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Consider an astrophysical accretion disk

Angular velocity Ω ∼ r−3/2 decreases outward

Angular momentum Ωr2 ∼ r1/2 increases outward
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For material to spiral inward, it must lose angular

momentum, that is, transfer it to material further out.

How to accomplish this?

Molecular viscosity orders of magnitude too small.

Invoke turbulent viscosities. . . How to generate turbulence?

The Rayleigh Criterion: if the angular momentum

increases outward, the flow is hydrodynamically stable.
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The Magnetorotational Instability

A flow is magnetohydrodynamically stable only if

the angular velocity itself increases outward,

not just the angular momentum.

Velikhov 1959, Chandrasekhar 1960 (but not 1961!)

Balbus & Hawley 1991 (cited over 800 times)
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B
0

∂U

∂t
+ U · ∇U = −∇Φ + B · ∇B/µρ

∂B

∂t
= ∇× (U ×B)

U = Ωr êφ + u B = B0 êz + b
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WKB Analysis: Look for modes u,b ∼ exp(ikz + iωt)

iω uφ + r−1(Ωr2)′ ur = ikB0 bφ/µρ

iω ur − 2Ωuφ = ikB0 br/µρ

iω bφ = ikB0 uφ + rΩ′ br

iω br = ikB0 ur
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Nonmagnetic:

iω ur − 2Ωuφ = 0, iω uφ + r−1(Ωr2)′ ur = 0

ω2 = 2Ω r−1(Ωr2)′, so stable if (Ωr2)′ > 0

The Rayleigh Criterion
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Magnetic:

ω4 − ω2
[

2k2v2

A
+ 2Ωr−1(Ωr2)′

]

+ k2v2

A

[

k2v2

A
+ r(Ω2)′

]

= 0

v
A

= B0

/√
µρ

If we now set v
A

= 0, do we recover the

previous nonmagnetic result? Not quite!

ω4 = ω2
[

2Ωr−1(Ωr2)′
]
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ω4 − ω2
[

2k2v2

A
+ 2Ωr−1(Ωr2)′

]

+ k2v2

A

[

k2v2

A
+ r(Ω2)′

]

= 0

ω4 − bω2 + c = 0 =⇒ ω2

± =
1

2

[

b±
√

b2 − 4c

]

Stability requires

• b2 − 4c > 0, otherwise ω2

± would be complex

• 4c > 0, otherwise ω2

− would be negative
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Stability therefore requires that k2v2

A
+ r(Ω2)′ > 0

For v
A
→ 0, this reduces to Ω′ > 0, not (Ωr2)′ > 0

Even for v
A
6= 0, we can always let k → 0,

so the stability criterion is always Ω′ > 0.

The Magnetorotational Instability

Any flow in which Ω decreases outward is unstable,

regardless of how weak or strong the field B0 is.
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(iω)max = r|Ω′|/2, for k2v2

A
= −rΩ′(Ω + rΩ′/4)

For Ω ∼ r−3/2, (iω)max = 3

4
Ω, for kv

A
=

√
15

4
Ω

Wavelength λ = 2π
k = 8π√

15
Ω−1 v

A
∼ B0

• If B0 is too weak, λ is too small, and

diffusive effects kill off the MRI after all.

• If B0 is too strong, λ is bigger than

the entire disk, again killing off the MRI.
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The Rayleigh Criterion: A Physical Interpretation

−∇Φ = −Ω2r êr

Suppose the angular momentum increases outward.

Now imagine a disturbance that moves a ring of fluid inward:
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=⇒

Since the force field −∇Φ is purely radial, the ring will con-

serve its A.M. Its A.M. (and hence velocity) is then greater

than that of the surrounding fluid at the new radius. It is

therefore rotating too fast for the force field at this r, so

it will move outward again. The flow is therefore stable.

13



The MRI: A Physical Model

The magnetic tension force B · ∇B/µρ is not purely radial.

A.M. is therefore not conserved on individual fluid rings,

and the Rayleigh criterion simply does not apply.

• Angular momentum is indeed transferred outward.

• An azimuthal initial field B0 would not work.

• The azimuthal component of b is crucial though!
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The MRI in spherical Couette flow?

Sisan et al., Phys. Rev. Lett. 93, 114502 (2004)

Ω
i

B0
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The MRI in cylindrical Taylor-Couette flow

Rüdiger & Zhang 2001, Ji et al. 2001

Ω
i

Ω
o

B0 Ω(r) = c1 + c2/r
2

µ̂ =
Ωo

Ωi
, Re =

Ωir
2

i

ν

Ha =
B0ri√
ρµην

, Pm =
ν

η
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u = ∇× (ψ êφ) + v êφ b = ∇× (a êφ) + b êφ

Look for modes ∼ exp(ikz + γt)

Reγ v = D2v +Re ik r−1(Ωr2)′ ψ +Ha2 ik b

Re γ D2ψ = D4ψ −Re 2ikΩ v +Ha2 ik D2a

PmRe γ b = D2b− PmRe ikΩ′r a+ ik v

PmRe γ a = D2a+ ik ψ
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Fix ri/ro = 1/2, µ̂ = Ωo/Ωi = 0.3
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Pm=10−5

Pm=10−6

log(Ha) log(S)

log(Rec) log(Rmc)

Rec ∼ Pm−1 =⇒ PmRe = Ωir
2

i /η ≡ Rm ≈ 10

Hac ∼ Pm−1/2 =⇒ Pm1/2Ha = v
A
ri/η ≡ S ≈ 3

Eq. for b : PmReγ b = D2b− PmRe ikΩ′r a+ ik v
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Take the imposed field to be B0 = êz + β (ri/r) êφ

Hollerbach & Rüdiger 2005

Reγ v = D2v +Re ik r−1(Ωr2)′ ψ +Ha2 ik b

Re γ D2ψ = D4ψ −Re 2ikΩ v +Ha2 ik(D2a+ 2βr−2b)

PmReγ b = D2b− PmRe ikΩ′r a+ ik v − 2ik βr−2ψ

PmReγ a = D2a+ ik ψ
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v ψ b a

Drift speed 0.066 Ωiri
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‘PROMISE’

Potsdam ROssendorf Magnetic InStability Experiment

P=Rüdiger; RO =Stefani, Gundrum, Gerbeth; . . .
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