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In view of the infinite conductivity, every motion (per-

pendicular to the field) of the liquid in relation to the

lines of force is forbidden because it would give infi-

nite eddy currents. Thus the matter of the liquid is

“fastened” to the lines of force... (H. Alfvén,1942)



Alfvén’s Theorem

*Flux conservation:

(d/dt)Φ(S, t) ≡ (d/dt)
∫
S(t)

B(t)·dA = 0

*“Frozen-in” magnetic field lines

These properties are a consequence of the ho-

mogeneous Maxwell equations

∇·B = 0, ∂B/∂t + ∇×E = 0

and the ideal Ohm’s Law

E + u×B = 0,

which imply the dynamical equation

∂B/∂t = ∇×(u×B).

The condition for “frozen-in” lines of force

follows:

[∂B/∂t−∇×(u×B)]×B = 0



Helmholtz-Kelvin Theorem

*Conservation of circulation:

(d/dt)Γ(S, t) ≡ (d/dt)
∫
S(t)

ω(t)·dA = 0

*“Frozen-in” vortex-lines

The incompressible Euler equations

∂ω/∂t = ∇×(u×ω).

for vorticity ω = ∇×u implies both.

For a general collisionless plasma,

∂ω±/∂t = ∇×(u±×ω±),

where u± are the local mean velocities of ions

(+) and electrons (–), and

ω± = ∇×u±+ e±B/m±



Conservation of Topology

If the plasma flow is continuous, then the

“frozen-in” condition implies that magnetic

line-topology is invariant in time.

Reconnection processes such as

are strictly forbidden.



Why Isn’t Turbulent Plasma Rubberized?

FIGURE: A tangle of magnetic field lines in incompressible

MHD turbulence

If Alfvén’s Theorem were applicable to turbu-

lent plasmas, there would be an infinite set

of topological constraints, like the entangle-

ments of polymer chains in rubber.



Resistive (Non-Ideal) Reconnection

At small scales, an Ohmic resistance (or other

non-ideality) will act, and

∂B/∂t = ∇×(u×B) + η4B.

Thus,

(d/dt)Φ(S, t) = −η
∮
C(t)

J(t)·dx

where J = ∇×B is the electric current and

C(t) is the boundary curve of S(t).

However, effects of plasma resistivity are too

small to explain observed rates of reconnec-

tion of large-scale magnetic fields.

Example: Transequatorial Coronal Loop. A

loop connecting two active regions across the

solar equator has length L ≈ 3 × 105 km and

forms in < 5 days. The time for this recon-

nection to occur by plasma resistivity is about

6× 109 yr!! (Dere, 1996)



Large-Scale “Coarse-Grained” Fields

Define the local-averaging operation

b`(x) =
∫

dr G`(r)b(x + r)

u`(x) =
∫

dr G`(r)u(x + r)

retaining the length-scales > `. Here G is smooth,

compactly supported, G ≥ 0 and∫
drG(r) = 1,

with G`(r) = `−3G(r/`).

The fields b`,u` are collective variables, aver-

aged over fluid parcels of radius ≈ `.

These fields are the only variables that are di-

rectly observable by an experimentalist, corre-

sponding to “coarse-grained” measurements

at a space resolution ≈ `.



Large-Scale Ohm’s Law

The “bare” Ohm’s Law

E + u×B = ηJ

is “renormalized” to

E` + u`×B` = −ε` + ηJ`

where

ε` = (u×b)` − u`×b`

is the subscale (or turbulent) EMF.

If the magnetic energy

EB =
1

2
‖B‖22 =

1

2

∫
dx |B(x)|2

is finite, then

‖ηJ`‖2 ≤ (const.)(η/`)‖B‖2
and ηJ` is negligible for small η or large `.



Large-Scale Magnetic-Flux Balance

Define the large-scale magnetic flux as

Φ`(S, t) ≡
∫
S`(t)

B`(t)·dA,

where S`(t) is the surface at time t advected

by u` and started as S at time t0.

Ignoring small non-ideal terms,

(d/dt)Φ`(S, t) =
∮
C`(t)

ε`(t)·dx,

and Alfvén’s Theorem is violated by the non-

linear effects due to the subscale EMF.

Physically, the lines of the large-scale mag-

netic field gain a transverse “slip velocity”

∆u⊥` = ε`×B`/|B`|2

relative to the large-scale plasma velocity u`,

due to the EMF of the small-scale modes.



Analogy: Phase-Slip in Superconductors

The migration of a quantized flux line out of the ring

induces by quantum phase-slip a voltage pulse around

the ring of superconducting material.



Persistent Nonlinear MHD Effect?

Is it possible that

lim
`→0

∮
C`(t)

ε`(t)·dx 6= 0?

If so, then one may take η → 0 first, and then

` → 0, and Alfvén’s Theorem will be violated

for ideal MHD!

This is analogous to Onsager’s 1949 result on

inviscid energy dissipation by incompressible

Euler equations in hydrodynamic turbulence,

due to nonlinear energy cascade.

At a small “dissipation” length-scale `d,∮
C`(t)

ε`(t)·dx ≈ η
∮
C`(t)

J`(t)·dx.

For ` <˜ `d, Alfvén’s Theorem is violated by

non-ideal plasma effects, but for ` >˜ `d it is

violated by nonlinear MHD effects.



Theorem 1 (Eyink-Aluie, 2006) If the total

energy is finite,

1

2

∫
dx [|u(x)|2 + |b(x)|2] < ∞,

then

lim
`→0

∫
dx |ε`(x)| = 0.

This result implies that

ε`(x)→ 0 a.e.

with respect to 3D Lebesgue measure, for a

subsequence of ` → 0.

However, a loop C has zero 3D Lebesgue

measure, so that it is possible that

lim
`→0

∮
C

ε`·dx 6= 0

for certain loops C.



Theorem 2 (Eyink-Aluie, 2006) In order that

lim
`→0

∮
C

ε`·dx 6= 0,

it is necessary that at least one of the follow-

ing three conditions hold:

(i) the curve C is non-rectifiable, or

(ii) either u or b is unbounded on C, or

(iii) the set D = Du ∩ Db of discontinuities of

both u and b must satisfy

H1(C ∩ D) > 0,

where H1 is 1-dimensional Hausdorff measure.

For a rectifiable (finite-length) loop C, both

u and b must be irregular—discontinuous on

a positive length or even unbounded —to get

a non-vanishing result.



Example: A vortex sheet (white strip) of strength ∆u0

in the xz-plane and a current sheet (black strip) of

strength ∆b0 in the plane obtained by rotating the yz-

plane by angle φ around the z-axis.

!

!

+!

+!

+
!

+
!

On the line of intersection (z-axis)

ε`(0,0, z) =
∆u0∆b0

2π
σ(ϕ) cos(ϕ) ẑ,

independent of `, where σ is the 2π-periodic function
defined by

σ(ϕ) =

{
ϕ −π/2 < ϕ < π/2
π − ϕ π/2 < ϕ < 3π/2



Comparison: Kelvin Theorem

For hydrodynamics, the large-scale circulation

obeys

(d/dt)
∮
C`(t)

u`·dx =
∮
C`(t)

f`(t)·dx,

where

f` = (u×ω)` − u`×ω`

is the subscale (or turbulent) vortex-force.

Eyink (CRAS, 2006) proves that

f`(x) = O(`2h−1)

if u has Hölder exponent h at point x :

|u(x + `)− u(x)| = O(`h).

lim`→0 f`(x) 6= 0 requires only that h ≤ 1/2.

Since 3D hydrodynamic turbulence has Hölder

exponent h = 1/3 in the mean-field K41 sense,

it is very easy to violate Kelvin’s Theorem!



Cascade of Circulations

PDF & RMS of subscale torque are nearly independent

of kc = 2π/` in the turbulent inertial-range: the cascade

of circulations is persistent in scale.

Figure. (a) PDF and (b) RMS of the subscale loop-torque

K`(C) = −
∮

C
f`·dx, for square loops C of edge-length 64 in 10243

DNS of forced 3D hydrodynamic turbulence. (Chen et al., 2006)



PDF’s and RMS of Loop-Voltage

Data from a 2563 simulation of MHD turbulence. The PDF’s of

the loop-voltage narrow with decreasing ` and the RMS values

decay rapidly, while the extreme values decrease more slowly.



Extreme Values of Loop-Voltage

The maximum and minimum loop-voltages for all square loops of

edgelength R = π
4

in the 2563 simulation, plotted versus kc = 2π/`.



Current Sheets and Vortex Sheets

Visualization of intense ribbons of current (blue) and vorticity

(red), above a threshold of 2 rms.



Loop with Maximum Voltage

The loop with maximum voltage (green), plotted together with

current (blue) and vorticity (red) above 2 rms.



EMF Around the Loop

The parallel component of the turbulent EMF, plotted as a func-

tion of the length around the loop. The large peak near s = 60

corresponds to the intersection with the strong current and vortex

sheets in the upper right corner of the previous plot.



Conclusions

1) Resistivity or other plasma non-ideality is

not necessary to explain the breakdown of

Alfvén’s Theorem at high magnetic Reynolds

numbers. Nonlinear MHD effects should be

dominant at large length-scales ` � `d.

2) Numerical simulations at low resolution are

consistent with this picture. The predicted

physical effect—related to quantum phase-

slip in superconductors—should be observable

in high-resolution MHD simulations and labo-

ratory plasma experiments at moderately high

magnetic Reynolds numbers.

3) Theoretical and modelling efforts should

focus on understanding the turbulent EMF

generated by small-scale plasma motions.
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