DYNAMO ACTION IN FLOWS WITH CAT'S EYES

ALICE COURVOISIER ANDREW GILBERT YANNICK PONTY

GAFD vol 99, 413-429 (2005).

http://www.maths.ex.ac.uk/~adg

DYNAMOS IN FLOWS GENERATED BY EKMAN INSTABILITY

Flow driven by shear or convection in a rotating frame. Ekman layer can become unstable giving cat's eye rolls (Ponty, Gilbert, Soward 2001).

SIMPLIFIED PLANE LAYER FLOW

 $\boldsymbol{u} = (\psi_y, -\psi_x, w), \quad \psi = \psi(x, y), \quad w = w(x, y).$

 $\psi = -\frac{ay^2 + b\cos x}{a + b\cos x} + \frac{b}{b - a}, \quad w = c\psi, \quad a = 5, \quad b = -1, \quad c = 1.$

PONOMARENKO AND SEPARATRIX MODES

DYNAMO MECHANISM

GROWTH RATES

R = 1000 $\partial_t B = \nabla \times (\mathbf{u} \times \mathbf{B}) + \varepsilon \nabla^2 B, \quad \nabla \cdot \mathbf{B} = 0,$ $\mathbf{B} = \mathbf{b}(x, y) e^{pt + ikz} + \text{complex conjugate.}$

B_Z IN X-Y PLANE

R = 1000

k = 0.001

B² AVERAGED OVER Z, IN X-Y PLANE

(a)

(c)

(b)

$$k = 1.0$$

k = 0.001

CRITERION FOR PONOMARENKO MODES

Growing Ponomarenko modes can only occur if this purely geometrical condition is satisfied: generation overcomes enhanced diffusion (Soward 1990, Gilbert & Ponty 2000).

MAXIMUM GROWTH RATES

Fastest growing modes for each value of R: maximise Re p over k for given R. Appear to have $k = o(R^{1/2}), \quad \text{Re } p = o(1),$

as far as we can tell numerically (cf. Soward 1997).

W NOT A FUNCTION OF PSI

 $\psi = A\cos x - B\cos y, \quad w = A\cos x - B\cos(y - \phi),$

Earlier examples had w a function of psi, but this is not the case for the Ekman instability.

FROM ROBERTS' FLOW TO CAT'S EYES

 $\boldsymbol{u} = A(0, \sin x, \cos x) + B(\sin y, 0, -\cos y).$

k

G.O. Roberts' flow modes (square cells) appear distinct from cat's eye modes. As the channels open up the Roberts' mode disappears and the cat's eye mode takes over

LOW K: ALPHA EFFECT

$$\partial_t \overline{B}_1 = -\partial_z (\alpha_2 \overline{B}_2), \quad \partial_t \overline{B}_2 = \partial_z (\alpha_1 \overline{B}_1),$$

 $p \simeq \pm k \sqrt{\alpha_1 \alpha_2}.$ $0 < k \ll 1,$

$$\alpha_1 = O(R^{-3/2}), \quad \alpha_2 = C_1 R.$$

Childress & Soward 1989

WINDOW OF LOW K MODES

R=32, 64, 128 Solid: numerical, dotted: alpha-effect

Alpha effect only functions in a narrow window $0 < k \le O(R^{-1})$ that vanishes with increasing R (Childress & Soward 1989).

COMPARISON

eta	R'	$R'^{1/2}\alpha^{(+)}$: sim	bl	asy	$R'^{1/2} \alpha^{(-)}$: s	δ sim	$= (B_{\rm bl})$	(B - A)/(B) asy	+A).
0.5	25	0.2214			1.37	792			
0.5	64	0.2227			1.38	805			
0.5	100	0.2232			1.38	812			
0.5	∞		0.2246	0.2248		1	.383	1.320	
1.0	64	0.1172			3.35	582			
1.0	100	0.1177			3.36	646			
1.0	144	0.1179			3.36	680			
1.0	∞		0.1186	0.1250			8.377	3.455	

Table 1

Comparison with table 1 of Childress and Soward (1989). Here $\beta = \delta R'^{1/2}$. Columns 3–5 give results for $R'^{1/2}\alpha^{(+)}$ and columns 6–8 give those for $R'^{1/2}\alpha^{(-)}$. The labels are 'sim' for results computed numerically using a two-dimensional simulation for the value of R' given, 'bl' for the numerical solution of the boundary layer equations (valid in the limit $R' \to \infty$) taken from Childress and Soward (1989), and 'asy' for their asymptotic approximation valid for large R' and large β .

CONCLUSIONS

Global alpha-effect modes: small window for small k; require double periodicity.

Cat's eye modes: require single periodicity; fastest growing modes.

Ponomarenko modes: require only a single overturning cell; slow growing modes.

Dynamics: modes for Ekman instability equilibrate with low-level, irregular magnetic fields (Pu Zhang).

http://www.maths.ex.ac.uk/~adg