growing cat’s
eye mode. There appears to be a scaling of

k = o(R1/2), Re p = o(1), (3.6)
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Fig. 12. Magnetic field growth rate Re p as a function of k for R = 1000 and flow
(3.7) with (a) φ = π/36 and (b) φ = π/12.

Fig. 13. Growth rate Re p as a function of k for R = 1000 and ξ = 45◦, 44.5◦, 44◦,
43.5◦, 43◦, 42.5◦ and 42◦, reading the curves from top right to bottom left.

where the o symbol has the usual meaning, but here we use it to indicate a
dependence that is slower than a power law in R. We generally expect this
type of scaling: the growth rate must go to zero for large R as a steady, smooth
two-dimensional flow is necessarily a slow dynamo (Klapper and Young, 1995).
On the other hand the analytical study Soward (1987) of Roberts modes shows
growth rates going to zero extremely slowly, as log log R/ log R, and k scaling
as O((R/ log R)1/2). We appear to have a broadly similar situation here, as far
as we can tell numerically. In any case the scaling observed is plainly distinct
from that in (3.5) for Ponomarenko modes.

For reasons discussed below (2.5), let us now replace (3.1) by

ψ = A cos x−B cos y, w = A cos x−B cos(y − φ), (3.7)

where φ is a fixed angle. For a general value of φ the spatial pattern of the
vertical velocity w is shifted in the y-direction and is no longer a function of ψ.
Figure 12 shows growth rate against k for R = 1000, φ = π/36 and φ = π/12.
We see that the very broad peak evident in figure 8 first of all narrows as φ is
increased from zero, and growth rates are reduced. As φ is further increased
the peak breaks up and the growth rate now has an oscillatory form as a
function of k.

To see why these oscillations arise consider first the case when w = w(ψ)
(φ = 0) and work in a frame in which w = 0 at the hyperbolic points. Then
w = 0 along the separatrices also, and so field has to diffuse off the separatrix
in order to be carried in the z-direction and reinforce neighbouring bands of
field (as seen in figure 5). Now when w "= w(ψ), and in the frame in which
w = 0 at the hyperbolic points, there will be a net displacement, say ∆,
as a particle moves around very close to the separatrices in a circuit of one
cat’s eye. Whether or not this displacement is favourable to the feeding of a
folded sheet of field into neighbouring sheets will depend on the wavenumber
k, and we expect oscillations as k is varied, as observed. This may also explain
the complex variation of growth rate against k that emerges in the study of
dynamo action in Ekman layer instabilities, for which w is not generally a
function of ψ; see figure 5 of Ponty, Gilbert and Soward (2001).

Finally we consider how the cat’s eye modes we have found, with A "= B, are
linked to those for the Roberts (1972) flow, which has A = B. One convenient
way to link the two flows is to consider the family parameterised by an angle
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ξ, with
A =

√
3 sin ξ, B =

√
3 cos ξ. (3.8)

This family has fixed kinetic energy (with A2 + B2 = 3) and varies from the
Roberts flow with ξ = 45◦ to our flow (3.3) given by tan ξ = 1/2, and to
unidirectional Kolmogorov flow when ξ = 0. Figure 13 shows growth rate
Re p plotted against k for ξ decreasing from 45◦ to 42◦. Notable is the rapid
disappearance of the Roberts mode for ξ = 45◦, to be replaced by the distinct
cat’s eye mode, which has lower growth rates. This is not so surprising, as
the field (especially for large k) becomes sensitive to the presence of channels
when the distance across the channel is of order R−1/2 and this occurs when
|A−B| or 45◦ − ξ are of this order. The picture changes little as ξ is reduced
further to our flow with tan ξ = 1/2.

4 Modes for k # 1 governed by the α-effect

The cat’s eye flow (3.1) has been studied analytically for magnetic fields pos-
sessing a large scale in the z direction, 0 < k # 1, in the limit of large R,
by Childress and Soward (1989). In this case an α-effect description becomes
appropriate. A constant magnetic field is imposed (i.e., with k = 0) initially,
and the field is allowed to evolve to a steady state. The α-effect matrix α is
then determined by measuring the induced emf u×B = αB in the usual
way, where the overline denotes an average over the (x, y)-plane. In view of
the symmetry of the flow the α-matrix is diagonal, with entries α1 and α2,
say. Then a mean field that varies slowly in z satisfies

∂tB1 = −∂z(α2B2), ∂tB2 = ∂z(α1B1), (4.1)

and a mode depending as eikz has growth rate

p % ±k
√

α1α2. (4.2)

This may be viewed as the leading term in a Taylor expansion for small k.
The next terms in the expansion would contribute an O(k2) term that may
be identified with an eddy diffusion term.

According to the theory of Childress and Soward (1989) the αj components
scale as

α1 = O(R−3/2), α2 = C1R. (4.3)

The large-scale growing magnetic field is a helical wave, but with 〈B2
1〉z/〈B

2
2〉z =

|α2/α1|. Thus in the limit of large R, the mean B1 field becomes the dominant
component. Field is expelled from the cat’s eyes, and the mode is depicted in
figures 9(d) and 10(d). Note that from figure 10(d) the strongest fields lie on
the separatrices joining the hyperbolic points, as for the cat’s eye mode, but
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Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and the flow
(3.2) and (3.3); (b) is simply a magnified view of the bottom left corner of (a).

Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cos x−B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) + B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold and Korkina (1983), and Galloway and
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress and
Soward (1989), who study dynamo action for low k, as we will discuss shortly.
Provided |A| "= |B| the flow has a pattern of cat’s eyes in the (x, y)-plane,
separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.

The most prominent feature of figure 8 is the peak of maximum growth rate
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Fig. 12. Magnetic field growth rate Re p as a function of k for R = 1000 and flow
(3.7) with (a) φ = π/36 and (b) φ = π/12.

Fig. 13. Growth rate Re p as a function of k for R = 1000 and ξ = 45◦, 44.5◦, 44◦,
43.5◦, 43◦, 42.5◦ and 42◦, reading the curves from top right to bottom left.

where the o symbol has the usual meaning, but here we use it to indicate a
dependence that is slower than a power law in R. We generally expect this
type of scaling: the growth rate must go to zero for large R as a steady, smooth
two-dimensional flow is necessarily a slow dynamo (Klapper and Young, 1995).
On the other hand the analytical study Soward (1987) of Roberts modes shows
growth rates going to zero extremely slowly, as log log R/ log R, and k scaling
as O((R/ log R)1/2). We appear to have a broadly similar situation here, as far
as we can tell numerically. In any case the scaling observed is plainly distinct
from that in (3.5) for Ponomarenko modes.

For reasons discussed below (2.5), let us now replace (3.1) by

ψ = A cos x−B cos y, w = A cos x−B cos(y − φ), (3.7)

where φ is a fixed angle. For a general value of φ the spatial pattern of the
vertical velocity w is shifted in the y-direction and is no longer a function of ψ.
Figure 12 shows growth rate against k for R = 1000, φ = π/36 and φ = π/12.
We see that the very broad peak evident in figure 8 first of all narrows as φ is
increased from zero, and growth rates are reduced. As φ is further increased
the peak breaks up and the growth rate now has an oscillatory form as a
function of k.

To see why these oscillations arise consider first the case when w = w(ψ)
(φ = 0) and work in a frame in which w = 0 at the hyperbolic points. Then
w = 0 along the separatrices also, and so field has to diffuse off the separatrix
in order to be carried in the z-direction and reinforce neighbouring bands of
field (as seen in figure 5). Now when w "= w(ψ), and in the frame in which
w = 0 at the hyperbolic points, there will be a net displacement, say ∆,
as a particle moves around very close to the separatrices in a circuit of one
cat’s eye. Whether or not this displacement is favourable to the feeding of a
folded sheet of field into neighbouring sheets will depend on the wavenumber
k, and we expect oscillations as k is varied, as observed. This may also explain
the complex variation of growth rate against k that emerges in the study of
dynamo action in Ekman layer instabilities, for which w is not generally a
function of ψ; see figure 5 of Ponty, Gilbert and Soward (2001).

Finally we consider how the cat’s eye modes we have found, with A "= B, are
linked to those for the Roberts (1972) flow, which has A = B. One convenient
way to link the two flows is to consider the family parameterised by an angle

8

Fig. 12. Magnetic field growth rate Re p as a function of k for R = 1000 and flow
(3.7) with (a) φ = π/36 and (b) φ = π/12.

Fig. 13. Growth rate Re p as a function of k for R = 1000 and ξ = 45◦, 44.5◦, 44◦,
43.5◦, 43◦, 42.5◦ and 42◦, reading the curves from top right to bottom left.

where the o symbol has the usual meaning, but here we use it to indicate a
dependence that is slower than a power law in R. We generally expect this
type of scaling: the growth rate must go to zero for large R as a steady, smooth
two-dimensional flow is necessarily a slow dynamo (Klapper and Young, 1995).
On the other hand the analytical study Soward (1987) of Roberts modes shows
growth rates going to zero extremely slowly, as log log R/ log R, and k scaling
as O((R/ log R)1/2). We appear to have a broadly similar situation here, as far
as we can tell numerically. In any case the scaling observed is plainly distinct
from that in (3.5) for Ponomarenko modes.

For reasons discussed below (2.5), let us now replace (3.1) by

ψ = A cos x−B cos y, w = A cos x−B cos(y − φ), (3.7)

where φ is a fixed angle. For a general value of φ the spatial pattern of the
vertical velocity w is shifted in the y-direction and is no longer a function of ψ.
Figure 12 shows growth rate against k for R = 1000, φ = π/36 and φ = π/12.
We see that the very broad peak evident in figure 8 first of all narrows as φ is
increased from zero, and growth rates are reduced. As φ is further increased
the peak breaks up and the growth rate now has an oscillatory form as a
function of k.

To see why these oscillations arise consider first the case when w = w(ψ)
(φ = 0) and work in a frame in which w = 0 at the hyperbolic points. Then
w = 0 along the separatrices also, and so field has to diffuse off the separatrix
in order to be carried in the z-direction and reinforce neighbouring bands of
field (as seen in figure 5). Now when w "= w(ψ), and in the frame in which
w = 0 at the hyperbolic points, there will be a net displacement, say ∆,
as a particle moves around very close to the separatrices in a circuit of one
cat’s eye. Whether or not this displacement is favourable to the feeding of a
folded sheet of field into neighbouring sheets will depend on the wavenumber
k, and we expect oscillations as k is varied, as observed. This may also explain
the complex variation of growth rate against k that emerges in the study of
dynamo action in Ekman layer instabilities, for which w is not generally a
function of ψ; see figure 5 of Ponty, Gilbert and Soward (2001).

Finally we consider how the cat’s eye modes we have found, with A "= B, are
linked to those for the Roberts (1972) flow, which has A = B. One convenient
way to link the two flows is to consider the family parameterised by an angle

8

G.O. Roberts’ flow modes (square cells) appear distinct from 
cat’s eye modes. As the channels open up the Roberts’ mode 
disappears and the cat’s eye mode takes over



ξ, with
A =

√
3 sin ξ, B =

√
3 cos ξ. (3.8)

This family has fixed kinetic energy (with A2 + B2 = 3) and varies from the
Roberts flow with ξ = 45◦ to our flow (3.3) given by tan ξ = 1/2, and to
unidirectional Kolmogorov flow when ξ = 0. Figure 13 shows growth rate
Re p plotted against k for ξ decreasing from 45◦ to 42◦. Notable is the rapid
disappearance of the Roberts mode for ξ = 45◦, to be replaced by the distinct
cat’s eye mode, which has lower growth rates. This is not so surprising, as
the field (especially for large k) becomes sensitive to the presence of channels
when the distance across the channel is of order R−1/2 and this occurs when
|A−B| or 45◦ − ξ are of this order. The picture changes little as ξ is reduced
further to our flow with tan ξ = 1/2.

4 Modes for k # 1 governed by the α-effect

The cat’s eye flow (3.1) has been studied analytically for magnetic fields pos-
sessing a large scale in the z direction, 0 < k # 1, in the limit of large R,
by Childress and Soward (1989). In this case an α-effect description becomes
appropriate. A constant magnetic field is imposed (i.e., with k = 0) initially,
and the field is allowed to evolve to a steady state. The α-effect matrix α is
then determined by measuring the induced emf u×B = αB in the usual
way, where the overline denotes an average over the (x, y)-plane. In view of
the symmetry of the flow the α-matrix is diagonal, with entries α1 and α2,
say. Then a mean field that varies slowly in z satisfies

∂tB1 = −∂z(α2B2), ∂tB2 = ∂z(α1B1), (4.1)

and a mode depending as eikz has growth rate

p % ±k
√

α1α2. (4.2)

This may be viewed as the leading term in a Taylor expansion for small k.
The next terms in the expansion would contribute an O(k2) term that may
be identified with an eddy diffusion term.

According to the theory of Childress and Soward (1989) the αj components
scale as

α1 = O(R−3/2), α2 = C1R. (4.3)

The large-scale growing magnetic field is a helical wave, but with 〈B2
1〉z/〈B

2
2〉z =

|α2/α1|. Thus in the limit of large R, the mean B1 field becomes the dominant
component. Field is expelled from the cat’s eyes, and the mode is depicted in
figures 9(d) and 10(d). Note that from figure 10(d) the strongest fields lie on
the separatrices joining the hyperbolic points, as for the cat’s eye mode, but
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Re p plotted against k for ξ decreasing from 45◦ to 42◦. Notable is the rapid
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when the distance across the channel is of order R−1/2 and this occurs when
|A−B| or 45◦ − ξ are of this order. The picture changes little as ξ is reduced
further to our flow with tan ξ = 1/2.
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The cat’s eye flow (3.1) has been studied analytically for magnetic fields pos-
sessing a large scale in the z direction, 0 < k # 1, in the limit of large R,
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The next terms in the expansion would contribute an O(k2) term that may
be identified with an eddy diffusion term.

According to the theory of Childress and Soward (1989) the αj components
scale as

α1 = O(R−3/2), α2 = C1R. (4.3)

The large-scale growing magnetic field is a helical wave, but with 〈B2
1〉z/〈B

2
2〉z =

|α2/α1|. Thus in the limit of large R, the mean B1 field becomes the dominant
component. Field is expelled from the cat’s eyes, and the mode is depicted in
figures 9(d) and 10(d). Note that from figure 10(d) the strongest fields lie on
the separatrices joining the hyperbolic points, as for the cat’s eye mode, but
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dotted: alpha-effect
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Fig. 14. Components (a) |α1| and (b) |α2|, measured numerically and plotted against
R for the cat’s eye flow with the parameters (3.3). Dotted lines show the theoretical
results in (4.3). In (a) only the scaling law is shown, but in (b) the constant C1 is
given from Childress and Soward (1989).

Fig. 15. Magnetic field growth rate Re p as a function of k for k small and R = 32, 64
and 128 (reading down the solid curves). The dotted curves give the low-k prediction
from the α-effect calculation.

there are additionally fields within the channels, and these are crucial for the
mode to communicate across channels and possess a large-scale field.

To confirm the scalings in (4.3), figure 14 shows the αj components measured
numerically, and there is good agreement. Note that in (b) the constant C1 is
included, being defined precisely below; this is given by the theory of Childress
and Soward (1989), valid in the limit A ! B, or δ " 1, with δ defined below
in (4.7). Given that here δ = 1/3, the agreement is fair.

The α-effect gives a window of dynamo action that exists only for low k, in
fact in a range 0 < k ≤ O(R−1) that becomes narrow as R increases. This
is explained by Childress and Soward (1989): an α-effect dynamo requires
large-scale fields in x- and y-directions with components within the channels
as seen. However the vertical shear within the channels is very effective at
destroying such fields if they vary in z, unless they vary only on a very large,
O(R), length scale. The window of dynamo action for very low k is not visible
in figure 8 and indeed it is time-consuming to determine it accurately at large
R. Instead figure 15 shows results for R = 32, 64 and 128, for low values of k.
The dotted lines give the results from the numerical computations of α1 and
α2 in figure 14, substituted into the formula (4.2); there is good agreement
with theory, and we see clearly how the window of dynamo action controlled
by the α-effect shrinks as R is increased.

We have undertaken further runs to check the boundary layer calculations of
Childress and Soward (1989). They find it convenient to write the flow as

ψ′ = sin x′ sin y′ + δ cos x′ cos y′, w′ =
√

2 ψ′. (4.4)

Explicitly the transformation required to obtain this form is from (x, y, z, t)
to (x′, y′, z′, t′) with

L(x′ + π) = 2−1/2(x− y), Ly′ = 2−1/2(x + y), Lz′ = z, t′ = tU/L, (4.5)

and other quantities become

R′ = RLU, k′ = kL, p′ = pL/U, α′
j = αj/U, (4.6)
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Alpha effect only functions in a narrow window

that vanishes with increasing R (Childress & Soward 1989).



Comparison
β R′ R′1/2α(+): sim bl asy R′1/2α(−): sim bl asy

0.5 25 0.2214 1.3792

0.5 64 0.2227 1.3805

0.5 100 0.2232 1.3812

0.5 ∞ 0.2246 0.2248 1.383 1.320

1.0 64 0.1172 3.3582

1.0 100 0.1177 3.3646

1.0 144 0.1179 3.3680

1.0 ∞ 0.1186 0.1250 3.377 3.455

Table 1
Comparison with table 1 of Childress and Soward (1989). Here β = δR′1/2. Columns
3–5 give results for R′1/2α(+) and columns 6–8 give those for R′1/2α(−). The labels
are ‘sim’ for results computed numerically using a two-dimensional simulation for
the value of R′ given, ‘bl’ for the numerical solution of the boundary layer equations
(valid in the limit R′ →∞) taken from Childress and Soward (1989), and ‘asy’ for
their asymptotic approximation valid for large R′ and large β.

where

U = 2−1/2(A + B), L =
√

2, δ = (B − A)/(B + A). (4.7)

The α-tensor has eigenvalues α′
1 and α′

2 but now takes the form

α′ = 1
2




α′

1 + α′
2 α′

1 − α′
2

α′
1 − α′

2 α′
1 + α′

2



 . (4.8)

Note that α′
1 = −Lα(+) and α′

2 = −Lα(−), in the notation of Childress and
Soward (1989) (see their equation (1.20)). The scaling α(−) = 2

3δ
3R′ given in

their equation (3.23) for δ % 1, then becomes α2 = C1R with C1 = −2
3 L2U2δ3,

and this is what used in figure 14(b).

Using the Childress and Soward (1989) coordinate system and related quan-
tities, table 1 gives results for the α-effect computed in our simulations for
comparison. There is further explanation in the table caption. They consider
a limit in which the channel width goes to zero as R′ → ∞, keeping the pa-
rameter β = δR′1/2 constant. There is good agreement, and our simulations
for moderate R′ confirm their boundary layer calculations, valid for large R′

and their asymptotic theory, valid for large R′ and large β.
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Conclusions

Global alpha-effect modes: small window for small k; 
require double periodicity.

Cat’s eye modes: require single periodicity; fastest 
growing modes.

Ponomarenko modes: require only a single 
overturning cell; slow growing modes.

Dynamics: modes for Ekman instability equilibrate 
with low-level, irregular magnetic fields (Pu Zhang).

http://www.maths.ex.ac.uk/~adg


