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=> electromotive force => electric current => 
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Abstract

Dynamo theory concerns the generation of magnetic field from the flow of an elec-
trically conducting fluid, relevant to the magnetic fields of the Earth, Sun, planets,
stars and galaxies. The review focusses on fundamental dynamo mechanisms. The
induction equation is derived as an approximation from Maxwell’s equations and
boundary conditions are discussed. Anti-dynamo theorems and upper bounds are
considered, followed by discussion of some basic models, the Ponomarenko dynamo
and G.O. Roberts dynamo. The application of dynamo theory to the Solar dynamo
and the geodynamo is then reviewed, with the introduction of the alpha effect, and
the concepts of alpha–squared and alpha–omega dynamos. Finally fast dynamos are
considered.
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1 Introduction

Sir Joseph Larmor (1919), at a meeting of the British Association for the
Advancement of Science, posed the question ‘How could a rotating body such
as the Sun become a magnet?’ He gave three suggestions of how this might
be achieved. In the first he refers to the motion of an electrically conducting
fluid, plasma in the case of the Sun, and what happens if this flows through
magnetic field lines:

“Such internal motion induces an electric field acting on the moving matter:
and if any conducting path around the Solar axis happens to be open, an
electric current will flow round it, which may in turn increase the inducing
magnetic field. In this way it is possible for the internal cyclic motion to
act after the manner of the cycle of a self-exciting dynamo, and maintain
a permanent magnetic field from insignificant beginnings, at the expense of
some of the energy of the internal circulation.”

20 June 2006

Possibility of self-excited field, as in a usual electrical dynamo.



Equations

most astrophysical and geophysical applications, the time scale over which
the electromagnetic field evolves is much longer than the time taken for light
to cross the system. For example the Sun’s field evolves over months and
years, and the Earth’s over decades and longer time scales. We may therefore
approximate Maxwell’s equations to obtain the induction equation, in which
electromagnetic waves are filtered out and the magnetic field plays a central
role. We then discuss boundary conditions and set out the dynamo problem.

Note that in this review we use ∂x, ∂y, etc., to denote derivatives, whereas
subscripts, whether numbers or the letters x, y, z, denote components of vec-
tors or other labels. We occasionally make reference to Abramowitz & Stegun
(1972); for succinctness these references are given in footnotes as AS followed
by the section or equation number.

2.1 Maxwell’s equations

Maxwell’s equations are

∇ · E = ρ/ε, (2.1)

∇ · B = 0, (2.2)

∇×B = µJ + µε∂tE, (2.3)

∇×E = −∂tB. (2.4)

Here E is the electric field, B the magnetic field, J the electric current,
and ρ the electric charge. We will assume here and below that the magnetic
permeability µ and the dielectric constant ε are constant, taking their free
space values. The speed of light c is defined by c−2 = εµ. We also have the
equation for conservation of charge

∂tρ +∇ · J = 0, (2.5)

which may be deduced from (2.1,2.3). We will eventually require a further
equation, namely some constitutive relation between the electrical current J
and the electromagnetic field, for example Ohm’s law, but we defer consider-
ation of this until we have further simplified the equations.

From Maxwell’s equations it is possible to isolate the energy and momentum of
the electromagnetic field. Suppose we have a continuum distribution of charge
with density ρ and velocity v. The corresponding current density is J = ρv
and the Lorentz force per unit volume is

f = ρ(E + v ×B) = ρE + J ×B. (2.6)
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Now we return to Ohm’s law. We have in mind a moving fluid with a velocity
field u(x, t). At a given point and time, we go into a comoving frame, velocity
u, where we measure modified fields given by

E′ = E + u×B, B′ = B, J ′ = J , (2.43)

within the current approximations, using (2.29–2.31) with γ(u) " 1. In this
frame we wish to relate the current to the ambient electric and magnetic fields,
and the simplest relation to impose is Ohm’s law

J ′ = σE′, (2.44)

where σ is the electrical conductivity of the medium. Back in the original
frame we have

J = σ(E + u×B). (2.45)

This is Ohm’s law in a moving medium, and a key part of the dynamo process:
motion across a field can generate a perpendicular current. This relation is
used very widely in dynamo theory, but is only an approximation, whose
validity depends on the material making up the moving fluid. We will not do
so, but at this point one could include other effects. For example the process
of ambipolar diffusion, important in galactic dynamos, gives a term of the
form (J ×B)×B on the right-hand side of (2.45) (see, for example, Zweibel,
1988; Brandenburg & Zweibel, 1995). The Hall effect is considered by Galanti,
Kleeorin & Rogachevskii (1994), which gives rise to an extra term proportional
to B × J .

From Ohm’s law (2.45) and the pre-Maxwell equations (2.36,2.37) we may
deduce the induction equation

∂tB = ∇× (u×B)−∇× (η∇×B). (2.46)

This is the fundamental equation studied in astrophysical and laboratory
MHD, and

η = (σµ)−1 (2.47)

is the magnetic diffusivity. It is important to note that high conductivity cor-
responds to low diffusivity and vice versa. We must still impose ∇ ·B = 0, al-
though note that if satisfied at some time t it must be satisfied subsequently, by
taking the divergence of (2.46). Equations (2.34,2.45) give the electric charge
with ∇ · (u×B) = −ρ/ε, but this is now decoupled and of little importance
to us.

Let the total magnetic energy in a bounded volume V be written as

EV (t) =
1

2µ

∫

V
|B|2 dV, (2.48)
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Maxwell’s equations

Ohm’s law

Neglecting the displacement current                     
(speeds much less than c) gives the induction equation
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with the magnetic diffusivity



For constant magnetic diffusivity and incompressible 
fluid flow              we are left with:

Simplifications

then using (2.42,2.45) we obtain

∂tEV + µ−1
∫

∂V
n · (E ×B) dS = −µη

∫

V
|J |2 dV −

∫

V
u · J ×B dV, (2.49)

where ∂V is the surface bounding V and n is a field of outward, normal unit
vectors. On the right-hand side it may be seen that magnetic energy is lost
through Ohmic dissipation (first term) and exchanged with kinetic energy
through working by the Lorentz force (second term). The surface integral on
the left-hand side represents the Poynting flux of energy out of V .

The induction equation is closely analogous to the vorticity equation. If we
assume incompressible flow

∇ · u = 0, (2.50)

as we shall do from now on, and constant diffusivity η or conductivity σ in
the region under consideration, then we may rewrite (2.46) as

∂tB + u ·∇B = B ·∇u + η∇2B. (2.51)

This is similar to the vorticity equation with B replacing vorticity ω = ∇×u,
and now decoupled from the fluid flow. In the equation are terms representing
transport, stretching and diffusion of the magnetic field. In the limit η = 0
of a perfect conductor (σ =∞) the magnetic flux through a material surface
is conserved, as similarly are circulations in inviscid fluid flow (see for exam-
ple, Batchelor, 1967). Mathematically the terms u ·∇B −B ·∇u represent
a Lie derivative, and indicate that the magnetic field is Lie-dragged in the
fluid flow for η = 0: magnetic vectors evolve like the displacements between
infinitessimally close fluid elements. Note one difference between vorticity and
magnetic fields, that dissipation at the microscopic level comes from currents
J = µ−1∇×B in the case of magnetic fields, but through the square of the
symmetric rate-of-strain tensor eij = 1

2(∂iuj + ∂jui) for fluid flow.

Finally note that if B is written in terms of a magnetic potential B = ∇×A,
then (2.46) may be uncurled to yield

∂tA = u× (∇×A) + η∇2A +∇F, (2.52)

where F is a scalar field reflecting the gauge freedom in defining A. Note that
uncurling an equation such as this in general only gives a locally defined scalar
field F . However in a space for which all closed curves may be continuously
contracted to a point, such as a sphere or spherical shell, F may be defined
globally (that is, as a single-valued function). In a space that is periodic in
one or more directions not all closed curves are contractible, and this requires
care in defining such potentials; in dynamo theory a global definition of such
a scalar is usually possible provided there is no mean magnetic field in the
direction of periodicity.
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2.3 The induction equation

We will not be using the full weight of Maxwell’s equations, but a simpler
system in which electromagnetic waves are filtered out. The key approximation
is that velocities in the system under consideration should be much smaller
than the speed of light c. We suppose that the system has typical spatial scale
L, time scale T , and velocities u with

u ∼ V ≡ L/T # c, (2.32)

where ∼ is here used to denote order of magnitude. In this case equation (2.4)
gives the estimate

E ∼ VB. (2.33)

This approximation means that the displacement current µε∂tE = c−2∂tE
may be dropped from (2.3) as it is negligible, a factor V2/c2 smaller than
∇×B. This leaves us with the pre-Maxwell equations

∇ · E = ρ/ε, (2.34)

∇ · B = 0, (2.35)

∇×B = µJ , (2.36)

∇×E = −∂tB. (2.37)

Using (2.1,2.3) gives the estimates

ρ ∼ εVB/L, J ∼ B/µL, (2.38)

which means that (2.5) may be approximated by

∇ · J = 0, (2.39)

and the Lorentz force reduces to

f = J ×B. (2.40)

The key estimate (2.33) means that the electric field drops out of the electro-
magnetic energy and the stress tensor, leaving us with

E = 1
2µ
−1B2, Tij = µ−1(BiBj − 1

2δijB
2). (2.41)

The energy equation remains unchanged,

∂tE +∇ · P = −W (P = µ−1E ×B, W = E · J), (2.42)

but the Poynting vector drops out of (2.10) and this becomes sadly nothing
more than a vector identity. In this approximation the electromagnetic field
possesses energy, but carries no momentum.
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Note analogy with vorticity equation: magnetic field line 
stretching competes with diffusion. By analogy we can 
define a magnetic Reynolds number R=UL/     with 

Fig. 3. The G.O. Roberts flow field in (4.45). The + and − signs show the direction
of the motion in z, with uz = 0 on the network of separatrices.

The flow field we consider is a member of the family of ABC flows (Beltrami,
1889; Arnold, 1965; Childress, 1970)

u = (C sin z + B cos y,A sin x + C cos z,B sin y +A cos x). (4.44)

These have the Beltrami property that ∇ × u = ku for a constant k; here
k = 1. If C = 0 and A = B = 1, the flow is independent of z,

u = (cos y, sin x, sin y + cos x) = (∂yψ,−∂xψ, ψ), ψ = sin y + cos x, (4.45)

and has the cellular structure shown in figure 3. This and similar flows are
considered numerically by G.O. Roberts (1970) and analytically by Childress
(1967, 1970) and G.O. Roberts (1972). We will follow their analysis in a low
Reynolds number limit for a large-scale field, using standard multiple-scale
asymptotic analysis.

The above flows are already non-dimensionalised and so we will use the in-
duction equation in the form

∂tB = ∇× (u×B) + R−1∇2B, ∇ ·B = 0, (4.46)

where R is the magnetic Reynolds number based on the scale of the cells and
magnitude of the flow, and is now taken to be small, R $ 1.

We consider a magnetic field B that depends both on the scale x = (x, y, z)
of the cellular flow, but also on a larger scale x = O(R−2). Diffusion of field
across a single cell occurs on a short time-scale t = O(R), and diffusion on scale
x = O(R−2) over times t = O(R−3). We therefore set t = Rτ , x = R−2X,
t = R−3T and replace

∂t = R−1∂τ + R3∂T , ∇ = ∇x + R2∇X, B = B0 + RB1 + · · · (4.47)

in the induction equation, with Bj = Bj(x, τ, X, T ).

On the small scales (x, τ), we will require that fields Bj are periodic in space
and time, and this means the imposition of solvability conditions that will
eventually govern the behaviour of field on large scales (X, T ). The velocity
field may be taken to be any flow that is strictly periodic in (x, τ) and has
zero mean over these fast variables, 〈u〉 = 0.
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and so growth can only occur when η ≤ aumax/π, or equivalently when the
magnetic Reynolds number

R = aumax/η ≥ π. (3.55)

This dimensionless parameter measures the strength of the flow field, com-
pared with the effect of diffusion, and is a key parameter in MHD. It is de-
fined as a velocity scale multiplied by a length scale, divided by the magnetic
diffusivity; its precise definition depends on the problem at hand. The above
bound is based only on the magnitude of velocity. However magnetic fields are
intensified not through motion so much as through stretching, by the term
B ·∇u in (2.51), and this is brought out in the next bound.

Upper bound 2. The next bound of Backus (1958) (see also Proctor, 1977)
makes the role of stretching explicit, but requires the additional no slip con-
dition that u = 0 on the boundary S of Vi. First write (∇ × B) × B =
B ·∇B −∇1

2 |B|2 and integrate by parts to show that
∫

Vi

u · (∇×B)×B dV =
∫

Vi

BiBj∂iuj dV. (3.56)

Now BiBj∂iuj = BiBjeij where eij = 1
2(∂iuj + ∂jui) is the symmetric rate-of-

strain tensor. If emax is the largest eigenvalue of this tensor in the volume V ,
at any time, then

−
∫

Vi

u · (∇×B)×B dV ≤ emax

∫

Vi

|B|2 dV. (3.57)

Putting this back in (3.52) and applying (3.22) then shows that the energy
satisfies

µ∂tEV ≤ (emax − ηπ2/a2)2µEV . (3.58)

A necessary condition for growth is that

R = a2emax/η ≥ π2, (3.59)

giving a new definition of the magnetic Reynolds number R. Note also that
for a normal mode, EV grows at a rate 2γ and so the above inequality gives a
bound on the growth rate,

γ ≤ emax(1− π2/R), (3.60)

with the above definition of R.

These are necessary conditions, but far from sufficient: it is clear they do
not capture the requirement that the fluid flow be sufficiently complicated,
especially in view of the toroidal flow anti-dynamo theorem 4 above. Another
upper bound has been derived by Roberts (1967, p. 75), while Busse (1975)
and Roberts (1987) give a bound on the magnitude of the poloidal flow needed
to overcome the toroidal flow anti-dynamo theorem.
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Can measure growth in magnetic energy in volume V:



Dynamos
• We have a `dynamo’ if the magnetic field is sustained: 

magnetic energy does not tend to zero as t tends to 
infinity for some value of R. 

• Kinematic problem: given a flow u(x,y,z,t), how fast 
does the magnetic energy grow? Linear, eigenvalue 
problem - lots of theory, clean issues.

• Dynamical problem: given a mechanism for driving a 
flow (convection, shear, paddles) how does the field 
grow and saturate? Nonlinear, chaotic, issues of (MHD) 
turbulence. Usually requires numerical treatment - little 
theory.



Solar dynamo:
11 year solar cycle

NASA/NSSTC/Hathaway 2005

NASA



Earth’s magnetic field:

at the surface, 

extrapolated down to the 
core-mantle boundary

Holne, Potsdam



Riga
Madison

Perm

Karlsruhe

Cadaraches

Dynamo experimentsMaryland



Why are dynamos interesting?

• Many astrophysical applications: galaxies, stars, 
planets, earth, accretion discs.

• Require complex flows (anti-dynamo theorems).

• Interesting linear problems (kinematic regime).

• Immensely challenging 3-d nonlinear problems.

• Wide scope: theory, numerics, observation and 
experiment. 

• Classical problem: William Gilbert, De Magnete 1600.



Anti-dynamo theorems
• A magnetic field of the form B(x,y,t) cannot be maintained 

by dynamo action. 

• A `planar’ flow, of the form (u(x,y,z,t),v(x,y,z,t),0) cannot 
maintain a magnetic field (Zeldovich’s theorem).

• An axisymmetric magnetic field, of the form B(r,ϑ,t) in   
(r, ϑ,ϕ) coordinates, cannot be maintained by dynamo 
action (Cowling’s theorem).

• A  `toroidal’ flow, of the form (0,v(r, ϑ,ϕ,t),w(r, ϑ,ϕ,t)) in   
(r, ϑ,ϕ) coordinates, cannot maintain a magnetic field.

In short: we can’t achieve a dynamo with a 
`simple’ flow or `simple’ field.



Upper bounds

The decomposition into toroidal and poloidal fields in spherical and Cartesian
geometry has the key property that the diffusive operator ∇2 maps poloidal
field to poloidal and toroidal to toroidal (see (3.7)). This does not carry over
to other coordinate systems. For example whereas in spherical geometry with
coordinates (r, θ, φ) there is no source term for the radial field r̂ · B from Bθ

or Bφ through the Laplacian, in cylindrical geometry with coordinates (r, θ, z)
there is, from Bθ, and this can allow a dynamo to function as we shall see
below in sections 4.1 and 4.2.

A question related to anti-dynamo theorems is whether a flow can maintain
a magnetic field with a zero poloidal field P = 0 (Kaiser, 1995) or a zero
toroidal field T = 0 everywhere in space (Kaiser, Schmitt & Busse, 1994). In
the former case the dynamo is said to be invisible as the whole magnetic field
exterior to the sphere r = a would be zero. It appears that with ‘reasonable’
fluid flows such dynamos do not exist.

3.5 Upper bounds

In the absence of fluid flow, u = 0, we have seen that field decays, with the
slowest decaying mode having γdecay = −ηπ2/a2 in spherical geometry. Since
we expect the growth rates of normal modes to behave continuously as we
increase the flow u from zero, it is clear that we will need to reach some
finite strength of flow before dynamo action can occur, with γ ≥ 0. There are
a number of upper bound results which make this precise. In each case we
consider the energy equation in the form

µ∂tEV = −η
∫

Vi

|∇×B|2 dV −
∫

Vi

u·(∇×B)×B dV (V = Vi ∪ Ve), (3.52)

from (2.64), and give an upper bound on the term which involves the flow field
u. We shall work in spherical geometry with insulating boundary conditions,
but there are analogues in Cartesian geometry.

Upper bound 1. For the first upper bound (Childress, 1969) we let umax be
the maximum value of |u| in the domain V and use the Cauchy–Schwartz
inequality and then inequality (3.22) to establish that

−
∫

Vi

u · (∇×B)×B dV ≤ umax

(∫

Vi

|∇×B|2 dV
)1/2 (∫

Vi

|B|2 dV
)1/2

≤ aumax

π

∫

Vi

|∇×B|2 dV. (3.53)

Putting this expression back in (3.52) shows that

µ∂tEV ≤
(

aumax

π
− η

) ∫

Vi

|∇×B|2 dV (3.54)
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Now we return to Ohm’s law. We have in mind a moving fluid with a velocity
field u(x, t). At a given point and time, we go into a comoving frame, velocity
u, where we measure modified fields given by

E′ = E + u×B, B′ = B, J ′ = J , (2.43)

within the current approximations, using (2.29–2.31) with γ(u) " 1. In this
frame we wish to relate the current to the ambient electric and magnetic fields,
and the simplest relation to impose is Ohm’s law

J ′ = σE′, (2.44)

where σ is the electrical conductivity of the medium. Back in the original
frame we have

J = σ(E + u×B). (2.45)

This is Ohm’s law in a moving medium, and a key part of the dynamo process:
motion across a field can generate a perpendicular current. This relation is
used very widely in dynamo theory, but is only an approximation, whose
validity depends on the material making up the moving fluid. We will not do
so, but at this point one could include other effects. For example the process
of ambipolar diffusion, important in galactic dynamos, gives a term of the
form (J ×B)×B on the right-hand side of (2.45) (see, for example, Zweibel,
1988; Brandenburg & Zweibel, 1995). The Hall effect is considered by Galanti,
Kleeorin & Rogachevskii (1994), which gives rise to an extra term proportional
to B × J .

From Ohm’s law (2.45) and the pre-Maxwell equations (2.36,2.37) we may
deduce the induction equation

∂tB = ∇× (u×B)−∇× (η∇×B). (2.46)

This is the fundamental equation studied in astrophysical and laboratory
MHD, and

η = (σµ)−1 (2.47)

is the magnetic diffusivity. It is important to note that high conductivity cor-
responds to low diffusivity and vice versa. We must still impose ∇ ·B = 0, al-
though note that if satisfied at some time t it must be satisfied subsequently, by
taking the divergence of (2.46). Equations (2.34,2.45) give the electric charge
with ∇ · (u×B) = −ρ/ε, but this is now decoupled and of little importance
to us.

Let the total magnetic energy in a bounded volume V be written as

EV (t) =
1

2µ

∫

V
|B|2 dV, (2.48)
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and so growth can only occur when η ≤ aumax/π, or equivalently when the
magnetic Reynolds number

R = aumax/η ≥ π. (3.55)

This dimensionless parameter measures the strength of the flow field, com-
pared with the effect of diffusion, and is a key parameter in MHD. It is de-
fined as a velocity scale multiplied by a length scale, divided by the magnetic
diffusivity; its precise definition depends on the problem at hand. The above
bound is based only on the magnitude of velocity. However magnetic fields are
intensified not through motion so much as through stretching, by the term
B ·∇u in (2.51), and this is brought out in the next bound.

Upper bound 2. The next bound of Backus (1958) (see also Proctor, 1977)
makes the role of stretching explicit, but requires the additional no slip con-
dition that u = 0 on the boundary S of Vi. First write (∇ × B) × B =
B ·∇B −∇1

2 |B|2 and integrate by parts to show that
∫

Vi

u · (∇×B)×B dV =
∫

Vi

BiBj∂iuj dV. (3.56)

Now BiBj∂iuj = BiBjeij where eij = 1
2(∂iuj + ∂jui) is the symmetric rate-of-

strain tensor. If emax is the largest eigenvalue of this tensor in the volume V ,
at any time, then

−
∫

Vi

u · (∇×B)×B dV ≤ emax

∫

Vi

|B|2 dV. (3.57)

Putting this back in (3.52) and applying (3.22) then shows that the energy
satisfies

µ∂tEV ≤ (emax − ηπ2/a2)2µEV . (3.58)

A necessary condition for growth is that

R = a2emax/η ≥ π2, (3.59)

giving a new definition of the magnetic Reynolds number R. Note also that
for a normal mode, EV grows at a rate 2γ and so the above inequality gives a
bound on the growth rate,

γ ≤ emax(1− π2/R), (3.60)

with the above definition of R.

These are necessary conditions, but far from sufficient: it is clear they do
not capture the requirement that the fluid flow be sufficiently complicated,
especially in view of the toroidal flow anti-dynamo theorem 4 above. Another
upper bound has been derived by Roberts (1967, p. 75), while Busse (1975)
and Roberts (1987) give a bound on the magnitude of the poloidal flow needed
to overcome the toroidal flow anti-dynamo theorem.
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In a sphere of radius a (insulating boundary conditions), a 
dynamo requires                             (Childress).
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In a sphere of radius a, a dynamo requires
(Backus), where            is the largest eigenvalue of the 
rate-of-strain matrix 

and so growth can only occur when η ≤ aumax/π, or equivalently when the
magnetic Reynolds number

R = aumax/η ≥ π. (3.55)

This dimensionless parameter measures the strength of the flow field, com-
pared with the effect of diffusion, and is a key parameter in MHD. It is de-
fined as a velocity scale multiplied by a length scale, divided by the magnetic
diffusivity; its precise definition depends on the problem at hand. The above
bound is based only on the magnitude of velocity. However magnetic fields are
intensified not through motion so much as through stretching, by the term
B ·∇u in (2.51), and this is brought out in the next bound.

Upper bound 2. The next bound of Backus (1958) (see also Proctor, 1977)
makes the role of stretching explicit, but requires the additional no slip con-
dition that u = 0 on the boundary S of Vi. First write (∇ × B) × B =
B ·∇B −∇1

2 |B|2 and integrate by parts to show that
∫

Vi

u · (∇×B)×B dV =
∫

Vi

BiBj∂iuj dV. (3.56)

Now BiBj∂iuj = BiBjeij where eij = 1
2(∂iuj + ∂jui) is the symmetric rate-of-

strain tensor. If emax is the largest eigenvalue of this tensor in the volume V ,
at any time, then

−
∫

Vi

u · (∇×B)×B dV ≤ emax

∫

Vi

|B|2 dV. (3.57)

Putting this back in (3.52) and applying (3.22) then shows that the energy
satisfies

µ∂tEV ≤ (emax − ηπ2/a2)2µEV . (3.58)

A necessary condition for growth is that

R = a2emax/η ≥ π2, (3.59)

giving a new definition of the magnetic Reynolds number R. Note also that
for a normal mode, EV grows at a rate 2γ and so the above inequality gives a
bound on the growth rate,

γ ≤ emax(1− π2/R), (3.60)

with the above definition of R.

These are necessary conditions, but far from sufficient: it is clear they do
not capture the requirement that the fluid flow be sufficiently complicated,
especially in view of the toroidal flow anti-dynamo theorem 4 above. Another
upper bound has been derived by Roberts (1967, p. 75), while Busse (1975)
and Roberts (1987) give a bound on the magnitude of the poloidal flow needed
to overcome the toroidal flow anti-dynamo theorem.

29

Key points: need stretching, R large enough.



Solve                                          numerically, or approximately 
for small ε=1/R. Put

Simplest dynamo to study,                                in cylindrical 
polars (r,ϑ,z). 

Smooth Ponomarenko dynamo

Similar generation of field at discontinuities occurs in the rotor dynamo of
Herzenberg (1958) and the experimental dynamos of Lowes & Wilkinson (1963,
1968), the latter using solid metal rotors embedded in a conducting block.
Obviously further work can be done in tuning the Ponomarenko model for the
experimental configuration depicted in figure 1(b), for example optimising the
geometry so as to minimise the critical magnetic Reynolds number, allowing
an outer vacuum region, and requiring the instability to be absolute rather
than convective (Gailitis & Freiberg, 1980).

4.2 Smooth Ponomarenko dynamo

In the above discontinuous Ponomarenko dynamo, the generation is hidden in
a thin layer of infinite shear. More relevant to astrophysical and geophysical
fluid dynamics would generally be the smooth flow

u = θ̂ rΩ(r) + ẑ U(r), (4.23)

which we consider next. The fundamental issue here is: how do swirling, helical
flows generate magnetic fields? Such flows can occur in convection and other
instabilities, and are a very natural building block of dynamos in astrophysical
flows.

For this example there are no obvious exact solutions and we have to assume
a limit of large magnetic Reynolds number R to obtain approximate analyti-
cal results (Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988a), or study
examples of flows numerically (Solovyev, 1985, 1987). We shall use a dimen-
sionless version of the induction equation, non-dimensionalised using a scale
of the flow and a velocity scale, written in the form

∂tB + u ·∇B = B ·∇u + ε∇2B, (4.24)

where ε−1 = R is a magnetic Reynolds number. To recover dimensional results
we simply replace ε by η.

We may put B = b(r)eλt+imθ+ikz to obtain from the induction equation

(λ + imΩ(r) + ikU(r))br = ε((∆m − r−2)br − 2imr−2bθ), (4.25)

(λ + imΩ(r) + ikU(r))bθ = rΩ′(r)br + ε((∆m − r−2)bθ + 2imr−2br), (4.26)

(λ + imΩ(r) + ikU(r))bz = U ′(r)br + ε∆mbz. (4.27)

Again we have coupling terms between br and bθ because of diffusion in cylin-
drical geometry, and also generation of bθ and bz from br by differential rotation
Ω′(r) and axial shear U ′(r) respectively. We shall seek a magnetic mode lo-
calised near any given radius r = a, and to obtain growth rates we expand all
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form 7 ,

(∂2
σ − (1

4σ
2 + c±))br0 = 0, σ = s(4ic2)

1/4, c± = (c0 ± d)/(4ic2)
1/2. (4.37)

Solutions that decay for s → ±∞ exist only if c± = −j − 1
2 and this gives

eigenvalues of the original dynamo problem. 8

Untangling all the previous changes of variable and expansions gives finally
leading order growth rates,

γ = Re λ $ ∓
√

ε|mΩ′(a)|
a

− (j + 1
2)

√
ε|mΩ′′(a) + kU ′′(a)− ε(m2/a2 + k2)

(4.38)
(Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988a). These growth rates
were determined for m, k = O(ε−1/3), but in fact are valid for all m and k. This
scaling (4.28) was chosen as it gives the richest formula for γ and includes the
case of maximum growth rate γ = O(ε1/3). It is equally valid for m = O(1),
except that the last term in the equation (4.38) is now subdominant, and
γ = O(ε1/2). For m > O(ε−1/3), growth rates are negative. The eigenfunctions
take the form of a (complex) Gaussian multiplied by a Hermite polynomial

br, bθ, bz ∝ Hej(σ)e−σ2/4. (4.39)

In the equation for the growth rate (4.38), the first term, with the lower sign,
represents amplification of field through the interaction of differential rotation
and diffusion in cylindrical geometry (cf. (4.25), (4.26)). The second term is
always negative and represents enhanced diffusion: although the shear in the
flow and the field are aligned at r = a because of the condition (4.32), as we
move away from r = a the pitch of the stream lines changes, and flow begins
to advect field across lines of constant field, increasing the effect of diffusion.
The final term is simply what is left from molecular diffusion of field in this
geometry, with the flow playing no role.

As in the discontinuous Ponomarenko dynamo, field decays if m = 0 or k = 0
in keeping with anti-dynamo theorems 3 and 1. The first case is obvious, for
the second note that if k = 0 then by the resonance condition (4.32), we have
mΩ′(a) = 0 and again there is no positive term in (4.38). Note also that if
there is no axial flow, U(r) ≡ 0, there is no dynamo as we then have m = 0
from (4.32), and in this case the enhanced diffusion caused by the motion
leads to the mechanism of flux expulsion (R.L. Parker, 1966; Weiss, 1966) by
which field is removed from regions of closed stream lines in the plane on a
time scale of order ε−1/3.

7 AS 19.1.2
8 AS 19.13.1

36

Similar generation of field at discontinuities occurs in the rotor dynamo of
Herzenberg (1958) and the experimental dynamos of Lowes & Wilkinson (1963,
1968), the latter using solid metal rotors embedded in a conducting block.
Obviously further work can be done in tuning the Ponomarenko model for the
experimental configuration depicted in figure 1(b), for example optimising the
geometry so as to minimise the critical magnetic Reynolds number, allowing
an outer vacuum region, and requiring the instability to be absolute rather
than convective (Gailitis & Freiberg, 1980).

4.2 Smooth Ponomarenko dynamo

In the above discontinuous Ponomarenko dynamo, the generation is hidden in
a thin layer of infinite shear. More relevant to astrophysical and geophysical
fluid dynamics would generally be the smooth flow

u = θ̂ rΩ(r) + ẑ U(r), (4.23)
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which we consider next. The fundamental issue here is: how do swirling, helical
flows generate magnetic fields? Such flows can occur in convection and other
instabilities, and are a very natural building block of dynamos in astrophysical
flows.

For this example there are no obvious exact solutions and we have to assume
a limit of large magnetic Reynolds number R to obtain approximate analyti-
cal results (Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988a), or study
examples of flows numerically (Solovyev, 1985, 1987). We shall use a dimen-
sionless version of the induction equation, non-dimensionalised using a scale
of the flow and a velocity scale, written in the form

∂tB + u ·∇B = B ·∇u + ε∇2B, (4.24)

where ε−1 = R is a magnetic Reynolds number. To recover dimensional results
we simply replace ε by η.

We may put B = b(r)eλt+imθ+ikz to obtain from the induction equation

(λ + imΩ(r) + ikU(r))br = ε((∆m − r−2)br − 2imr−2bθ), (4.25)

(λ + imΩ(r) + ikU(r))bθ = rΩ′(r)br + ε((∆m − r−2)bθ + 2imr−2br), (4.26)

(λ + imΩ(r) + ikU(r))bz = U ′(r)br + ε∆mbz. (4.27)

Again we have coupling terms between br and bθ because of diffusion in cylin-
drical geometry, and also generation of bθ and bz from br by differential rotation
Ω′(r) and axial shear U ′(r) respectively. We shall seek a magnetic mode lo-
calised near any given radius r = a, and to obtain growth rates we expand all
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Mechanism: stretching of radial field, diffusion of azimuthal 
field. For small ε, a mode (m,k) localises at a resonant radius 
where mΩΩ’(a)+kU’(a)=0 and the growth rate is:
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A geometrical condition

Fig. 2. Magnetic field in the Ponomarenko dynamo at large magnetic Reynolds
number R = ε−1 forms spiralling tubes of field localised near the radius r = a for
which mΩ′(a) + kU ′(a) = 0. The bottom row shows a cross section of the tubes,
while the top row shows the three-dimensional structure of the field for m = 1 modes
(left) and m = 2 modes (right). The tubes indicate regions of high field strength |B|
and the field is largely directed along the tubes, that is along the spirals of constant
mθ + kz in three dimensions.

Interestingly the first two terms in (4.38) possess the same scaling with m and
ε. For dynamo action at small ε it is required that the sum of these two terms
be positive for j = 0, and this can be rearranged (using also (4.32)) as the
geometrical condition that

r

∣∣∣∣∣
Ω′′(r)

Ω′(r)
− U ′′(r)

U ′(r)

∣∣∣∣∣ ≡ r

∣∣∣∣∣
d

dr
log

∣∣∣∣∣
Ω′(r)

U ′(r)

∣∣∣∣∣

∣∣∣∣∣ < 4, (4.40)

at the given radius r = a. This condition states (roughly) that the rate of
change of pitch of the stream lines should not be too great: if it is then the
enhanced diffusion will dominate over the regeneration of field, and the flow
will not be a dynamo for small ε. An example of a family of flows that satisfies
this condition is spiral Couette flows, for which ν∇2u = 0,

Ω(r) = a + br−2, U(r) = c + d log r, (4.41)

and the left-hand side of (4.40) is 2 (assuming b and d are non-zero). Dynamo
action can occur at any radius, at sufficiently large magnetic Reynolds number
R = ε−1. On the other hand in spiral Couette–Poiseuille flows, for which
ν∇2u−∇P = 0 with a constant axial pressure gradient P = pz, we have

Ω(r) = a + br−2, U(r) = c + d log r + pr2/4ν, (4.42)

and not all radii support dynamo action at large R. These flows have been
studied numerically (Solovyev, 1985, 1987).

The smooth Ponomarenko dynamo is the simplest example of a class of smooth
flows that defeat the anti-dynamo theorems. In this dynamo the flow lies on
cylindrical surfaces, whereas the anti-dynamo theorems 2 and 4 rule out flows
on planes and spheres. The key point is that in a cylindrical geometry Bθ

field, parallel to the stream surfaces, can diffuse to give perpendicular, Br

field. This, together with shear, which regenerates Bθ from Br, gives a closed
dynamo loop and can amplify field. In spherical and planar geometry there is
no analogous process by which diffusion generates poloidal field from toroidal.
The field structure is given schematically in figure 2, which shows spiralling
tubes of field (top row) for m = 1 and m = 2. The tubes have a roughly fish-
like cross section (bottom row), and the trailing fins of the fish are a result
of the pitch changing with radius, reducing the radial scale and enhancing
diffusion, as mentioned above.
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form 7 ,

(∂2
σ − (1

4σ
2 + c±))br0 = 0, σ = s(4ic2)

1/4, c± = (c0 ± d)/(4ic2)
1/2. (4.37)

Solutions that decay for s → ±∞ exist only if c± = −j − 1
2 and this gives

eigenvalues of the original dynamo problem. 8

Untangling all the previous changes of variable and expansions gives finally
leading order growth rates,

γ = Re λ $ ∓
√

ε|mΩ′(a)|
a

− (j + 1
2)

√
ε|mΩ′′(a) + kU ′′(a)− ε(m2/a2 + k2)

(4.38)
(Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988a). These growth rates
were determined for m, k = O(ε−1/3), but in fact are valid for all m and k. This
scaling (4.28) was chosen as it gives the richest formula for γ and includes the
case of maximum growth rate γ = O(ε1/3). It is equally valid for m = O(1),
except that the last term in the equation (4.38) is now subdominant, and
γ = O(ε1/2). For m > O(ε−1/3), growth rates are negative. The eigenfunctions
take the form of a (complex) Gaussian multiplied by a Hermite polynomial

br, bθ, bz ∝ Hej(σ)e−σ2/4. (4.39)

In the equation for the growth rate (4.38), the first term, with the lower sign,
represents amplification of field through the interaction of differential rotation
and diffusion in cylindrical geometry (cf. (4.25), (4.26)). The second term is
always negative and represents enhanced diffusion: although the shear in the
flow and the field are aligned at r = a because of the condition (4.32), as we
move away from r = a the pitch of the stream lines changes, and flow begins
to advect field across lines of constant field, increasing the effect of diffusion.
The final term is simply what is left from molecular diffusion of field in this
geometry, with the flow playing no role.

As in the discontinuous Ponomarenko dynamo, field decays if m = 0 or k = 0
in keeping with anti-dynamo theorems 3 and 1. The first case is obvious, for
the second note that if k = 0 then by the resonance condition (4.32), we have
mΩ′(a) = 0 and again there is no positive term in (4.38). Note also that if
there is no axial flow, U(r) ≡ 0, there is no dynamo as we then have m = 0
from (4.32), and in this case the enhanced diffusion caused by the motion
leads to the mechanism of flux expulsion (R.L. Parker, 1966; Weiss, 1966) by
which field is removed from regions of closed stream lines in the plane on a
time scale of order ε−1/3.

7 AS 19.1.2
8 AS 19.13.1
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Fig. 2. Magnetic field in the Ponomarenko dynamo at large magnetic Reynolds
number R = ε−1 forms spiralling tubes of field localised near the radius r = a for
which mΩ′(a) + kU ′(a) = 0. The bottom row shows a cross section of the tubes,
while the top row shows the three-dimensional structure of the field for m = 1 modes
(left) and m = 2 modes (right). The tubes indicate regions of high field strength |B|
and the field is largely directed along the tubes, that is along the spirals of constant
mθ + kz in three dimensions.
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and not all radii support dynamo action at large R. These flows have been
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The smooth Ponomarenko dynamo is the simplest example of a class of smooth
flows that defeat the anti-dynamo theorems. In this dynamo the flow lies on
cylindrical surfaces, whereas the anti-dynamo theorems 2 and 4 rule out flows
on planes and spheres. The key point is that in a cylindrical geometry Bθ
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field. This, together with shear, which regenerates Bθ from Br, gives a closed
dynamo loop and can amplify field. In spherical and planar geometry there is
no analogous process by which diffusion generates poloidal field from toroidal.
The field structure is given schematically in figure 2, which shows spiralling
tubes of field (top row) for m = 1 and m = 2. The tubes have a roughly fish-
like cross section (bottom row), and the trailing fins of the fish are a result
of the pitch changing with radius, reducing the radial scale and enhancing
diffusion, as mentioned above.
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For growth, first term must dominate, which requires the
purely geometrical condition to hold:

Holds for spiral Couette flow:

Generalisations for more 
general flows with stream 
surfaces. 
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G.O. Roberts flow
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Fig. 3. The G.O. Roberts flow field in (4.45). The + and − signs show the direction
of the motion in z, with uz = 0 on the network of separatrices.

The flow field we consider is a member of the family of ABC flows (Beltrami,
1889; Arnold, 1965; Childress, 1970)

u = (C sin z + B cos y,A sin x + C cos z,B sin y +A cos x). (4.44)

These have the Beltrami property that ∇ × u = ku for a constant k; here
k = 1. If C = 0 and A = B = 1, the flow is independent of z,

u = (cos y, sin x, sin y + cos x) = (∂yψ,−∂xψ, ψ), ψ = sin y + cos x, (4.45)

and has the cellular structure shown in figure 3. This and similar flows are
considered numerically by G.O. Roberts (1970) and analytically by Childress
(1967, 1970) and G.O. Roberts (1972). We will follow their analysis in a low
Reynolds number limit for a large-scale field, using standard multiple-scale
asymptotic analysis.

The above flows are already non-dimensionalised and so we will use the in-
duction equation in the form

∂tB = ∇× (u×B) + R−1∇2B, ∇ ·B = 0, (4.46)

where R is the magnetic Reynolds number based on the scale of the cells and
magnitude of the flow, and is now taken to be small, R $ 1.

We consider a magnetic field B that depends both on the scale x = (x, y, z)
of the cellular flow, but also on a larger scale x = O(R−2). Diffusion of field
across a single cell occurs on a short time-scale t = O(R), and diffusion on scale
x = O(R−2) over times t = O(R−3). We therefore set t = Rτ , x = R−2X,
t = R−3T and replace

∂t = R−1∂τ + R3∂T , ∇ = ∇x + R2∇X, B = B0 + RB1 + · · · (4.47)

in the induction equation, with Bj = Bj(x, τ, X, T ).

On the small scales (x, τ), we will require that fields Bj are periodic in space
and time, and this means the imposition of solvability conditions that will
eventually govern the behaviour of field on large scales (X, T ). The velocity
field may be taken to be any flow that is strictly periodic in (x, τ) and has
zero mean over these fast variables, 〈u〉 = 0.
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Multiple scale analysis for small R,

From the induction equation at the first few orders we have

(∂τ −∇2
x)B0 = 0, (4.48)

(∂τ −∇2
x)B1 = ∇x × (u×B0), (4.49)

(∂τ −∇2
x)B2 = ∇x × (u×B1) + 2∇x ·∇XB0, (4.50)

(∂τ −∇2
x)B3 = ∇x × (u×B2) +∇X × (u×B0) + 2∇x ·∇XB1, (4.51)

(∂τ −∇2
x)B4 = ∇x × (u×B3) +∇X × (u×B1) + 2∇x ·∇XB2

− (∂T −∇2
X)B0, (4.52)

and from ∇ · B = 0,

∇x · B0 = 0, (4.53)

∇x · B1 = 0, (4.54)

∇X · B0 +∇x · B2 = 0. (4.55)

At leading order in (4.48) the only solution that is periodic in the fast variables
(x, τ) is a constant field, and so B0 = B0(X, T ) depends only on large space
and time scales (and (4.53) is satisfied automatically). At the next order the
equation (4.49) for B1 is a diffusion equation, forced by the periodic function
on the right-hand side, and may be solved using Fourier series. Note first that
∇x × (u×B0) = B0 ·∇xu as B0 is uniform on the small scales. If we write

u =
∑

k,ω

ûk,ωeik·x−iωτ (ûk,ω = û∗
−k,−ω, k · ûk,ω = 0), (4.56)

of which the above ABC flows are special cases, then (4.49) may be solved in
terms of Fourier modes of B1 as

B̂1,k,ω = (k2 − iω)−1(ik · B0)ûk,ω. (4.57)

The flow thus drives a small-scale field B1, by churning up the large-scale field
B0.

The equations (4.50,4.51) for B2 and B3 could be solved in a similar manner.
These equations also have solvability conditions, that the right-hand sides
must be zero when averaged over the fast scales (x, τ), so that in Fourier
space the factor k2 − iω is non-zero for all terms present and ∂τ −∇2

x may be
inverted. These conditions for (4.50,4.51) are satisfied automatically, using the
facts that 〈u〉 = 0, 〈B0〉 = B0, and 〈∇x(·)〉 = 0 for any quantity (·). However
the solvability of equation (4.52) for B4 gives the evolution of the large-scale
field as

∂T B0 = ∇X × 〈u×B1〉+∇X
2B0, ∇X · B0 = 0; (4.58)

the latter condition follows from averaging (4.55).
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Small scale flow generates B1 from B0:

On large scales a `mean emf ’ sustains B0

The key term here is the mean electromotive force or mean emf,

Ē ≡ 〈u×B1〉, (4.59)

which may be written, using (4.56,4.57) and averaging over space and time,
as

Ē =
∑

k,ω

(ik · B0)(û
∗
k,ω × ûk,ω)

k2 − iω
. (4.60)

To simplify this expression note first that by incompressibility k and ûk,ω are
perpendicular and so û∗

k,ω × ûk,ω is parallel to k. We may therefore write

û∗
k,ω × ûk,ω = k−2H(k, ω)ik, H(k, ω) = û∗

k,ω · ik × ûk,ω. (4.61)

Here H(k, ω) is the contribution to the helicity per unit volume of the fluid
flow from the mode (k, ω),

H = 〈u ·∇× u〉 =
∑

k,ω

Ĥ(k, ω). (4.62)

One can easily check that Ĥ(k, ω) is real and that Ĥ(k, ω) = Ĥ(−k,−ω).
With a little further simplification (combining the contributions from modes
(k, ω) and (−k,−ω)) we may write the mean emf as

Ēm = αmnB0n, αmn = −
∑

k,ω

kmknĤ(k, ω)

k4 + ω2
. (4.63)

This is an important result: the mean emf is written as a tensor αmn multi-
plying the large-scale field.

The generation of a mean emf by small-scale fluid flow is known as the alpha
effect and was first introduced by Parker (1955) and Steenbeck, Krause &
Rädler (1966). We will discuss it further in section 5.1 below. For the G.O.
Roberts flow (4.45) the alpha tensor may be computed as

α ≡ (αmn) = αI2, α = −1, I2 ≡





1 0 0

0 1 0

0 0 0




. (4.64)

With this alpha effect now written down explicitly, the mean field satisfies

∂T B0 = ∇X × (α · B0) +∇X
2B0, ∇X · B0 = 0. (4.65)

Consider a large-scale field mode B0 = βeiKZ+ΛT with β · ẑ = 0, and ∇X ×
B0 = ±KB0; this has growth rate

Λ = ∓K −K2. (4.66)
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Consider a large-scale field mode B0 = βeiKZ+ΛT with β · ẑ = 0, and ∇X ×
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Alpha effect linked to helicity:

The field modes and the corresponding vector potentials are, up to translation
in Z, given by

B0 = (± sin KZ, cos KZ, 0), A0 = ±K−1(± sin KZ, cos KZ, 0). (4.67)

We see that from (4.66) that the G.O. Roberts flow, which has positive fluid
helicity density h = u ·ω, amplifies large-scale magnetic fields having negative
magnetic helicity density hM = A · B.

If the flow is rewritten in dimensional units with

u = u0(cos ky, sin kx, sin ky + cos kx), R = u0/ηk, (4.68)

and the induction equation used with η replacing R−1, then the result is that
large-scale modes of wave number q have growth rates

γ = ±αq − ηq2, α = −u2
0/ηk = −Ru0. (4.69)

The fastest growing mode has

qmax = −α/2η = kR2/2, γmax = α2/4η = R3ku0/4. (4.70)

This example highlights the role of fluid helicity in dynamo theory. The alpha
effect, a transport effect that at large scales dominates over diffusion, is given
by a weighted sum over the helicity of the fluid flow. We will discuss alpha
effects further below in section 5.1. Helicity has a topological interpretation in
terms of the linkage of vorticity lines for h = u ·ω in a fluid, or magnetic field
lines for hM = A · B (Woltjer, 1958; Moffatt, 1969; Moffatt & Ricca, 1992).

If the alpha tensor vanishes completely, for example in mirror-symmetric flows
for which Ĥ(k, ω) = 0, it is possible to rescale and pick up an eddy diffusivity
term as a transport effect involving second derivatives of B0. This term can
be negative for suitable choices of flows and magnetic Reynolds numbers,
corresponding again to the destabilisation of field at large scales (Kraichnan,
1976a; Lanotte, Noullez, Vergassola & Wirth, 1999); see also Kazantsev (1967).
A transport effect analogous to the alpha effect can also occur in forced fluid
flows (Frisch, She & Sulem, 1987): in this case the averaging is taken over
Reynolds stresses and large-scale helical fluid flows can be destabilised.

The above theory involves the limit of low magnetic Reynolds number, and it
is important to note that this is based on the scale of the periodic flow field, not
on the scale of the magnetic field itself. Indeed to contain the fastest growing
mode given above, the whole system needs to have a scale of order L = q−1

max,
and so a Reynolds number based on this scale would be RL = u0L/η = 2R−1.
This diverges in the limit we are taking and shows, first that there is no
contradiction with the upper bounds derived in section 3.5 above, and secondly
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k,ω × ûk,ω = k−2H(k, ω)ik, H(k, ω) = û∗

k,ω · ik × ûk,ω. (4.61)

Here H(k, ω) is the contribution to the helicity per unit volume of the fluid
flow from the mode (k, ω),

H = 〈u ·∇× u〉 =
∑

k,ω
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B0 = ±KB0; this has growth rate

Λ = ∓K −K2. (4.66)

41

The key term here is the mean electromotive force or mean emf,
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k,ω × ûk,ω = k−2H(k, ω)ik, H(k, ω) = û∗

k,ω · ik × ûk,ω. (4.61)

Here H(k, ω) is the contribution to the helicity per unit volume of the fluid
flow from the mode (k, ω),

H = 〈u ·∇× u〉 =
∑

k,ω
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kmknĤ(k, ω)

k4 + ω2
. (4.63)

This is an important result: the mean emf is written as a tensor αmn multi-
plying the large-scale field.

The generation of a mean emf by small-scale fluid flow is known as the alpha
effect and was first introduced by Parker (1955) and Steenbeck, Krause &
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The field modes and the corresponding vector potentials are, up to translation
in Z, given by

B0 = (± sin KZ, cos KZ, 0), A0 = ±K−1(± sin KZ, cos KZ, 0). (4.67)

We see that from (4.66) that the G.O. Roberts flow, which has positive fluid
helicity density h = u ·ω, amplifies large-scale magnetic fields having negative
magnetic helicity density hM = A · B.

If the flow is rewritten in dimensional units with

u = u0(cos ky, sin kx, sin ky + cos kx), R = u0/ηk, (4.68)

and the induction equation used with η replacing R−1, then the result is that
large-scale modes of wave number q have growth rates

γ = ±αq − ηq2, α = −u2
0/ηk = −Ru0. (4.69)

The fastest growing mode has

qmax = −α/2η = kR2/2, γmax = α2/4η = R3ku0/4. (4.70)

This example highlights the role of fluid helicity in dynamo theory. The alpha
effect, a transport effect that at large scales dominates over diffusion, is given
by a weighted sum over the helicity of the fluid flow. We will discuss alpha
effects further below in section 5.1. Helicity has a topological interpretation in
terms of the linkage of vorticity lines for h = u ·ω in a fluid, or magnetic field
lines for hM = A · B (Woltjer, 1958; Moffatt, 1969; Moffatt & Ricca, 1992).

If the alpha tensor vanishes completely, for example in mirror-symmetric flows
for which Ĥ(k, ω) = 0, it is possible to rescale and pick up an eddy diffusivity
term as a transport effect involving second derivatives of B0. This term can
be negative for suitable choices of flows and magnetic Reynolds numbers,
corresponding again to the destabilisation of field at large scales (Kraichnan,
1976a; Lanotte, Noullez, Vergassola & Wirth, 1999); see also Kazantsev (1967).
A transport effect analogous to the alpha effect can also occur in forced fluid
flows (Frisch, She & Sulem, 1987): in this case the averaging is taken over
Reynolds stresses and large-scale helical fluid flows can be destabilised.

The above theory involves the limit of low magnetic Reynolds number, and it
is important to note that this is based on the scale of the periodic flow field, not
on the scale of the magnetic field itself. Indeed to contain the fastest growing
mode given above, the whole system needs to have a scale of order L = q−1

max,
and so a Reynolds number based on this scale would be RL = u0L/η = 2R−1.
This diverges in the limit we are taking and shows, first that there is no
contradiction with the upper bounds derived in section 3.5 above, and secondly
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Large-scale modes obey

with the alpha effect tensor
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k,ω × ûk,ω is parallel to k. We may therefore write

û∗
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Large scale modes are amplified even though the small-scale
R<<1. In dimensional terms growth rates are 

Alpha effect in a helical flow can destabilise large-scale 
magnetic fields.



Alpha effect

a firm estimate, and further analysis has been done by Soward (1987) to show
that the maximum growth rate is

λmax = O

(
log log ε−1

log ε−1

)

, kmax = O

(
ε−1/2

√
log ε−1

)

. (4.103)

This analysis involves a rather more delicate treatment of the boundary layers
in which the vertical z-dependent structure of the field now intrudes.

The maximum growth rates for the G.O. Roberts dynamo decrease only very
slowly as ε→ 0 and so this dynamo is very close to being a fast dynamo, for
which λmax would remain of order unity as ε→ 0. The dynamo can be made
into a fast dynamo by modifying the flow so as to introduce singularities at the
hyperbolic stagnation points (Soward, 1987); these have the effect of tearing
fluid elements apart in a finite time at the corners of the cells.

Further studies of the alpha effect and scalar transport in space-periodic steady
flows u(x, y) may be found in Childress & Soward (1989) and Soward & Chil-
dress (1990). In a numerical study of a space-periodic flow (Plunian, Marty &
Alemany, 1999), modelling the core of a nuclear reactor, there is a competition
between Ponomarenko modes, localised on closed stream surfaces, and G.O.
Roberts modes, localised on the network of separatrices. A similar competition
is found in simulations of dynamo action in convection and driven fluid flows
(Ponty, Gilbert & Soward, 2001); see section 5.4 below.

5 The alpha effect and dynamo modelling

In this section we leave systematic asymptotic analysis of dynamos, and discuss
dynamo modelling and the magnetic fields of the Sun, Earth and galaxies. We
return to the more mathematical topic of fast dynamos in section 6 below.

5.1 The alpha effect

We first met the alpha effect while studying the G.O. Roberts dynamo. Using
dimensional quantities, we may write down a general expression involving a
weighted sum of the helicity in the modes of the flow field,

αmn = −η
∑

k,ω

kmknĤ(k, ω)

η2k4 + ω2
, (5.1)

which is valid when the magnetic Reynolds number R = u0/kη based on the
scale of the small-scale flow is small. In a continuum limit of wave vectors (k, ω)
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and when the small-scale flow is isotropic, the tensor is isotropic, involving an
integral over the helicity spectrum Ĥ(k,ω),

α = αI, α = −η

3

∫ k2Ĥ(k,ω)

η2k4 + ω2
dk dω (5.2)

(Moffatt, 1978). We also met the alpha effect for large R in the G.O. Roberts
(1970) flow, but this was closely connected with the geometry of the separa-
trices, and unsurprisingly no formulae are known for general flows.

An alpha effect also appears in the theory of Braginsky (1964a,b) in which a
magnetic field is dominated by a strong axisymmetric component, and this is
maintained by a flow with strong toroidal and weak poloidal components. In
this theory the magnetic Reynolds number is large, and the non-axisymmetric
parts of the flow and field, while not dominant, mean that the anti-dynamo
theorems 3 and 4 do not apply. We will not develop this theory here; see
for example Moffatt (1978), Soward (1990), Braginsky (1994) and references
therein.

The idea of the alpha effect has been extremely important in the develop-
ment of dynamo theory. While analysis of dynamo models such as those of
Backus (1958), Herzenberg (1958), Lortz (1968), G.O. Roberts (1970) and
Ponomarenko (1973) show that in principle dynamo action can occur, the
fluid flows proposed are far from those in astrophysical bodies. However the
alpha effect involves averaging over small-scale flows, which could include tur-
bulent convection. This new transport effect can both short-circuit detailed
study of fluid flows and also bypass the anti-dynamo theorems. The intro-
duction of this effect by Parker (1955), Braginsky (1964a,b) and Steenbeck,
Krause & Rädler (1966) represented a breakthrough in the modelling of real
astrophysical dynamos.

An alpha effect may be argued on general grounds as follows (see, for example,
Moffatt, 1978; Krause & Rädler, 1980). Consider a situation in which there is
a magnetic field B̄ on large scales L, and turbulence u on small scales l. We
write the full magnetic field as B = B̄ + B′ and take 〈B′〉 = 〈u〉 = 0, where
〈·〉 represents an average over scales intermediate between L and l. Then the
induction equation may be separated into a mean and a fluctuating part,

∂tB̄ = ∇× Ē + η∇2B̄, Ē = 〈u×B′〉, (5.3)

∂tB
′ = ∇× (u× B̄) +∇× (u×B′ − 〈u×B′〉) + η∇2B′. (5.4)

The equation for B′ is linear, with a source term involving B̄. Plainly B′ and
so the emf Ē are linear functionals of B̄. If the field B̄ is of large scale then
an expansion of the form

Ēi = αijB̄j + βijk∂kB̄j + · · · (5.5)
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Key transport effect that can destabilise large-scale magnetic 
fields (Parker, Steenbeck, Krause, Radler, Moffatt).
For low small-scale magnetic Reynolds number:

Isotropic flow: 

the extra factor of R meaning that the alpha effect is strongly suppressed
for rather weak large-scale fields. This form has been supported by numerical
simulations for large R by Cattaneo & Hughes (1996) and Brandenburg (2001).

Since R is extremely large in many astrophysical bodies, for example the Sun,
this leads to many questions about how the dynamo can operate there, from
the traditional viewpoint of modelling the Solar dynamo as an αω-dynamo,
which we introduce below. These issues, of the strength and time scale of the
Solar field, remain to be resolved. Also unclear is the dependence of the alpha
effect on the hydrodynamic Reynolds number, which is also extremely large
in astrophysical objects, and the role of boundary conditions (Blackman &
Field, 2000; Brandenburg & Dobler, 2001; Vishniac & Cho, 2001; Branden-
burg, Dobler & Subramanian, 2002).

5.2 Alpha omega dynamos and dynamo waves

The alpha effect introduces a term 〈u×B′〉 = αB̄ into the induction equation,
in the simplest, isotropic case in which α is a scalar constant. This can amplify
magnetic fields on its own, as above, or interact with differential rotation to
give dynamo waves (Parker, 1955; Moffatt, 1978). Let us drop the overline, and
let B denote the mean field in this section only; then the induction equation
with an alpha effect becomes

∂tB = ∇× (u×B + αB) + η∇2B, ∇ · B = 0. (5.11)

Consider a flow of the form u = U ŷ and field B = Bŷ + BP , with BP =
∇ × (Aŷ) (cf. (3.26)), and U , B and A all independent of y. The induction
equation then becomes

∂tA = αB + η∇2A, (5.12)

∂tB = ŷ ·∇× (αBP ) + BP ·∇U + η∇2B (5.13)

(cf. (3.27), (4.84)). We now have in mind η as a turbulent diffusivity, neglecting
the molecular value at large R. The relative magnitude of the two source terms
on the right-hand side of (5.13) is given by

BP ·∇U

∇× (αBP )
= O

(
L|∇U |

α

)

. (5.14)

If this ratio is small, then the BP ·∇U term may be neglected and we return
to an α2-dynamo, with U playing no role. If the ratio is large, then the αBP

terms may be dropped in the second equation (5.13) but αB retained in (5.12)
to give an αω-dynamo. Here the U generates a strong toroidal field component
B from BP , while the alpha effect, necessary to avoid antidynamo theorem 2,
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Alpha effect can circumvent anti-dynamo theorems

Alpha effect and shear can give dynamo waves in an 
alpha-omega dynamo: modelling of solar, terrestrial, galactic 
fields. Idea immensely influential.



Problems with the alpha effect
• Only satisfactory formula is for low small-scale 

magnetic Reynolds number R (with link to 
helicity). For short correlation times though we 
have

• At large R it is hard to calculate and may be 
irrelevant (small-scale fields grow faster than 
large-scale ones).

• Nonlinear feedback on alpha difficult to assess at 
large R. Also eddy diffusivity.

• Dynamo applications have large R (outside the 
laboratory)

•  

on a time scale τ and length scale l. In the limit of a short correlation time
τu/l ! 1,

αij = αδij, βijk = βεijk, (5.6)

with
α = −1

3τ〈u ·∇× u〉, β = 1
3τ〈|u|

2〉 (5.7)

(Steenbeck, Krause & Rädler, 1966). Again there is a clear connection between
the alpha effect and the helicity of the flow. The derivation of these formulae
requires ensemble-averaging over random flows, which raises a number of issues
of how ensemble averages may differ from typical realisations (for example,
Hoyng, 1988; Zeldovich, Molchanov, Ruzmaikin & Sokoloff, 1988; Childress &
Gilbert, 1995). However these formulae appear to work well and the tensors
have been computed numerically in random flows by Kraichnan (1976b).

The quantity α in (5.7) has the dimensions of velocity and β of diffusivity, and
so for modelling of, for example, the Solar dynamo it is natural to estimate α ∼
VH and β ∼ LV where V = L/T and T are typical velocity and time scales in
the Solar convection zone, and H is now some dimensionless measure of how
helical the flow is. Molecular diffusion η would then be negligible compared
with β as in the Sun the magnetic Reynolds number R = LV/η is very large.
Obviously α may also vary in space, depending on the strength of the flow
and the level of helicity, and we will discuss this further in section 5.3 below.

Let us however suppose for the moment that we are working in an infinite
fluid flow and that α and β are constants. Then, as we found above for the
G.O. Roberts flow, magnetic modes have growth rates

λ ( ∓αk − (β + η)k2, (5.8)

where k is the wave number and the upper sign is for positive magnetic helicity,
the lower for negative. This represents an α2-dynamo as in a magnetic mode
with, say, k = kẑ, it is solely the alpha effect that is responsible for generating
x-field from y-field and vice versa. This will be contrasted with αω-dynamos
below.

Note that if α ∼ VH and β ∼ LV with H = O(1), R * 1 then it is clear
that the most unstable magnetic modes will have length scale 1/k ∼ L and
growth rate λ ∼ T −1. These scales are independent of molecular diffusion,
being based only on the length and time scales of the flow. However none of
the analytical models we have considered in section 4 for large R have this
property! The discontinuous Ponomarenko dynamo (section 4.1) has growth
rates of order T −1, and so does the G.O. Roberts cellular flow, to within
logarithmic terms. However the magnetic fields amplified are on very small
scales, of order R−1/2L. The smooth Ponomarenko dynamo has maximum
growth rates of order R−1/3T −1 on spatial scales of order R−1/3L.

Of the dynamos we have met, none amplify fields at spatial scales L on time
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In the smooth Ponomarenko dynamo the fastest growing modes 
have growth rates                     , for 

Fast versus slow dynamos
Magnetic fields evolve on fast turn-over time-scales in many 
astrophysical objects at large R=1/ε; e.g. in the Sun R=10^8, 11-
year cycle.

with
σ = s(4ic2)

1/4, c± = (c0 ± d)/(4ic2)
1/2 (18)

and solutions that decay for s → ±∞ exist only if c± = −j − 1
2 for j =

0, 1, 2, . . .. This gives eigenvalues of the original dynamo problem.
Finally returning to the original variables gives leading order growth rates,

γ ≡ Re σ % ∓
√

ε|mΩ′(a)|/a− (j + 1
2)

√
ε|mΩ′′(a) + kU ′′(a)− ε(m2/a2 + k2).

(19)
This formula was derived for m, k = O(ε−1/3), but is in fact valid for all m, k.
The fastest growing modes have scales m, k = O(ε−1/3) and γ = O(ε1/3), and
so this provides a slow dynamo. The resulting magnetic fields have spiralling
tubes along which the field is approximately directed; for example, an m = 2
mode is illustrated schematically in figure 1.

An important feature of the formula (19) is that the first two terms scale
in precisely the same way with m (and k) and ε, while the last term can
always be made subdominant at small ε by taking m (and k) small enough.
Taking the upper sign, and j = 0, for a dynamo to occur at large Rm for
some mode (m, k) it follows that the first, positive term must dominate the
second, negative term, and this only occurs at the given resonant surface
r = a provided the purely geometrical condition (obtained with the help of
(12),

r

∣∣∣∣
Ω′′(r)

Ω′(r)
− U ′′(r)

U ′(r)

∣∣∣∣ < 4, (20)

is met there. One can write down flows for which this is not satisfied, and
so which would not be dynamos at large Rm, even though they appear well-
endowed with helical streamlines.

This example can be generalised away from strictly circular geometry to
allow more general stream surfaces (Gilbert & Ponty, 2000). As an example
of an application, the resulting theory gives excellent predictions of the insta-
bility threshold for these Ponomarenko modes in a study (Plunian, Marty &
Alemany, 1999) of dynamo instabilities in model nuclear reactor flows, even
at moderate Rm. Such modes can also occur in convective cellular flows (e.g.,
Ponty, Gilbert & Soward, 2001). A smooth flow of the form (5) can give slow
dynamo action, but if Ω(r) and U(r) have discontinuities at some radius
r = a, then fast dynamo action can occur, with growth rates γ = O(1) for
modes with m, k = O(ε−1/2) (Gilbert, 1988); we will not discuss this further
here. Some aspects of the saturation of smooth Ponomarenko dynamos are
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Figure 2: The stretch–twist–fold dynamo: an initial flux tube (a), is stretched
(b), twisted (c) and folded (d), to obtain a doubled flux tube. (e) a folded
flux tube after two STF cycles: note that only the centre line of the tube is
shown.

analysis (Soward, 1987) shows that the maximum growth rate is in fact given
by

γ = O((log log ε−1)/ log ε−1), k = O(ε−1/2/
√

log ε−1). (24)

Is this a fast dynamo? Not technically, as the growth rate still goes to zero as
ε→ 0 and so the dynamo is slow. However the decay is only logarithmic in ε,
and what is a logarithm between friends? In view of our opening remarks in
this chapter, this is therefore still an interesting and important slow dynamo
mechanism; for example, similar Roberts modes are found in the study of
Plunian, Marty & Alemany (1999). One important feature to note is that
the fastest growing magnetic field modes have a very small length-scale in
z. They are extended in x and y (unlike the Ponomarenko modes), but the
magnetic energy is entirely at the diffusive scales, k " O(ε−1/2). In the
Roberts dynamo diffusion is still playing a crucial role in the amplification
process, and the field has to adopt diffusive scales to benefit. This should
be contrasted with the fast dynamos below, where the magnetic fields have
typically a power-law spread of energy over a range of scales, from the full
scale of the flow down to diffusive scales.

1.3 The stretch–twist–fold picture

In so far as finding fast dynamos, the problem with the flows so far discussed
is that diffusion is crucially involved in the amplification process. In fact, in
rough terms, these steady flows have dynamos of an αω-type at large Rm.
Field perpendicular to stream surfaces is stretched out along stream surfaces
by the flow, giving strong field parallel to stream surfaces (an ω-effect); in
curved geometry weak diffusion acts on this parallel field to generate per-
pendicular field (an α-effect). This αω-cycle allows the field to grow and the
dynamo to operate. To avoid the dynamo process being limited by diffusion
as in these examples, it is necessary for advection by the fluid flow to do
all the amplification itself without relying on diffusion. The simplest pic-
ture of how this may be achieved is in the stretch–twist–fold (STF) dynamo
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We call this a `slow’ dynamo: growth rates go to zero as R tends
to infinity.
For the G.O. Roberts dynamo growth rates go to zero (Soward): 

For a `fast’ dynamo, growth rates remain bounded above zero no
matter how large R is, that is how small the diffusivity ε is. The 
limiting maximum growth rate                   is positive. 

For a given flow u and an ε > 0, dynamo action may take place, the
fastest growing magnetic field mode having an exponential growth rate γ(ε);
for example for a steady flow

B(x, t) ∝ b(x)eσt, γ = Re σ. (3)

The flow u is a fast dynamo if the fast dynamo exponent

γ0 ≡ lim
ε→0

γ(ε) (4)

is positive; otherwise it is a slow dynamo. For a fast dynamo, magnetic field
growth occurs on the turnover time-scale of the underlying flow u (on which
we first non-dimensionalised), independently of molecular diffusion. A slow
dynamo operates on a slower, diffusion-limited time-scale, as we shall see in
some examples below.

Why study fast dynamos? Before answering this question, it is best to
widen the scope of our enquiry: our interest is in dynamo mechanisms (fast
and slow) at large Rm, the structure of magnetic fields, and the saturation of
dynamo instabilities (in which case (1) must be supplemented by an equation
for u). Mathematically, the limit Rm→∞ or ε→ 0 in (1) is a singular limit
as ε multiplies the highest derivative, and so this requires careful treatment
by numerical codes, or by asymptotic means. Taking this limit allows a clear
subdivision of dynamos and unstable magnetic modes into different families,
as we shall see. This classification can be useful even if Rm is not particularly
large in an application; however in many astrophysical applications Rm is
very large, and dynamo processes do appear to operate on fast time-scales;
for example in the Sun Rm is of the order of 108 and the magnetic field
oscillates on the fast, 11-year Solar cycle.

Finally, developing mathematical tools to cope with fast dynamos is a
considerable challenge with wider application, for example to vorticity and
passive scalar transport in complex flows (e.g., Reyl, Antonsen & Ott, 1998;
Fereday et al., 2002). The induction equation (1) is challenging because the
behaviours as ε → 0 and for ε = 0 are markedly different at large times. If
one simply sets ε = 0, then the induction equation corresponds to advecting a
vector field B in the given flow u, field lines being frozen in the fluid. The field
will gain finer and finer scales, and the magnetic energy will grow because of
field stretching. Because of this reduction of scale, there are no well-behaved
eigenfunctions for a general flow in the case ε = 0 (Moffatt & Proctor, 1985).
Now suppose diffusion is introduced: this can have very dramatic effects
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Stretch, twist and fold

(d)

(e)

(a)

(b)

(c)

(a) (b)

(c) (d)

Fast dynamo paradigm (Vainshtein, Zeldovich). Take a flux tube:

Magnetic flux doubles each iteration. 
If diffusion unimportant then field has 
limiting growth rate                  and so
would be a fast dynamo. 

Figure 3: Cross sections of the torus (a) initially, and (b) after one STF
iteration, (c) two iterations and (d) three iterations. Black indicates regions
containing field, and white is field-free fluid.

(Vainshtein & Zeldovich, 1972), depicted in figure 2.
In this figure the flow is not given explicitly. Instead the action of the flow

is shown on a tube of field frozen into the fluid; we may think of the perfectly
conducting case ε = 0 for the moment. The initial tube (a) is stretched to
twice its length, its cross section being halved, giving (b). This doubles the
field strength and so multiplies the energy by four. The field is then twisted
into a figure-of-eight (c) and folded (d), to give a tube of similar structure
to the original in (a). If this process is repeated, with a time period T = 1,
then the energy at time t = n will be En = 22nE0, corresponding to a growth
rate γ = log 2. Now let us reintroduce weak diffusion; this will begin to play
a role when the field scale becomes of order ε1/2, and will begin to smooth
and reconnect the field (Moffatt & Proctor, 1985). Because the action of the
STF moves has been to bring tubes of field largely into alignment, one would
expect diffusion not to lead to a wholesale destruction of field, but simply to
smooth the fine structure in the field, giving γ ! log 2 for 0 < ε" 1 and so
a fast dynamo with γ0 ! log 2.

There are a number of problems with realising the STF picture in practice.
The first is that it is not easy to specify a fluid flow to apply the STF moves
(Moffatt & Proctor, 1985). But even in such a flow (or iterated mapping),
the field rapidly becomes unmanageable (Vainshtein et al., 1996), for the
reasons indicated schematically in figure 3. Starting with a magnetic field
(black) in a torus, whose cross section is shown in (a), the doubled up field
in (b) will entrain field-free fluid (white) and so some field will lie outside
the original torus. As the stretch, twist, fold operations are repeated (c,d)
the bundle of field lines and entrained fluid will increase in volume until the
whole fluid volume contains strands of field, and it is necessary to understand
the global nature of the fluid flow and folding of field, a problem that has
not been addressed. The field lines also become tangled up in a complicated
fashion (see Gilbert, 2002), with poorly-understood implications for diffusion
of field.

Nonetheless, the STF moves provide a useful picture of how a fast dynamo
with growth rate γ0 ! log 2 might operate. This is only a picture, hard to

8



Otani, Galloway/Proctor flows

Figure 4: Eigenfunctions of Otani’s flow for k = 0.8 and (a) ε = 5 × 10−4

and (b) ε = 5 × 10−5. The magnitude of the magnetic field is shown, with
black indicating zero field.

realise in practice (for example in a convective fluid flow!), but informative
nonetheless. The key points to bear in mind are: first, the flow has chaotic
particle trajectories, as the length of the field lines in the tube doubles with
each period. In fact Lagrangian chaos in a smooth fluid flow is a necessary
ingredient for fast dynamo action; technically the topological entropy h of
the flow must be positive (Finn & Ott, 1988; Klapper & Young, 1995), as we
discuss further below. Such chaotic flows are easy to realise; but the second
key ingredient in a fast dynamo is constructive alignment of magnetic field
vectors. The STF moves tend to bring fields close with similar orientation,
which minimises the possible destruction of field through magnetic diffusion.

1.4 Fast dynamos in smooth flows

The numerical study of dynamo action in chaotic flows began with investi-
gation of steady ABC flows (22) (Galloway & Frisch, 1986). However these
are generally three-dimensional, having complex stream line topology, and
solving the induction equation is computationally intensive. It is easier to
deal with two-dimensional flows u(x, y, t) (independent of z), and the best-
studied examples are essentially variants of (21), for which time dependence
is introduced and results in a breaking up of the separatrices joining hyper-
bolic stagnation points, to give chaotic layers. One example is the flow of
Otani (1993),

u(x, y, t) = 2 cos2 t (0, sin x, cos x) + 2 sin2 t (sin y, 0,− cos y), (25)

which is similar to an example studied by Galloway & Proctor (1992) and
discussed in ??section 2.4.1. Growing magnetic fields take a Floquet form

B(x, y, z, t) = eikz+σt b(x, y, t), (26)

in which b is periodic in time, period 2π. The z-wave number k is a parameter
and for each diffusivity ε, the mode with maximum growth rate may be found.
Numerical study (Otani, 1993) shows good evidence for fast dynamo action
with

γ0 # 0.39, k # 0.8. (27)
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ABC flows

studied in Bassom & Gilbert (1997) for Re ! Rm ! 1: the flow adopts a
layered structure, with solid body rotation in a broad region surrounding the
radius a and where the α-effect and field are concentrated. Outside are thin
layers where the shear and ω-effect are significant.

These Ponomarenko modes, with spiralling tubes of field alternating in
direction, are rather localised; for example a mode would sit in one cell of
a convective flow. They are far from the mean-field dynamos which are
traditionally studied by means of an α-effect and discussed in ??section 2.5.
The best laminar flow to study which allows such large-scale field generation
is the Roberts (1970) flow, which was introduced in ??section 2.4,

u = (sin x cos y,− cos x sin y, K sin x sin y), K =
√

2. (21)

This is a Beltrami flow, with vorticity ∇ × u = Ku proportional to the
flow itself. It thus provides a steady solution to the Euler equation, and is a
member of the ABC family of flows; the general ABC flow is given by

u = (C sin z + B cos y, A sin x + C cos z, B sin y + A cos x), (22)

where A, B and C are parameters (and (21) is obtained by setting A = B =
2−1/2, C = 0, rescaling and rotating axes through π/4). At low Rm the
Roberts flow provides an α-effect dynamo, destabilising large-scale magnetic
field modes (e.g., Moffatt, 1978). The field is dominated by diffusion; the
flow is a small perturbation to the field on the scales of the flow, but one
which has a large-scale destabilising effect. A nonlinear study within this
low Rm model reveals an inverse cascade of magnetic energy to large scales
(Gilbert & Sulem, 1990).

At large Rm, however, the field tends to localise on stream surfaces. The
flow is independent of z; there is an array of square helical cells, in which the
flow is spiralling, where Ponomarenko dynamos can exist. However the key
new feature is the network of hyperbolic stagnation points (x, y) = (nπ,mπ),
joined by straight-line separatrices: new magnetic modes appear, localised
on this network. A mode B ∝ eikz+σt with wave number k in z has growth
rate

γ ≡ σ = αk − εk2, α = −1
2kε1/2G, G ' 1.0655. (23)

(Childress, 1979; Soward, 1987). This is valid for k = O(1), but the growth
rate increases with k, and the above equation is suggestive of a maximum
growth rate γ = O(1) for k = O(ε−1/2), that is, a fast dynamo. A delicate
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the current paper. In particular, we investigate, the physical rea-
son that causes the increase of the growth rate in an ABC flow
for wavenumbers larger than unity. To achieve this we follow
the motion of magnetic field lines in time and demonstrate that
the transportation of the weak part of the field is a key factor of
the dynamo process.

The numerical aspects of the simulations are described in
the following section. The growth rates produced by fast kine-
matic dynamo action of ABC flows are presented in Sect. 3.
Visualizations of the magnetic structures and field lines in
physical space are shown in Sect. 4. Dynamo action pro-
duced by flows without stagnation points is studied in Sect. 5.
Section 6 contains the overall conclusions of the numerical
simulations presented here.

2. The simulation

Our aim is to study kinematic dynamo action in ABC flows.
The time evolution of B is governed by the (dimensionless)
induction equation:

∂B
∂t
= ∇ × (u × B) +

1
Rem
∇2 B, (1)

∇ · B = ∇ · u = 0. (2)

The velocity field is chosen to have the form of an ABC flow:

uABC = A(0, sin kx, cos kx) + B(cos ky, 0, sin ky) (3)
+C(sin kz, cos kz, 0) ,

where k is the wavenumber of the flow. The special case with
parameters A = B = C = k = 1 is referred to as the “normal”
ABC flow dynamo. In the normal case there are two windows of
dynamo action (where the growth rates are positive): A closed
one in the interval Rem = 8.9–17.5, and an open one for mag-
netic Reynolds numbers above 27 (Galloway et al. 1984).

Equation (1) is solved numerically on a staggered mesh
using array valued functions to evaluate the space and time
derivatives. A third-order predictor-corrector method (Hyman
1979) is used for the time-stepping. The applied numerical
scheme (by Galsgaard, Nordlund and others, see Galsgaard
& Nordlund 1997; Nordlund et al. 1992) ensures Eq. (2).
Periodicity of 2π is assumed over a three-dimensional compu-
tational domain. The initial magnetic field is a random pertur-
bation with an amplitude of 10−5.

3. Growth rates

Previous numerical simulations (e.g. Arnold et al. 1983;
Galloway et al. 1984; Galanti et al. 1992; Dorch 2000) have
shown that the normal (A = B = C = k = 1) ABC flow very
likely acts as a fast dynamo with a growth rate close to 0.077
(corresponding to a time-scale of ≈0.25 turn-over times). When
the wavenumber k is larger than unity (where k = 1 corre-
sponds to the largest scale of 2π in the computational domain)
the growth rate scales approximately with the rate of strain.
These results are confirmed in our simulations and we continue
the study of the growth rate of the magnetic field for higher
values of Rem.

We first discuss the case with A = B = C = 1 and k = 2
before turning our attention to higher wavenumbers: As shown
in Fig. 1 the magnetic field is amplified exponentially without
oscillations. Initially, several modes may be present, associated
with oscillatory growth of the magnetic field (as in the case
of a normal ABC flow, Dorch 2000), but eventually the mode
with the highest growth rate is the only one that remains in the
solution (i.e. the dominant mode).
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Fig. 1. Temporal evolution of the magnetic energy for the kinematic
ABC dynamo with A = B = C = 1 and k = 2 for Rem = 100 and
Rem = 1600.

For low Rem the growth rate increases with Rem and reaches
its maximum value at Rem = 12. This value of the magnetic
Reynolds number belongs to the first dynamo window for the
normal ABC flow dynamo, and corresponds to a maximum
growth rate of the magnetic field in this window (Galanti et al.
1992). With k = 2 the lowest Rem possible for dynamo action is
found to be approximately equal to 2. For large Rem the growth
rate decreases slightly (in contrast to the low Rem results of
Galanti et al. 1992) but always remains positive and bounded
away from zero (Fig. 2). The largest value of Rem considered
here is Rem = 1600 and the corresponding numerical resolu-
tion is 1283. In the high Rem regime the growth rate saturates
at a value close to 0.3.

The evidence indicates that the ABC flow with k = 2 is a
fast dynamo, since the growth rate seems to saturate at a non-
zero value for high Rem. The reason for the enhancement of the
growth rate when k = 2 is discussed in the following section.
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Fig. 2. Growth rate of the magnetic energy (normalized by the rate of
strain) versus the magnetic Reynolds number for the kinematic ABC
dynamo with A = B = C = 1 and k = 2.

396 V. Archontis et al.: Numerical simulations of kinematic dynamo action

Fig. 5. Magnetic field strength isosurfaces (dark) and stagnation points
of the flow (light). The magnetic field is concentrated along flux cigars
centered at the α-type stagnation points of the flow. The stagnation
points with no flux cigars centered at them are the β-type points. In
each cell three cigars form a triangle around a β-type stagnation point
and another one is pointing towards it. The magnetic field strength of
the isosurfaces is 70% of the peak value in the snapshot.

Fig. 6. A snapshot showing the structure of the magnetic field when
the fastest growing mode appears and the symmetry is not conserved.
Each cell consists of flux cigars which have different size and different
field strength.

cell to cell and is stretched up against the local flux cigars that
are passed on the way (Fig. 7). In general, the increase of the
magnetic energy is associated with the stretching, twisting and
folding of the magnetic field lines against the local flux cigars
in the β-type planes. The field lines coming from a flux cigar

Fig. 7. Visualization of magnetic field lines and flux cigars when the
dominant mode starts to take over. The stretching of the field lines
at the corner of a triangle at the bottom-left cell is obvious. These
field lines get pressed up against another cigar in a neighboring cell
(up-right).

are connected through the weak field to the cigars that form the
triangles around the β-type stagnation points. The field lines
at the corners of the triangle are stretched and added to other
flux cigars of neighboring cells through the diverging stream
lines. The flux sheets that are formed on both sides of the β-
type plane are also folded constructively. The β-type plane is
actually a plane of discontinuity where the magnetic field lines
change direction and are released to move back into the general
flow (Fig. 8).

5. Flows without stagnation points

In view of the role played by the stagnation points in the normal
ABC flow dynamo, it is natural to ask whether they are a neces-
sary ingredient for fast dynamo action. When the parameters A,
B and C are varied it is possible for the stagnation points to be
created or destroyed (Dombre et at. 1986). When A = 5, B = 2,
C = 2 or A = 5, B = 2, C = 1 (abbreviated as the 5 : 2 : 2 and
5 : 2 : 1 case, respectively) the flow has no stagnation points.
Numerical simulations were performed for both cases and the
results obtained are similar. Therefore, only the former case is
discussed in detail.

The 5 : 2 : 2 flow has four points where the velocity is close
to zero (but not zero, hence there are no stagnation points). The
disappearance of the stagnation points means that there are no
longer any heteroclinic stream lines that connect the points of
minimum velocity. However, there are stream lines that con-
verge to these points and stream lines that diverge from these
points (Fig. 9). The stream lines of the 5 : 2 : 2 flow do not fol-
low any specific symmetry as in the normal ABC flow (which
has a three-fold symmetry of stream lines around the stagnation
points) and the topology of the flow becomes more complex.

Figures from Archontis, Dorch, Nordlund 2003



Klapper-Young upper bound

• Only rigorous general result on fast dynamos. 

• For a smooth flow, the limiting fast dynamo growth 
rate γ  cannot exceed the topological entropy h.

• h is the maximum of the rates of growth of material 
lines or surfaces in the flow in 3-d.

• Makes precise the notion that `chaos’, and chaotic 
stretching, is needed for fast dynamo amplification.

• Growth rate can (and does) exceed Liapunov exponent.
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Fast dynamos based on maps

Figure 5: A baker’s map with uneven stretching, as described in the text.

1.5 Fast dynamos in mappings

Studying fast dynamo action in flows such as Otani’s above, or an ABC
flow, is extremely difficult. The problem is that it is not just the individual
Lagrangian trajectories that are important, but how ensembles of trajectories
lead to folding of magnetic field. Most progress in understanding has been
obtained by studying dynamo action in models for which the fluid flow is
replaced by a mapping.

Perhaps the simplest mapping that can be considered is the stacked
baker’s map with uneven stretching (Finn & Ott, 1988): this discontinu-
ous map of a square, say [−1, 1]2, to itself is depicted in figure 5. The map
M is defined by a parameter α with 0 < α < 1 and we set β = 1 − α. The
unit square is cut at a horizontal level y = −1+2α into two pieces. The first
is stretched by a factor α−1, changing its dimensions in (x, y) coordinates
from 2×2α to 2α×2; see (b). The second piece is stretched by a factor β−1,
going from 2× 2β to 2β × 2. Finally the two squares are reassembled in (c),
stacked together, and this completes the mapping process. This mapping can
be thought of as a simplified model for the STF picture, giving the doubling
up of the tubes of flux in the presence of uneven stretching (Finn & Ott,
1988). The map M may be written as

M(x, y) =

{
(α(x + 1)− 1, α−1(y + 1)− 1) (y < Υ),

(β(x− 1) + 1, β−1(y − 1) + 1) (y ≥ Υ)
(28)

with Υ = −1 + 2α ≡ 1− 2β.
We imagine starting with a field B(x) = b(x)ŷ and using the Cauchy

solution, it may be checked that the action of M is to replace b(x) with the
field Tb, where

Tb(x) =

{
α−1b(α−1(x + 1)− 1) (x < Υ),

β−1b(β−1(x− 1) + 1) (x ≥ Υ).
(29)

T is called the dynamo operator (without diffusion). Ignoring diffusion for the
present, we may imagine iterating this operator on an initial unit magnetic
field b0(x) = 1, possessing flux Φ0 = 2 through any horizontal line y =
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constant. Applying the map once yields two rectangles of field, one of width
2α and strength α−1, and one of width 2β, strength β−1: the flux Φ1 = 4 has
been doubled. Iterating the map we see that Φn = 2n+1. If we can ignore the
effects of diffusion we have a dynamo with growth rate γ0 = log 2 as in the
STF picture, if we agree that each iteration of the mapping takes unit time.
We would expect the effect of weak diffusion to be unimportant, as the fields
that emerge through repeated application of M are all pointing in the same
direction (Finn & Ott, 1990).

The key feature that the stacked baker’s map highlights is that the rate
of growth of flux can be different from the Liapunov exponent, a popular
measure of how chaotic a system is. To measure this quantity we imagine
how a y-directed vector attached to a typical point (x, y) is stretched as the
map M is iterated. Since on average a proportion α of the iterates Mn(x, y)
will lie in y < Υ, where the vector will be stretched by a factor α−1, and a
proportion β in y > Υ, with stretching by β−1, the Liapunov exponent will
be

λLiap = α log α−1 + β log β−1. (30)

This is less than the fast dynamo growth rate γ0 = log 2, except in the
special case α = β = 1/2, of even stretching. This at first seems surprising,
as magnetic field is composed of vectors, and surely both γ0 and λLiap measure
the stretching rate of vectors! In fact there is a difference in the averaging
processes involved. In the case of magnetic field, in computing a flux, we are
weighting more heavily the more stretched vectors, by integrating b(x) dx,
whereas a Lipaunov exponent involves a typical point, with weighting dx
in the sense of a measure. Equivalently, stronger magnetic fields tend to
concentrate in the regions of higher stretching, and so give a different weight
in the average.

A more useful quantity to measure as a diagnostic in a fast dynamo is
the rate of stretching hline of material lines (which could be thought of as
field lines in the absence of diffusion). If the reader experiments with placing
a line, say x = y in the square [−1, 1]2 (see figure 5), and then iterating
the map M on all the points constituting the line, he or she will soon find
that the line length approximately doubles with each iteration, giving an
asymptotic value hline = log 2, which is the same as the fast dynamo growth
rate γ0. Like magnetic field, material lines tend to concentrate in the regions
of high stretching (with the consequent inequality λLiap ≤ hline).

This then suggests the general result that the fast dynamo exponent γ0
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Apply a mapping with field frozen (no diffusion) and then allow 
diffusion to act (with no motion). Allows models based on maps
instead of flows. For example a baker’s map:
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Figure 5: A baker’s map with uneven stretching, as described in the text.

1.5 Fast dynamos in mappings

Studying fast dynamo action in flows such as Otani’s above, or an ABC
flow, is extremely difficult. The problem is that it is not just the individual
Lagrangian trajectories that are important, but how ensembles of trajectories
lead to folding of magnetic field. Most progress in understanding has been
obtained by studying dynamo action in models for which the fluid flow is
replaced by a mapping.
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baker’s map with uneven stretching (Finn & Ott, 1988): this discontinu-
ous map of a square, say [−1, 1]2, to itself is depicted in figure 5. The map
M is defined by a parameter α with 0 < α < 1 and we set β = 1 − α. The
unit square is cut at a horizontal level y = −1+2α into two pieces. The first
is stretched by a factor α−1, changing its dimensions in (x, y) coordinates
from 2×2α to 2α×2; see (b). The second piece is stretched by a factor β−1,
going from 2× 2β to 2β × 2. Finally the two squares are reassembled in (c),
stacked together, and this completes the mapping process. This mapping can
be thought of as a simplified model for the STF picture, giving the doubling
up of the tubes of flux in the presence of uneven stretching (Finn & Ott,
1988). The map M may be written as

M(x, y) =
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(α(x + 1)− 1, α−1(y + 1)− 1) (y < Υ),

(β(x− 1) + 1, β−1(y − 1) + 1) (y ≥ Υ)
(28)
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solution, it may be checked that the action of M is to replace b(x) with the
field Tb, where

Tb(x) =
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α−1b(α−1(x + 1)− 1) (x < Υ),

β−1b(β−1(x− 1) + 1) (x ≥ Υ).
(29)

T is called the dynamo operator (without diffusion). Ignoring diffusion for the
present, we may imagine iterating this operator on an initial unit magnetic
field b0(x) = 1, possessing flux Φ0 = 2 through any horizontal line y =
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Stretch, fold and shear
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Map idealising process seen
in Otani’s example (Bayly,
Childress).

except that the second rectangle is rotated through π before reassembly,
representing the folding of a sheet of field. The map is defined by

M1(x, y, z) =

{
(1

2(x− 1), 1 + 2y, z) (y < 0),

(1
2(1− x), 1− 2y, z) (y ≥ 0).

(32)

The action of this on a magnetic field

B(x, y, z) = eikzb(x)ŷ + complex conjugate (33)

is shown in figure 6(a,b), giving one fold of field in the (x, y)-plane. If this
map were now simply repeated, the effect would be to obtain ever finer
alternating bands of magnetic field in this plane, vulnerable to diffusion.
There is plenty of stretching, but no constructive folding. The flux through
a line x = constant would become zero after one iteration and remain so
thereafter. In this case we would have γ0 negative, but hline = log 2.

Thus a second ingredient is required, a shear in the z-direction, shown in
a top-down view going from (c) to (d). The action of the shear is to bring
upward pointing field (+) approximately into alignment with other upward
fields, and similarly downward pointing field (−). This corresponds to the
mapping

M2(x, y, z) = (x, y, z + αx), (34)

where α is a shear parameter (not related to the previous α, and not intended
to imply an α-effect!). The alignment is only approximate, but intended to
capture the basic mechanism observed in flows such as Otani’s, in which belts
of field are drawn out and folded in the (x, y)-plane, and then sheared in the
z-direction (Bayly & Childress, 1988).

In this way we obtain the SFS dynamo model: the field is first stretched
and folded (by M1) and then sheared (by M2). Acting on the complex field
b(x) in (33) above gives a field Tb, with

Tb(x) =

{
2e−iαkxb(1 + 2x) (x < 0),

−2e−iαkxb(1− 2x) (x ≥ 0).
(35)

T is again the dynamo operator without diffusion. For diffusion we employ
suitable boundary conditions and allow the field b(x) to diffuse for unit time
according to ∂tb = ε∂2

xb. Possible boundary conditions (only employed at
x = −1, 1) include insulating (I), perfectly conducting (C) and periodic (P),

b(1) = b(−1) = 0 (I), ∂xb(1) = ∂xb(−1) = 0 (C), b(x) periodic (P).
(36)
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B(x, y, z) = eikzb(x)ŷ + complex conjugate (33)

is shown in figure 6(a,b), giving one fold of field in the (x, y)-plane. If this
map were now simply repeated, the effect would be to obtain ever finer
alternating bands of magnetic field in this plane, vulnerable to diffusion.
There is plenty of stretching, but no constructive folding. The flux through
a line x = constant would become zero after one iteration and remain so
thereafter. In this case we would have γ0 negative, but hline = log 2.

Thus a second ingredient is required, a shear in the z-direction, shown in
a top-down view going from (c) to (d). The action of the shear is to bring
upward pointing field (+) approximately into alignment with other upward
fields, and similarly downward pointing field (−). This corresponds to the
mapping

M2(x, y, z) = (x, y, z + αx), (34)

where α is a shear parameter (not related to the previous α, and not intended
to imply an α-effect!). The alignment is only approximate, but intended to
capture the basic mechanism observed in flows such as Otani’s, in which belts
of field are drawn out and folded in the (x, y)-plane, and then sheared in the
z-direction (Bayly & Childress, 1988).

In this way we obtain the SFS dynamo model: the field is first stretched
and folded (by M1) and then sheared (by M2). Acting on the complex field
b(x) in (33) above gives a field Tb, with

Tb(x) =

{
2e−iαkxb(1 + 2x) (x < 0),

−2e−iαkxb(1− 2x) (x ≥ 0).
(35)

T is again the dynamo operator without diffusion. For diffusion we employ
suitable boundary conditions and allow the field b(x) to diffuse for unit time
according to ∂tb = ε∂2

xb. Possible boundary conditions (only employed at
x = −1, 1) include insulating (I), perfectly conducting (C) and periodic (P),

b(1) = b(−1) = 0 (I), ∂xb(1) = ∂xb(−1) = 0 (C), b(x) periodic (P).
(36)
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Eigenfunctions develop fine scales for small diffusion.
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We contrast our results with those in paper II for the convectively driven dynamos.
The key parameters that distinguish the two papers are the Rayleigh number (Ra) and
a Reynolds number based on the Ekman layer thickness, which may be defined by
Re! ¼ Re=! (with Re and ! defined in (7) and (10)). In paper II Ra is of the order
of 7500 and Re! is around 5, so the primary instability is convective, whereas in the
present study Ra¼ 0 and Re! is about 45, so that only the Ekman instability is present.
The two instabilities have distinct features. First, as mentioned earlier, hydrodynamic
instability gives rolls or cat’s eyes with axes approximately aligned east–west with the
shear, whereas convective rolls are aligned north–south for parameter regimes when
the horizontal component of rotation is important. Thus the rolls interact rather differ-
ently with the underlying shear and this has important implications for the operation of
a dynamo. Secondly, for a convective instability the convective rolls are predominantly
outside the shear layer and suppressed within it, whereas for an Ekman instability the
cat’s eyes are driven by, and sit inside, the Ekman layer, though the flows do extend
outside some distance. Overall, we find that the nonlinear dynamos obtained from
hydrodynamic instability, in the parameter ranges accessible to us, generate weaker
fields and are less robust than the convective dynamos of paper II.

The article is structured as follows. In the next section we set out the equations and
parameters governing the plane-layer system. In section 3, we consider kinematic
dynamo action in the flow resulting from the Ekman instability just above critical
and after a secondary bifurcation to a three-dimensional time-dependent flow,
extending the results of paper I. These linear instabilities are then followed by study
of the nonlinear regime in section 4. We contrast this with the case of plane-layer
Taylor–Couette geometry, with shear distributed across the layer, and in section 5
consider dynamo action in kinematic and dynamical regimes. The final section 6
offers concluding discussion, and comments on the relevance of our results to possible
mechanisms driving the solar dynamo.

2. Model and governing equations

The plane-layer model developed in papers I and II is depicted in figure 1 and employs
a local Cartesian approximation (b) to a spherical shell geometry (a) at a co-latitude #.
The layer is of depth h and contains fluid with viscosity " and magnetic diffusivity #.

The layer rotates with angular velocity !>0, about a direction b: lying in the (y, z)
plane, and the base of the plane layer has a velocity U0 in the x-direction. The
non-dimensional governing equations, based on the height of the layer and the viscous
timescale are

@U

@t
þU $ JUþ $b:%U ¼ &J"þ ðJ% BÞ % Bþ r2U, ð1Þ

@B

@t
¼ J% ðU% BÞ þ Pm&1r2B, ð2Þ

J $U ¼ 0, J $ B ¼ 0 ð3Þ

with

b: ¼ sin#ey þ cos#ez: ð4Þ
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The boundary conditions employed are

U ¼ Re ex ðz ¼ 0Þ, U ¼ 0 ðz ¼ 1Þ, ð5Þ

Bz ¼
@Bx

@z
¼

@By

@z
¼ 0 ðz ¼ 0, 1Þ ð6Þ

(no-slip and perfect conductor). The parameters introduced so far are

#, Re ¼ U0h

!
, " ¼ 2!h2

!
, Pm ¼ !

#
, ð7Þ

that is, co-latitude, Reynolds number, square root of the Taylor number and magnetic
Prandtl number. We take "$ 0, and 0 % # % $=2, but allow Re to have either sign,
corresponding to the sign of U0. Note that the equations used in papers I and II are
very similar except that these studies included the possibility of convective driving,
and based the dimensionless timescale on the thermal diffusivity %. This is equivalent
to our choice here given that the Prandtl number P ¼ !=% was fixed as unity in these
earlier computations. It also means that the parameter Pm in this article plays exactly
the same role as the Roberts number q ¼ %=# in papers I and II.1 Note that within our
framework the magnetic Reynolds number becomes a diagnostic, depending on the
flow realised, and we define this by

Rm ¼ PmU, U &
ffiffiffiffiffiffiffiffiffi
2EK

p
, ð8Þ

where EK ¼ 1
2 hU

2i is the kinetic energy per unit volume.
The moving boundary at the base of the plane layer drives a net shear across the

layer. There is a basic state with B ¼ 0 and an Ekman–Couette flow,

UEkðzÞ ¼ Re,ðzÞ ¼ Re "1ðzÞex þ"2ðzÞey
" #

, ð9Þ

where the "i(z) satisfy

(2&2"2 ¼ "00
1, 2&2"1 ¼ "00

2, & &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
" cos#

r
: ð10Þ

The full solution is given in equation (29) of paper I; we only note that in the limit of large
" for # 6¼ $=2 the flow becomes an Ekman layer localised at the bottom boundary:

"1ðzÞ ’ e(&z cos&z, "2ðzÞ ’ (e(&z sin&z ð& ) 1Þ: ð11Þ

There is no Ekman layer at the top boundary as we do not impose a horizontal pressure
gradient in the system; note that the horizontal pressure gradient is not Galilean
invariant in this rotating plane-layer geometry. With # ¼ $=2, the flow is the linear shear

"1ðzÞ ¼ 1( z, "2ðzÞ ¼ 0, ð12Þ

1 There is an error in the discussion of the last paragraph of paper II: there the quantity q should be
replaced by Pm.
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for any !. A convenient measure of the thickness of the Ekman layer, when it is present,
is where the y-directed velocity is maximal,

max
z

UEk, y ¼ "2"1=2e""=4Re ’ "0:3224Re at zmax ¼ "=4#: ð13Þ

We finally need to specify the periodic box used for computations. In an infinite
plane layer infinitesimal perturbations to the basic state (9) proportional to
expðikxxþ ikyyþ ptÞ all evolve independently; for an Ekman instability there is only
a narrow range of horizontal wave-vectors (kx, ky) that are destabilised when the
Reynolds number is raised to moderate, supercritical levels. It appears that only
quite particular orientations of rolls are able to extract energy from the spiralling
Ekman flow (Lilly 1966). This is in contrast to the case of convection, for which a
much wider range of wave-vectors are unstable at a given supercriticality (e.g., Ponty
et al. 2003, figure 6).

In view of this, to capture the Ekman instability within the limitations of our
computational power (that is without a very large box size or very high Reynolds
number), we adopt a periodic box that is tuned to the scale and orientation of the
unstable modes at criticality. As in paper I we define a set of axes ð !x, !y, zÞ rotated
from the original axes by an angle ", as depicted in figure 1(d). The governing equations
remain the same, but (9) and (4) become

, ¼ $1e !x þ $2e !y, $1 ¼ "1cos "þ"2sin ", $2 ¼ ""1sin "þ"2cos ", ð14Þ
b: ¼ sin# sin " e !x þ sin# cos " e !y þ cos# ez: ð15Þ

With respect to the new axes the numerical box is taken to have a periodicity length
L !x ¼ 2"=k !x in the !x-direction and L !y ¼ 2"=k !y in the !y-direction. The complete set
of parameters governing our numerical configuration is then

Re, !, Pm,#, ", k !x, k !y

! "
: ð16Þ

The numerical method used is described in paper II.

3. Kinematic dynamos driven by Ekman instabilities

In running a three-dimensional code, the scope to explore parameter space is very
limited. Our approach is to start with selected examples of shear flows that are
hydrodynamically unstable, to follow these until the fluid flow equilibrates, and then
to introduce a magnetic field, observing it through kinematic and into dynamical
regimes. Our starting point is the case considered in paper I, section 4.2.1, which has

! ¼ 60, # ¼ 45&, " ¼ 73:5&, k !x ¼ 3:44, k !y ¼ 1:2: ð17Þ

The periodicity box thus has dimensions 2"=k !x ' 2"=k !y ' 1 ’ 1:83' 5:23' 1.
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The Magnetic Reynolds number becomes a 
diagnostic defined by: 

The boundary conditions employed are

U ¼ Re ex ðz ¼ 0Þ, U ¼ 0 ðz ¼ 1Þ, ð5Þ

Bz ¼
@Bx

@z
¼

@By

@z
¼ 0 ðz ¼ 0, 1Þ ð6Þ

(no-slip and perfect conductor). The parameters introduced so far are

#, Re ¼ U0h

!
, " ¼ 2!h2

!
, Pm ¼ !

#
, ð7Þ

that is, co-latitude, Reynolds number, square root of the Taylor number and magnetic
Prandtl number. We take "$ 0, and 0 % # % $=2, but allow Re to have either sign,
corresponding to the sign of U0. Note that the equations used in papers I and II are
very similar except that these studies included the possibility of convective driving,
and based the dimensionless timescale on the thermal diffusivity %. This is equivalent
to our choice here given that the Prandtl number P ¼ !=% was fixed as unity in these
earlier computations. It also means that the parameter Pm in this article plays exactly
the same role as the Roberts number q ¼ %=# in papers I and II.1 Note that within our
framework the magnetic Reynolds number becomes a diagnostic, depending on the
flow realised, and we define this by

Rm ¼ PmU, U &
ffiffiffiffiffiffiffiffiffi
2EK

p
, ð8Þ

where EK ¼ 1
2 hU

2i is the kinetic energy per unit volume.
The moving boundary at the base of the plane layer drives a net shear across the

layer. There is a basic state with B ¼ 0 and an Ekman–Couette flow,

UEkðzÞ ¼ Re,ðzÞ ¼ Re "1ðzÞex þ"2ðzÞey
" #

, ð9Þ

where the "i(z) satisfy

(2&2"2 ¼ "00
1, 2&2"1 ¼ "00

2, & &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
" cos#

r
: ð10Þ

The full solution is given in equation (29) of paper I; we only note that in the limit of large
" for # 6¼ $=2 the flow becomes an Ekman layer localised at the bottom boundary:

"1ðzÞ ’ e(&z cos&z, "2ðzÞ ’ (e(&z sin&z ð& ) 1Þ: ð11Þ

There is no Ekman layer at the top boundary as we do not impose a horizontal pressure
gradient in the system; note that the horizontal pressure gradient is not Galilean
invariant in this rotating plane-layer geometry. With # ¼ $=2, the flow is the linear shear

"1ðzÞ ¼ 1( z, "2ðzÞ ¼ 0, ð12Þ

1 There is an error in the discussion of the last paragraph of paper II: there the quantity q should be
replaced by Pm.

Nonlinear dynamo action in hydrodynamic instabilities driven by shear 29

The boundary conditions employed are

U ¼ Re ex ðz ¼ 0Þ, U ¼ 0 ðz ¼ 1Þ, ð5Þ

Bz ¼
@Bx

@z
¼

@By

@z
¼ 0 ðz ¼ 0, 1Þ ð6Þ

(no-slip and perfect conductor). The parameters introduced so far are

#, Re ¼ U0h

!
, " ¼ 2!h2

!
, Pm ¼ !

#
, ð7Þ

that is, co-latitude, Reynolds number, square root of the Taylor number and magnetic
Prandtl number. We take "$ 0, and 0 % # % $=2, but allow Re to have either sign,
corresponding to the sign of U0. Note that the equations used in papers I and II are
very similar except that these studies included the possibility of convective driving,
and based the dimensionless timescale on the thermal diffusivity %. This is equivalent
to our choice here given that the Prandtl number P ¼ !=% was fixed as unity in these
earlier computations. It also means that the parameter Pm in this article plays exactly
the same role as the Roberts number q ¼ %=# in papers I and II.1 Note that within our
framework the magnetic Reynolds number becomes a diagnostic, depending on the
flow realised, and we define this by

Rm ¼ PmU, U &
ffiffiffiffiffiffiffiffiffi
2EK

p
, ð8Þ

where EK ¼ 1
2 hU

2i is the kinetic energy per unit volume.
The moving boundary at the base of the plane layer drives a net shear across the

layer. There is a basic state with B ¼ 0 and an Ekman–Couette flow,

UEkðzÞ ¼ Re,ðzÞ ¼ Re "1ðzÞex þ"2ðzÞey
" #

, ð9Þ

where the "i(z) satisfy

(2&2"2 ¼ "00
1, 2&2"1 ¼ "00

2, & &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
" cos#

r
: ð10Þ

The full solution is given in equation (29) of paper I; we only note that in the limit of large
" for # 6¼ $=2 the flow becomes an Ekman layer localised at the bottom boundary:

"1ðzÞ ’ e(&z cos&z, "2ðzÞ ’ (e(&z sin&z ð& ) 1Þ: ð11Þ

There is no Ekman layer at the top boundary as we do not impose a horizontal pressure
gradient in the system; note that the horizontal pressure gradient is not Galilean
invariant in this rotating plane-layer geometry. With # ¼ $=2, the flow is the linear shear

"1ðzÞ ¼ 1( z, "2ðzÞ ¼ 0, ð12Þ

1 There is an error in the discussion of the last paragraph of paper II: there the quantity q should be
replaced by Pm.

Nonlinear dynamo action in hydrodynamic instabilities driven by shear 29



Convective example
!

!

z

g

y

T

!"T

z

x

(North)

T

Ug
0

(a) (b)

(c)

x (East)

Fig. 1. Geometry for the study. (a) Spherical shell geometry is approximated as (b)
plane layer geometry. (c) Schematic picture of the fluid flow with an Ekman layer
at the base, and convective rolls in the interior.

pushed these results into strongly nonlinear, turbulent regimes, in the limit of
small Ekman number. These studies adopted a rotating, plane layer geometry.
A different approach was pioneered by Busse (1975) and is to incorporate ele-
ments of spherical geometry in a rotating annulus model with inclined top and
bottom surfaces. This allows Rossby waves to be driven by convection, and
dynamo action in such a flow was studied by Kim, Hughes & Soward (1999,
2004). Other relevant simulations include dynamo action in convection over a
region of stable stratification (Brandenburg et al., 1990; Nordlund et al., 1992;
Tobias et al., 2001), in accretion discs dominated by Keplerian shear and hy-
dromagnetic instability (Brandenburg et al., 1995), in convective flows in a
rapidly rotating sphere (Busse, 2002) and in shear with magnetic buoyancy
providing an α-effect (Cline, Brummell & Cattaneo, 2003).

The aim in this paper is to study a fully hydrodynamical interface dynamo
in a plane layer geometry by means of three-dimensional numerical simula-
tions. The model was introduced in Ponty, Gilbert & Soward (2001), which
we refer to subsequently as paper I, and is motivated as a classical fluid flow
with some features in common with the Solar tachocline and the convection
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Fig. 2. Convective flow in the kinematic regime, with parameter values (3.1), (3.2).
Plotted are the flow components (U, V,W ) of U in the (x, z)-plane (left-hand panels)
and (y, z)-plane (right-hand panels).

In our run the Rayleigh number is increased to Ra ! 2 Rac, which has two
effects. First, the convection becomes more vigorous, although not so strong as
to disrupt the Ekman layer. Secondly, the flow bifurcates at Ra ! 1.7 Rac and
by Ra ! 2 Rac has modest three-dimensionality, although it remains steady in
a moving frame. The flow takes the form of convective rolls with some variation
in the y-direction, as depicted in figure 2. This shows the flow components on
a slice of constant y (left) and a slice of constant x (right). Clearly visible in
U (top) is the Ekman layer at the base of the layer; the W component in the
(x, z)-plane (bottom left) indicates the presence of two convective rolls, while
the three right-hand panels show the three-dimensionality of the flow.

The magnetic field in the kinematic regime is shown in figure 3. Different quan-
tities are plotted to indicate different aspects of the magnetic field structure.
The left-hand panels show

√
〈B2

x〉y,
√
〈B2

y〉y,
√
〈B2

z 〉y,
√
〈|B|2〉y, (3.3)

i.e. the field intensity, averaged over y. The right-hand panels show

〈Bx〉x, 〈By〉x, 〈Bz〉x,
√
〈|B|2〉x, (3.4)

and so give an indication of the sign of the field (except the lowest panel).

In the bottom pair of panels we see that most of the magnetic energy is in
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nonlinear evolution and saturation, a three-dimensional finite difference code
was written. This time-steps the system (2.12)–(2.15), written in terms of u
from (2.24) with homogeneous boundary conditions applied to θ, B and u
(see (2.16), (2.17)); further details are given in appendix A.

3 Dynamo action in convection with shear

3.1 Parameters and kinematic evolution

In undertaking three-dimensional simulations, the scope to explore parameter
space is limited. The main run we study in this paper has the parameter values

Ra = 7500 ! 2 Rac, Re = 30, τ = 200, (3.1)

P = 1, q = 50, ϑ = 67.5◦, kx = 4.30, ky = 1.0, (3.2)

so that the box has dimensions of Lx × Ly × 1 ! 1.46 × 6.28 × 1. These were
chosen to build on earlier work in paper I: the x-dimension gives the preferred
scale of convective rolls at onset, while the y-dimension is sufficiently large to
allow the field to develop structure on a range of scales. Our dynamical run
is closely related to a purely kinematic run shown in figure 7 1 of paper I,
for which the parameters are similar. The only important difference is that in
paper I the Rayleigh number Ra ! 1.1 Rac is close to critical, whereas ours is
twice critical.

In the absence of convection and magnetic field, the values of Re and τ lead
to an Ekman layer localised near to the base of the plane layer, with thickness
zmax ! 0.127 in (2.23). The effect of then raising the Rayleigh number just
above critical, as in paper I, is to generate convective rolls which tend to
lie above the Ekman layer (being suppressed within the layer by the strong
shear). The orientation of the convective rolls is dominated by the rotation
of the system and their axes are approximately aligned with the horizontal
component of Ω, that is, with the y-direction. The effect of the Ekman layer
is to change the orientation of the rolls at onset in an infinite plane layer,
from exact alignment, by an angle ε ! 2.33◦. The effect is small because
the localised Ekman layer has little interaction with the convection at these
parameter values (see paper I and references therein). In our finite, periodic
plane-layer geometry the set of possible wavevectors is limited and so at onset
the roll axes are exactly aligned with the y-direction, the resulting flow being
shown schematically in figure 1(c).

1 In paper I for this figure ky ≡ l is given incorrectly as 8.5 whereas it should be
1.0.
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Fig. 3. Magnetic field in the kinematic regime, with parameter values (3.1), (3.2).
Plotted are the field components Bx, By, Bz, and B = |B| in the (x, z)-plane (left
panels) and (y, z)-plane (right panels); see (3.3) and (3.4).

the form of structures that are extended in the x-direction, and the field is
predominantly x-directed. The structures are flattened in the y-direction as
seen in the top right-hand panel, and so form what we will refer to as sheets
of field. This panel indicates that there are essentially 4 sheets, 2 with field
pointing in the −x-direction and 2 in the +x-direction. This corresponds to a
dominant n = 2 mode, where it is convenient to decompose the field as

B(x, y, z, t) =
∑

n

B̂n(x, z, t)einkyy. (3.5)

In paper I these modes were decoupled as the flow was y-independent, but
for the present parameter values the modes are coupled because of three-
dimensionality in the flow field. Note that in paper I, insulating boundary
conditions were employed; we use perfectly conducting boundary conditions
which have more of a trapping effect of field at the boundary. Tests indicate
that this makes little difference to magnetic field structure and kinematic
growth rate in the presence of strong shear.

The magnetic field moves as a wave propagating in the −y-direction, an aspect
we will return to later. Although the field lies predominantly within the shear
layer (see also figure 8 below), the convection above it is important in drawing
out tongues of field, which are then folded back into the shear flow. This is
particularly seen in the Bz field, which suggests the dynamo could be classified
as of αω type, with the convection providing an α effect; we will discuss this
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Dynamical regime

Fig. 4. Plotted in a logarithmic scale are the kinetic energy EK (solid) and the
magnetic energy EM (dotted) as functions of time.

further below.

3.2 Energies and transfers

Our main run starts with a seed magnetic field and the equilibrated convective
flow (figure 2), and follows the magnetic field through kinematic growth (figure
3) to saturation. The key issue is to find suitable diagnostics to understand
the wealth of data potentially available. Two diagnostics are the total kinetic
and magnetic energies,

EK = 1
2〈|U |2〉, EM = 1

2〈|B|2〉, (3.6)

where 〈·〉 denotes an average over the periodic box. Figure 4 shows the energies
plotted as a function of time.

In the kinematic regime EK # 95 and the magnetic field grows as EM ∝ e2σt

with growth rate σ # 3.05. In our system the magnetic Reynolds number Rm
is a diagnostic, which depends on the flow that is realised. Using the root-
mean-square velocity U that is measured in the simulation, we define Rm in
our non-dimensionalisation by

Rm = Uq, U ≡
√

2EK . (3.7)

Kinematically Rm # 690, and the field has correspondingly fine-scale structure
as seen in figure 3.

The field saturates at t # 3, leading to a state with complicated time-dependence
and relatively strong magnetic fields. Despite the large value of Rm, the mag-

11

Fig. 7. Magnetic field for parameter values (3.1), (3.2), in the dynamical regime, at
t = 24. The plots are as in figure 3.

component U2x also gives a net input of energy T2x (dash) into the field, corre-
lated with the strength of the flow itself (see E2x in figure 5), and so showing
large fluctuations with time. On the other hand there is a net loss of magnetic
energy into the weak flow U 2y, and no persistent sign of transfer for the final,
three-dimensional component U 3.

3.3 Magnetic field and flow structure

A snap-shot of the magnetic field in the saturated state is shown in figure 7.
This may be compared with the kinematic field in figure 3. We observe that
the field remains largely localised in the Ekman shear layer (whose thickness
remains zmax ! 0.13 dynamically), but instead of taking the form of sheets,
appears to show structures extended only in the x-direction, which we refer to
as tubes of field (see, for example the top panels and bear in mind the 2π × 1
dimensions in the (y, z)-plane).

To quantify the spatial localisation of magnetic field, figure 8 shows the mag-
netic energy EM(z) as a function of z,

EM(z) = 1
2〈|B|2〉x,y, (3.14)

that is, averaged over x and y only. In figure 8(a) the profile is shown for the
early, kinematic regime, while in figure 8(b) a series of curves shows the profile
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Fig. 10. Butterfly diagram for the magnetic field diagnostic (3.16), plotted in the
(t, y) plane.

in kinematic regimes. This is antisymmetric about the mid-point z = 1/2 as
one would expect for rotating convection (e.g., Childress & Soward, 1972),
while dynamically this helicity is suppressed.

The tubes seen in figure 7 translate in the −y-direction, the direction of the
y-component of the Ekman flow (see (2.23)) but also evolve in time. As they
are extended in the x-direction and confined to a narrow band of z-values it
is useful to plot an average over x and a slice at z = zmax,

B̂x(y, t) = 〈Bx(x, y, zmax, t)〉x (3.16)

as a function of t and y. This is done in figure 10 as a colour plot in the style of
a ‘butterfly diagram’. Each tube is revealed as a streak that crosses the plane,
with life-times comparable to the transit time of the wave. The diagram also
reveals a larger-scale coherence in the field, which shows groupings of tubes
of similar sign, corresponding to mode n = 1 in the y-direction (with modes
defined by einy as y varies from 0 to 2π here).

The loss of coherence of the magnetic field on smaller scales, sheets breaking
into tubes, is in accord with the results shown in figures 5 and 6. While
the shear flow itself remains largely time-independent, the transfer of energy
T1 by stretching of magnetic field in the shear becomes more intermittent,
presumably as tubes of field are carried into and out of the shear by the
up–down convective motions.

To quantify the larger-scale modulation apparent in figure 10, we consider the
energies EM(n) in each of the magnetic modes in (3.5). Here we set

EM(0) = 1
2〈|B̂0(x, z)|2〉, EM(n) = 〈|B̂n(x, z)|2〉 (n ≥ 1) (3.17)
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Fig. 10. Butterfly diagram for the magnetic field diagnostic (3.16), plotted in the
(t, y) plane.
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Open issues
• How does the solar dynamo function? Is the tachocline 

important or not? Do any/all of convection, shear 
instability, and waves play a role? 

• How useful is the alpha effect in modelling Solar 
magnetic fields and in other dynamo applications?

• How does the Sun generate quite fine-scaled field at the 
surface, yet showing clear (Hale) polarity laws? 

• What is the nature of nonlinear alpha-effect suppression 
at large R? Is it even a useful concept?

• Can any rigorous results be proven about the existence of 
fast dynamos in `realistic’ flows (rather than maps)?

http://www.maths.ex.ac.uk/~adg


