Introduction to galactic dynamos

Anvar Shukurov

School of Mathematics and Statistics Newcastle University, UK **Spiral galaxies:** thin rotating discs of 10^{10} stars and interstellar gas, $\langle n \rangle \simeq 1 \,\mathrm{cm}^{-3}$, $10^3 \lesssim n \lesssim 10^{-3} \,\mathrm{cm}^{-3}$, $10 \lesssim T \lesssim 10^6 \,\mathrm{K}$

M51

NGC 891

Rotation curves and shear in the Milky Way (solid) and in a generic galaxy (dashed)

Elliptical galaxies

Triaxial ellipsoids of 10^{11} stars and hot interstellar gas, $\langle n \rangle \simeq 10^{-3} \,\mathrm{cm^{-3}}$, $T \simeq 10^7 \,\mathrm{K}$

M87

M86

Rotation: insignificant $(V \lesssim 100 \, \mathrm{km \, s^{-1}})$

Plausibly host fluctuation dynamos (Moss & Shukurov, MNRAS, 279, 229, 1996)

The multi-phase interstellar medium (ISM) in spiral galaxies

Supernova explosions \Rightarrow hot, tenuous gas \Rightarrow slow cooling \Rightarrow pervasive hot regions

Supernovae \Rightarrow transonic turbulence \Rightarrow compression \Rightarrow cooling \Rightarrow cool clouds

Gravitational & thermal instabilities \Rightarrow cold, dense clouds

Phase	Origin	Density	Temperature	Size	Volume
		$[cm^{-3}]$	[K]	[pc]	fraction, %
Molecular	Gravity,	10^{3}	10	10	0.1
clouds	thermal				
	instability				
Hydrogen	Compression	20	100	100	2
clouds	•				
Diffuse warm gas		0.1	10^{4}	—	60
Hot gas	Supernovae	10^{-3}	10^{6}	100-1000	38

The multi-layered ISM

The warmer is the component of the ISM, the more it expands away from the Galactic midplane.

Galactic fountain:

hot gas rises to the halo, cools, and returns to the disc in $\simeq 10^9\,{\rm yr}$

Galactic gaseous halos:

turbulent, rotating, hot, ionized, quasi-spherical gaseous envelopes of galactic discs

Multiple supernovae break through the gas layer to fill the space above with buoyant hot gas

 \Rightarrow galactic halo, $n \simeq 10^{-3} \,\mathrm{cm}^{-3}$, $T \simeq 10^{6} \,\mathrm{K}$, $c_{\mathrm{s}} \simeq 100 \,\mathrm{km \, s}^{-1}$, $L \simeq 15 \,\mathrm{kpc}$

Neutral hydrogen supershell distance 6.5 kpc, diameter 600 pc, vertical size 1.1 kpc (N. M. McLure-Griffits & J. R. Dickey)

Simulation of the superbubble breakout to the halo (M-M. MacLow) gas density in a vertical cross-section 800 pc × 800 pc

Interstellar turbulence: driven by explosions of supernova stars

STARBURST REGION NGC 604 in M33:

200 young massive stars (15–60 solar masses) in a region 1,500 light years across.

Expanding supernova shells drive motions in the ambient gas

\Rightarrow turbulence in the ISM

Turbulent scale: l_0 = shell size at pressure balance $l_0 \simeq 0.1 \,\mathrm{kpc} \approx 300 \,\mathrm{light} \,\mathrm{yr}$ Turbulent speed: v_0 = expansion velocity at pressure balance $v_0 \simeq 10 \,\mathrm{km \, s^{-1}} \approx c_{\mathrm{sound}}$ A nearly Kolmogorov spectrum: $v_l \propto l^{1/3}$, over a wide range of scales $10^{10} \,\mathrm{cm} \leq l \leq 10^{20} \,\mathrm{cm}$

(Armstrong et al., ApJ, 443, 209, 1995)

Interstellar medium in spiral galaxies:

- rotating,
- stratified,
- turbulent,
- electrically conducting

fluid (plasma) — perfect environment for various types of dynamo action.

Magnetic fields observed in spiral galaxies $(\vec{B} = \vec{B} + \vec{b}, \langle \vec{B} \rangle = \vec{B})$

Synchrotron (radio) emission of relativistic electrons, $I \propto \int_0^L n_{\rm rel} B_{\perp}^2 ds$.

Large-scale magnetic field *B*:

traced by the polarized emission, $P \propto \int_0^L n_{\rm rel} B_{\perp}^2 ds$, and Faraday rotation in thermal gas, $\text{RM} = K \int_0^L n_{\rm e} \vec{B} \cdot d\vec{s}$

Turbulent magnetic field b: traced by the unpolarized emission, I - P

M51, *I* contours & *B*-vectors at λ 3 cm, resolution 700 pc

(A. Fletcher & R. Beck)

Approximate equipartition between magnetic and turbulent energy:

 $b \simeq \sqrt{4\pi\rho v^2} \simeq 5\,\mu \mathrm{G} \ ,$ $\frac{b^2}{B^2} \simeq 3.$

The *B*-vector of polarized synchrotron emission is parallel to \vec{B}_{\perp} .

Large-scale magnetic field: trailing spiral, moderate pitch angle $p = -(10^{\circ}-30^{\circ})$

<u>Total</u> magnetic field in a sample of spiral galaxies (R. Beck)

\mathcal{B} and B in the Milky Way (E. M. Berkhuijsen)

Theories of galactic magnetic fields

Primordial magnetic fields

are rapidly twisted by differential rotation and removed from the disc by reconnection, turbulent diffusion and magnetic buoyancy;

produce magnetic structures incompatible with observations (wrong symmetry, pitch angle, strength)

Mean-field dynamo

• A natural product of turbulence in a rotating, stratified object

(Parker 1955; Steenbeck, Krause & Rädler 1966; Moffatt 1978; Krause & Rädler 1980).

- Compatible with our knowledge of spiral galaxies.
- Reliable kinematic (fixed velocity field) theory.
- Nonlinear behaviour is still controversial:
 - numerical experiments with idealized models indicate saturation at a low level $B\simeq R_{\rm m}^{-1/2}B_{\rm eq}$ (Vainshtein & Cattaneo 1992,...)
 - magnetic helicity flux through the boundaries is vital for the dynamo (?)

(Blackman & Field 2000, Kleeorin et al. 2000, Brandenburg & Subramanian 2000)

- progress towards more realistic models is hard and slow

(accretion discs—Brandenburg et al. 1995; galactic discs—Korpi et al. 1999)

What's unusual about galaxies as dynamo systems?

- The ISM has a complicated, **multi-phase structure**, with strong interactions between the phases
- Galactic discs are open systems with strong mass/magnetic field interchange with the halo

Mean-field dynamo in a thin disc

Induction equation:

$$\frac{\partial \vec{\mathcal{B}}}{\partial t} = \nabla \times (\vec{U} \times \vec{\mathcal{B}} - \eta \nabla \times \vec{\mathcal{B}})$$

 $\vec{\mathcal{B}} = \vec{B} + \vec{b} , \qquad \langle \vec{\mathcal{B}} \rangle = \vec{B} , \qquad \langle \vec{b} \rangle = 0 .$ $\vec{U} = \vec{V} + \vec{v} , \qquad \langle \vec{U} \rangle = \vec{V} , \qquad \langle \vec{v} \rangle = 0 .$

Turbulent e.m.f.:

$$\vec{\mathcal{E}} = \langle \vec{v} \times \vec{b} \rangle \approx \alpha \vec{B} - \beta \nabla \times \vec{B}$$

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left[\alpha \vec{B} + \vec{V} \times \vec{B} - (\beta + \eta) \nabla \times \vec{B} \right]$$

(+ Navier–Stokes eqn. + energy equation + · · ·)

Thin discs (spiral galaxies, accretion discs):

$$rac{\partial}{\partial z} \gg rac{\partial}{\partial r}, rac{\partial}{r\partial \phi}, \qquad \lambda = rac{h}{R} \ll 1 \;.$$

Axisymmetric kinematic solutions:

$$\begin{pmatrix} B \\ A \end{pmatrix} = \exp\left(\Gamma t\right) \left[Q(r/\lambda^s) \begin{pmatrix} b(z;r) \\ a(z;r) \end{pmatrix} + \ldots \right]$$

Lowest order in λ :

$$\gamma b_r = -\frac{\partial}{\partial z} (\alpha b_{\phi}) + \beta \frac{\partial^2}{\partial z^2} b_r ,$$

$$\gamma b_{\phi} = G b_r + \beta \frac{\partial^2}{\partial z^2} b_{\phi} , \qquad G = r d\Omega / dr$$

First order in λ (disc surrounded by vacuum):

$$\begin{split} \Gamma q(r) &= \gamma(r)q(r) + \lambda \eta(r) \mathcal{L} \left\{ q(r) \right\} , \\ q(r) &= Q(r)a(1;r) , \\ \mathcal{L} \left\{ q \right\} = \frac{1}{r} \int_0^\infty W(r,r') \; \frac{\partial}{\partial r'} \left[\frac{1}{r'} \frac{\partial}{\partial r'} (r'q) \right] \, dr' , \\ W(r,r') &= rr' \int_0^\infty J_1(kr) \, J_1(kr') \, dk , \text{ a singular kernel.} \end{split}$$

Non-local magnetic connection through the vacuum (halo), + local, diffusive coupling of regions at different radii: $B_r(h) = O(\lambda)$. 'Simplified' version: $B_r(h) = 0$,

$$\Gamma Q = \gamma(r) Q + \, \lambda^2 \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r Q(r)) \right] \,,$$

Schrödinger-type equation, with potential $-\gamma(r)$.

With
$$\alpha$$
-quenching, $\alpha = \frac{\alpha_0}{1 + B^2/Q_0^2}$:

$$\frac{\partial Q}{\partial t} = \gamma(r) \left(1 - \frac{Q^2}{Q_0^2}\right) Q + \lambda^2 \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (rQ(r))\right]$$

Dynamo control parameters

$$R_{\omega} = \frac{Gh^2}{\beta} \qquad \text{differential rotation,} \qquad G = r\frac{d\Omega}{dr}$$
$$R_{\alpha} = \frac{\alpha h}{\beta} \qquad \alpha \text{-effect,} \qquad \alpha \simeq \frac{l^2\Omega}{h}$$

Dynamo number
$$D = R_{\alpha}R_{\omega} \simeq 10 \frac{h^2}{v^2} r\Omega \frac{d\Omega}{dr} \simeq -10 \left(\frac{h\Omega}{v}\right)^2 \gtrsim 10$$

Dynamo action occurs ($\gamma > 0$) for $|D| \ge |D_{\rm cr}| \approx 10$

Regeneration rate of the regular magnetic field: $\gamma \simeq \frac{\beta}{h^2} \left(\left| \frac{D}{D_{\rm cr}} \right|^{1/2} - 1 \right) \simeq (1-10) \, {\rm Gyr}^{-1}.$

 $B_0 \propto \sqrt{4\pi\rho v^2}$

Steady-state strength of the regular magnetic field: $B \simeq B_0 \sqrt{\frac{D}{D_{\rm cr}}} - 1$.

Galactic dynamo parameters are reasonably well known from observations

 $\Omega \simeq 20 \,\mathrm{km \, s^{-1} \, kpc^{-1}}$ angular velocity of rotation, $r \simeq 10 \,\mathrm{kpc}$ galactocentric radius, scale height of the stratified, ionized disc, $h \simeq 500 \,\mathrm{pc}$ $\beta \simeq \frac{1}{3} lv \simeq 0.3 \, \mathrm{kpc} \, \mathrm{km} \, \mathrm{s}^{-1}$ turbulent magnetic diffusivity, $\alpha \simeq \frac{l^2 \Omega}{h} \simeq 1 \,\mathrm{km \, s^{-1}}$ helical part of the turbulent velocity, $v \simeq 10 \,\mathrm{km \, s^{-1}}$ turbulent velocity, $l \simeq 100 \,\mathrm{pc}$ turbulent scale, $\rho \simeq 1 \, m_{\rm H} \, {\rm cm}^{-3}$ gas density. $R_{\omega} \simeq -15$, $R_{\alpha} \simeq 1$, $D \simeq -15$ at the Solar orbit

Local kinematic dynamo

Lowest-order in $\lambda = h/r$, slab surrounded by vacuum:

$$\gamma b_r = -\frac{\partial}{\partial z} (\alpha b_{\phi}) + \frac{\partial^2 b_r}{\partial z^2}$$
$$\gamma b_{\phi} = D b_r + \frac{\partial^2 b_{\phi}}{\partial z^2} ,$$
$$b_r(\pm 1) = b_{\phi}(\pm 1) = 0 .$$

,

Symmetry:

 $\alpha(z) = -\alpha(-z) \Rightarrow$ $B_r(-z) = -B_r(z), \quad B_\phi(-z) = -B_\phi(z)$ dipolar, odd

 $B_r(-z) = B_r(z), \quad B_\phi(-z) = B_\phi(z)$

Dominant symmetry in a thin disc

 $\alpha=z,\,|D|\ll1$: $\gamma^{\rm (dipole)}\,\approx\,-\pi^2+\sqrt{-\frac{1}{2}D}\,,$
 $\gamma^{\rm (quadrupole)}\,\approx\,-\frac{1}{4}\pi^2+\sqrt{-\frac{1}{2}D}$

- Lower dynamo modes are non-oscillatory, ${\rm Im}\,\gamma=0.$
- Magnetic field grows for $|D| > |D_{cr}|$, with

$$D_{\rm cr}^{\rm (dipole)} \approx -2\pi^4 \approx -200$$
, $D_{\rm cr}^{\rm (quadrupole)} \approx -\frac{1}{8}\pi^4 \approx -10$,

• Quadrupolar modes are dominant in a thin disc,

 $\gamma^{(\text{quadrupole})} > \gamma^{(\text{dipole})}$ for a given D.

Even (quadrupole) symmetry of magnetic field in the Milky Way

Magnetic structure of the Orion arm: wavelet transform of $\text{RM} = K \int_0^L n_e \vec{B} \cdot d\vec{s}$ at a scale 76° (Frick et al. 2000)

The sky map of the local line-of-sight magnetic field weighted with $n_{\rm e}$

Red: magnetic field towards the observer, Blue: magnetic field away from the observer

The local magnetic field is similarly directed above and below the Galactic equator indicating even overall symmetry

Properties of the even solution

$$\frac{\partial B_r}{\partial t} = -\frac{\partial}{\partial z}(\alpha B_{\phi}) + \beta \frac{\partial^2}{\partial z^2} B_r ,$$

$$\frac{\partial B_{\phi}}{\partial t} = GB_r + \beta \frac{\partial^2}{\partial z^2} B_{\phi} ,$$

$$\frac{\partial B_r}{\partial z}(0,t) = \frac{\partial B_{\phi}}{\partial z}(0,t) = 0 .$$

Integrate over 0 < z < h, use quadrupolar 'b.c.' at z = 0, vacuum b.c. at z = h:

$$\frac{\partial}{\partial t} \int_0^h B_r \, dz = \beta \frac{\partial B_r}{\partial z}(h) ,$$

$$\frac{\partial}{\partial t} \int_0^h B_\phi \, dz = G \int_0^h B_r \, dz + \beta \frac{\partial B_\phi}{\partial z}(h) ,$$

 $\beta = 0 \Rightarrow \int_0^h B_r dz = \text{const} \Rightarrow \text{dynamo needs diffusion}$

$$\frac{\partial}{\partial t} \int_0^h B_r \, dz = \beta \frac{\partial B_r}{\partial z}(h) \; ,$$

$$\frac{\partial}{\partial t} \int_0^h B_\phi \, dz = G \int_0^h B_r \, dz + \beta \frac{\partial B_\phi}{\partial z}(h) \; .$$

Suppose that $B_{\phi} > 0$ in 0 < z < h.

$$B_{\phi}(h) = 0 \quad \Rightarrow \quad \frac{\partial B_{\phi}}{\partial z}(h) < 0.$$

Then, for G < 0,

$$\int_0^h B_r \, dz < 0 , \qquad \beta \frac{\partial B_r}{\partial z}(h) < 0 ,$$

i.e., the dynamo needs diffusive flux of B_r from the disc.

Magnetic pitch angle, $p = \arctan B_r / B_{\phi}$

Self-excited magnetic fields must have $B_r/B_\phi \neq 0$:

$$\gamma B_r = -\frac{\partial}{\partial z} \alpha B_\phi + \beta \frac{\partial^2}{\partial z^2} B_r ,$$

$$\gamma B_\phi = G B_r + \beta \frac{\partial^2}{\partial z^2} B_\phi ,$$

No-z approximation: $\partial/\partial z \rightarrow 1/h$,

$$\left(\gamma + \frac{\beta}{h^2}\right)B_r + \frac{\alpha}{h}B_\phi = 0, \qquad \left(\gamma + \frac{\beta}{h^2}\right)B_\phi - GB_r = 0$$

$$\Rightarrow \qquad \tan p \equiv \frac{B_r}{B_\phi} \simeq \sqrt{\frac{\alpha}{-Gh}} = -\sqrt{\frac{R_\alpha}{|R_\omega|}} = -\sqrt{\frac{l}{h}\frac{\Omega/r}{|d\Omega/dr|}}$$

 $R_{lpha}\simeq 1\;,\;R_{\omega}\simeq -10\;\Rightarrow\;p\simeq -20^\circ$ as observed + correct radial trend

(1)

Magnetic pitch angle in M31

squares with error bars: observations (Fletcher et al. 2000), solid: $\alpha^2 \omega$ -dynamo with α -quenching (Moss et al. 1998), dashed: (1) with the rotation curve of Daharveng & Pellet (1975) & Haud (1981), dotted: (1) with the rotation curve of Braun (1991)

Nonlinear state and magnetic helicity conservation

 $(\vec{\mathcal{B}} = \nabla \times \vec{\mathcal{A}})$ Magnetic helicity: $(\vec{\mathcal{A}}, \vec{\mathcal{B}}) = (\vec{A}, \vec{B}) + (\vec{a}, \vec{b}) , \quad (\vec{A}, \vec{B}) = \langle (\vec{\mathcal{A}}, \vec{\mathcal{B}}) \rangle$ $H = \langle \vec{\mathcal{A}} \cdot \vec{\mathcal{B}} \rangle \equiv H_B + H_b$, $H_B = \langle \vec{A} \cdot \vec{B} \rangle \simeq -LB_r B_\phi \simeq \frac{1}{4} LB^2$, for $B_r/B_\phi = -\sin p$, $p = 15^\circ$; $L \gtrsim 1 \,\mathrm{kpc}$ $H_b = \langle \vec{a} \cdot \vec{b} \rangle \simeq -l_d b^2$, with $l_d \lesssim l \simeq 100 \,\mathrm{pc}$, $l_d = \mathrm{scale of} H_b$ $t = 0 \quad \Rightarrow \quad \vec{\mathcal{B}} \approx 0 \quad \Rightarrow \quad H \approx 0$ $H = 0 \Rightarrow \frac{B^2}{h^2} \simeq \frac{4l_d}{I} \simeq 0.4 \; ,$ consistent with observations for $l_d \simeq l$ However, $\frac{B^2}{\hbar^2} \simeq R_{\rm m}^{-1}$ if $\frac{l_d}{L} \simeq R_{\rm m}^{-1}$

Galactic fountain removes magnetic field from the disc

Galactic fountain: hot gas outflow through the disc surface, $u_z = 140-200 \text{ km s}^{-1}$ Surface filling factor of the hot gas: $f_S = 0.2-0.3$

Density ratio in the disc and halo: $\rho_h/\rho_d \simeq 10^{-2}$ - 10^{-3}

Effective advection speed: $U \simeq f_S \frac{\rho_h}{\rho_d} V_z \simeq 0.1 - 2 \,\mathrm{km \, s^{-1}}$

Helicity balance

Random field \vec{b} has finite correlation length \Rightarrow define volume density of linkages of \vec{b} :

 $\chi \approx H_b$ for $\nabla \cdot \vec{a} = 0$

Evolution equation:

$$\frac{\partial \chi}{\partial t} + \nabla \cdot \vec{F} = -2\vec{\mathcal{E}} \cdot \vec{B} - 2\eta \overline{\vec{j} \cdot \vec{b}}$$

 $\vec{j} = \nabla \times \vec{b}, \quad \vec{J} = \nabla \times \vec{B}, \quad \text{electric current densities}$ $\vec{\mathcal{E}} \approx \alpha \vec{B} - \beta \nabla \times \vec{B}, \quad \text{mean electromotive force}$ $\vec{F} = \chi \vec{U}, \quad \text{advective flux.}$

$$lpha = lpha_{ ext{kinetic}} + lpha_{ ext{m}}, \qquad lpha_{ ext{m}} \simeq rac{1}{3} au k_0^2 rac{\chi}{
ho}$$

$$\frac{\partial \alpha_{\rm m}}{\partial t} = -2\beta k_0^2 \left(\frac{\vec{\mathcal{E}} \cdot \vec{B}}{B_{\rm eq}^2} + \frac{\alpha_{\rm m}}{R_{\rm m}} \right) - \nabla \cdot \left(\alpha_{\rm m} \vec{U} \right)$$

+ mean-field dynamo equations for B_r and B_ϕ

Numerical solution:

On:
$$\alpha_{\text{kinetic}} = z$$
, $R_{\omega} = -20$, $R_{\alpha} = 3$, $R_{\text{m}} = 10^5$,
 $U = U_0 z/h$, $1/(\eta_t k_1^2) \simeq 8 \times 10^7 \text{ yr}$, $B_{\text{eq}} = \sqrt{4\pi\rho v_0^2} \simeq 5\,\mu\text{G}$,
 10^{-2}
 10^{-4}
 10^{-4}
 10^{-4}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-6}
 10^{-7}
 10^{-7}
 10^{-7}
 10^{-7}

B at z = 0: $R_U = U_0 h/\beta = 1$ (solid), 0 (dashed), 0.03 (dotted) \Rightarrow moderate advection facilitates the dynamo

 $\eta_{\rm t} k_1^2 t$

Inset: $R_U = 0.3$ (solid), 4.5 (dashed), 6 (dotted), 9 (dash-dotted) \Rightarrow strong advection destroys the dynamo

Optimal advection: $R_U \simeq 0.3 \Rightarrow U \simeq 0.2 \,\mathrm{km \, s^{-1}}$, similar to the estimated value.

Conclusions

- The mean-field dynamo theory form provides a remarkably satisfactory description of virtually all gross features of galactic magnetic fields.
- Most parameters of galactic dynamos can be expressed in terms of observable quantities, leaving relatively little freedom for speculation.
- Magnetic field properties captured by the dynamo theory:
 - pitch angle of magnetic field and its variation with r;
 - quadrupolar symmetry;
 - predominantly axially-symmetric structure;
 - magnetic structures in specific galaxies (radial reversals in the Milky Way, vertical reversal in M51, synchrotron ring M31).

(details in AS, astro-ph/0411739)

Critical values: $R_{\alpha} = 0.8$ for $R_{\omega} = -6$, $R_U = 1$.

