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Sir Joseph Larmor (1919)

“Such internal motion induces an electric field acting on the moving matter:
and if any conducting path around the Solar axis happens to be open, an
electric current will flow round it, which may in turn increase the inducing
magnetic field. In this way it is possible for the internal cyclic motion to
act after the manner of the cycle of a self-exciting dynamo, and maintain
a permanent magnetic field from insignificant beginnings, at the expense of
some of the energy of the internal circulation.”

Electric conductor moving in a magnetic field
=> electromotive force => electric current =>
magnetic field

Possibility of self-excited field, as in a usual electrical dynamo.



Equations

V- E=ple,

V.-B=0, \ |
YV x B = uJ + 1o, Maxwell’s equations
V x E = —(9tB

Neglecting the displacement current ued.E,
(speeds much less than ¢) gives the induction equation

0B=V x(uxB)—-V x(nV x B).

with the magnetic diffusivity
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Simplifications

For constant magnetic diffusivity and incompressible
fluid flow v -« =0, we are left with:

OB+u-VB =B -Vu+nV’B. V-B=0,

Note analogy with vorticity equation: magnetic field line
stretching competes with diffusion. By analogy we can
define a magnetic Reynolds number R=UL/7) with

OB =V x(uxB)+R'V’B, V-B=0,

Can measure growth in magnetic energy in volume V:

1

Ev(l) = 2

/ B2dV,



Dynamos

e We have a "dynamo’ if the magnetic field is sustained:
magnetic energy does not tend to zero as t tends to
infinity for some value of R.

e Kinematic problem: given a flow u(x,y;z,t), how fast
does the magnetic energy grow? Linear, eigenvalue
problem - lots of theory, clean issues.

e Dynamical problem: given a mechanism for driving a
flow (convection, shear, paddles) how does the field
grow and saturate? Nonlinear, chaotic, issues of (MHD)
turbulence. Usually requires numerical treatment - little

theory.
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Earth’s magnetic field:
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Why are dynamos interesting?

e Many astrophysical applications: galaxies, stars,
planets, earth, accretion discs.

e Require complex flows (anti-dynamo theorems).
e Interesting linear problems (kinematic regime).
e Immensely challenging 3-d nonlinear problems.

e Wide scope: theory, numerics, observation and
experiment.

e (Classical problem: William Gilbert, De Magnete 1600.



Anti-dynamo theorems

e A magnetic field of the form B(x,y;t) cannot be maintained
by dynamo action.

e A ‘planar’ flow, of the form (u(x,yz,t),v(x,y;z,t),0) cannot
maintain a magnetic field (Zeldovich’s theorem).

e An axisymmetric magnetic field, of the form B(;0,t) in
(r, U,9) coordinates, cannot be maintained by dynamo
action (Cowling’s theorem).

e A “toroidal’ low, of the form (o,v(r, 9,d,t),w(r, 0,P,t)) in

(r, 9,9) coordinates, cannot maintain a magnetic field.

In short: we can’t achieve a dynamo with a
“simple’ flow or “simple’ field.



Upper bounds

Under the induction equation
0/B=V x(uxB)—-V x(nV x B).

magnetic energy |
gttt e / B|2dV,
W) =5 [ 18]
obeys

Matgvz—n/ \VxBPdV—/ w-(Vx B)x BdV
Vi Vi

In a sphere of radius a (insulating boundary conditions), a
dynamo requires R = aumax/n > 7. (Childress).

In a sphere of radius a, a dynamo requires R = a’enax/n > 72,
(Backus), where €max is the largest eigenvalue of the
rate-of-strain matrix: e;; = %(9;u; + d;u;)

Key points: need stretching, R large enough.



Smooth Ponomarenko dynamo

Simplest dynamo to study, u = 8rQ(r) + 2U(r), in cylindrical
polars (1,0,2).

Solve 6,B +u-VB = B vu+:v2B, numerically, or approximately
for small €=1/R. Put B = b(r)e*+imb+ikz

(A + imQ(r) +ikU(r))b, = (A, — 772)b, — 2imr~2by),

(A + imQ(r) + ikU(r))bg = ' (1)b, + (A, — 772)bg + 2imr™2b,.),

(A +imQ(r) + kU (r))b, = U'(r)b, + eA,,b..
Mechanism: stretching of radial field, diffusion of azimuthal
field. For small €, a mode (m,k) localises at a resonant radius
where mQ’(a)+kU’(a)=0 and the growth rate is:

v =Re\ ~ :F\/5|mSZL’(a)\ — (j + %)\/5|mﬂ”(a) + kU (a) — e(m?/a® + k?)




® positive Bz
® negative Bz
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A geometrical condition

elm{¥(a)|

a

— (j + D/felmQ(a) + kU"(a) — e(m?/a® + K?)

’y:Re)\::F\/

For growth, first term must dominate, which requires the
purely geometrical condition to hold:

V() U] L |4 |26
() U0 U'(1)

r =173

<4

dr
Holds for spiral Couette flow:
Qr)=a+br % U(r)=c+dlogr,

(Generalisations for more
general flows with stream
surfaces.
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G.0O. Roberts flow

u = (cosy,sinz,siny + cosx) = (0,00, —0,1,v), 1 =siny + cosz,

0,B=V x (ux B)+ R V2B, V-B=0,

Multiple scale analysis for small R,

at:R_laT+R38T, v:vm—l_RQvX) B:B0+RB1“|—

Small scale flow generates B1 from Bo:
(0, — V2)Bg = 0,
(0, — Vi)B1 = Vg x (u x By),

On large scales a "'mean emf’ sustains Bo

3TBO = VX X <’LL X B1> She VX2B0,

1! (ik - Bo)(ttg,, X Upy)

Sl= <U X B1>,: Z goEIe) T | OémnBOna

k,w

Alpha effect linked to helicity: h = u - w




Large-scale modes obey
OrBy=Vx x (a-By) +Vx°By, Vx- -By=0.

with the alpha effect tensor [, ()
a=(ap,) =aly,, a=-1, I,=]010

\000)

amplifying magnetic fields of the form

By = (£sin KZ, cos KZ,0), By = BeFZHAT

with growth rate A =FK - K*.

Large scale modes are amplified even though the small-scale
R<<1. In dimensional terms growth rates are

v =+aq—nqg’, a=—uj/nk=—Ruy.

Alpha effect in a helical flow can destabilise large-scale
magnetic fields.

S




Alpha eftect

Key transport effect that can destabilise large-scale magnetic
fields (Parker, Steenbeck, Krause, Radler, Moffatt).
For low small-scale magnetic Reynolds number:

kmkn H (K, w)

0] _772 2kt + 2

. K2H (k, w)
Isotropic flow: a=al, a=-1 T 1w e

Alpha effect can circumvent anti-dynamo theorems
OB =V x (uxB+aB)+nV’B, V-B=0.

Alpha effect and shear can give dynamo waves in an
alpha-omega dynamo: modelling of solar, terrestrial, galactic
fields. Idea immensely influential.



Problems with the alpha effect

e Only satisfactory formula is for low small-scale
magnetic Reynolds number R (with link to
helicity). For short correlation times though we
have o= —ir(u-V xu), B=:7(ul?

o At large R it is hard to calculate and may be
irrelevant (small-scale fields grow faster than
large-scale ones).

e Nonlinear feedback on alpha difficult to assess at

large R. Also eddy diffusivity:

e Dynamo applications have large R (outside the
laboratory)



Fast versus slow dynamos

Magnetic fields evolve on fast turn-over time-scales in many
astrophysical objects at large R=1/€; e.g. in the Sun R=10"8, 11-
year cycle.

In the smooth Ponomarenko dynamo the fastest growing modes
have growth rates 7 = O(e'/?) for m, k = O(e™/3)

We call this a “slow’ dynamo: growth rates go to zero as R tends

to infinity.

For the G.O. Roberts dynamo growth rates go to zero (Soward):
7= O((logloge™")/loge™),  k=0(c"?/y/loge1).

For a “fast’ dynamo, growth rates remain bounded above zero no
matter how large R is, that is how small the diffusivity € is. The
limiting maximum growth rate 7 = lim¥(¢) is positive.



Stretch, twist and fold
Fast dynamo paradigm (Vainshtein, Zeldovich). Take a flux tube:

Magnetic flux doubles each iteration.
It diffusion unimportant then field has @ )

limiting growth rate vy ~log2. and so ‘ ‘ Q) @

would be a fast dynamo. @
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Otani, Galloway/Proctor flows
u(z,y,t) = 2cos*t (0,sin, cos z) + 2sin’ ¢ (siny, 0, — cos y),
B(z,y, z,t) = e* 1 b(z, y, 1),

(a) ,

Eigenfunctions for
E=5><IOA(‘4), €=5><IOA(‘5),
and k=0.8 (snap-shots).

Poincare section




ABC flows

u= (Csinz+ Bcosy, Asinx + C cos z, Bsiny + Acosx),

Probably a fast dynamo (Arnold, Galloway,; Frisch, Dorch,

Archontis, Nordlund).

Fully three-dimensional flow and field complicates study;

numerically very demanding.
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Fig. 2. Growth rate of the magnetic energy (normalized by the rate of
strain) versus the magnetic Reynolds number for the kinematic ABC
dynamo withA =B =C =1and k = 2.

Figures from Archontis, Dorch, Nordlund 2003

Fig. 5. Magnetic field strength isosurfaces (dark) and stagnation points
of the flow (light). The magnetic field is concentrated along flux cigars
centered at the a-type stagnation points of the flow. The stagnation
points with no flux cigars centered at them are the B-type points. In



Klapper-Young upper bound

e Only rigorous general result on fast dynamos.

e For a smooth flow, the limiting fast dynamo growth
rate y_ cannot exceed the topological entropy h.

e h is the maximum of the rates of growth of material
lines or surfaces in the flow in 3-d.

e Makes precise the notion that “chaos’, and chaotic
stretching, is needed for fast dynamo amplification.

e Growth rate can (and does) exceed Liapunov exponent.



Fast dynamos based on maps

Apply a mapping with field frozen (no diffusion) and then allow
diffusion to act (with no motion). Allows models based on maps
instead of flows. For example a baker’s map:

(a) (b)
iy car( ek s e b R O CIDTE L 1 1) £ TTHR
T B -+ LA g -+ G2 T)

200

i lias = o gl ks il G [l Li
Magnetic field maps according to  © i
atblaH(z+1)—1) (@t )1 e

s {5119(51(95 S i) (a5 [0

Ignoring diffusion, growth rate is % = log2 (fluxes double each
iteration) and this exceeds the Liapunov exponent

ALiap = @log o + Blog 5.
j (Finn, Ott)



Stretch, fold and S

Map idealising process seen

in Otani’s example (Bayly,
Childress).
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Dynamos driven by shear and

convection
(a) Q T
(b) y
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Flow driven by shear or convection in a rotating frame.

Ekman layer can become unstable giving cat’s eye rolls
(Ponty, Gilbert, Soward).
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Thompson, Christensen-Dalsgaard.



Inear regimes
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Equations and
pParameters: (Re, 7, Pm, v, ¢, ks, k...

oU ~
E+U-VU+erU:—VH+(V><B)><B+V2U,
B
E:VX(UXB)—I—Pm_lsz,
V.-.U=0, V-B=0
Uoh 2Qh°
7.9, Re:—O, T = ’ Pm:BQ
V V n

The Magnetic Reynolds number becomes a

diagnostic defined by:

Rm=PmU, U=+ 2E, FEx=21(U%



Convective roll axes here
aligned with horizontal
component of rotation.

: Ra = 7500 ~ 2Ra., Re =30, 7 = 200,
~ P=1, ¢=50, 9=675° k,=430, k, =10,

WU_z

Fig. 2. Convectlve flow in the kinematic regime, with parameter values (3.1), (3.2).
Plotted are the flow components (U, V, W) of U in the (z, z)-plane (left-hand panels)
and (y, z)-plane (right-hand panels).
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Dynamlcal regime

waves and phases

Alpha-omega dynamo:
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Open issues

e How does the solar dynamo function? Is the tachocline
important or not? Do any/all of convection, shear
instability, and waves play a role?

e How useful is the alpha effect in modelling Solar
magnetic fields and in other dynamo applications?

e How does the Sun generate quite fine-scaled field at the
surface, yet showing clear (Hale) polarity laws?

e What is the nature of nonlinear alpha-eftect suppression
at large R? Is it even a useful concept?

e Can any rigorous results be proven about the existence of
fast dynamos in “realistic’ flows (rather than maps)?

http://www.maths.ex.ac.uk/~adg



