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Problem formulation

Governing Equations:

∂~B
∂t

=~∇×
(

~u×~B
)

+η∇2~B

∂~u
∂t

+
(

~u·~∇
)

~u = −
1
ρ
~∇p+ν∇2~u+

1
ρµ0

(

~∇×~B
)

×~B+~Fext

~∇ ·~u = 0 ~∇ ·~B = 0

Adimensional numbers:

Rm=
UL
η

= ULµ0σ Re=
UL
ν

Pm=
Rm
Re
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Problem formulation

But, ν << η for most neutral conducting fluids...

Re>> Rm

tipically, Re∼ 105Rm

Fully developped turbulence!
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Problem formulation

Our study will focus on the slow scales...
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Problem formulation

Our approach:

Kinematic dynamo + Hydro Experiments

∂~B
∂t

=~∇×
(

~u×~B
)

+η∇2~B

where ~u is measured in water experiments

∂~u
∂t

+
(

~u·~∇
)

~u = −
1
ρ
~∇p+ν∇2~u +

1
ρµ0

(

~∇×~B
)

×~B

Below the threshold, ~B = 0 ⇒~u is controlled by hydrodynamics
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Previous studies

Analytical / Numerical:

"Ponomarenko dynamo with time-periodic flow”
C. Normand,
Phys. Fluids, 15 (2003) pp. 1606-1611.

”The dynamo effect” S. Fauve, F. Pétrélis,
COST-P6 meeting, Paris, January 2004 and
Peyresq lectures on non-linear phenomena,
ed. J.A. Sepulchre
World Scientific, Singapore (2003).

⇒ both of them predict threshold variation due
to slow evolution.
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Previous studies

Experimental:

“Complementary Experiments at the
Karlsruhe Dynamo Test facility”
U. Mueller, R. Stieglitz, S. Horanyi, F.Busse
XXI ICTAM (CD-ROM Proceedings),
ISBN: 83-89687-01-1
published by IPPT-PAN Warsaw (2004)
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Previous studies

Experimental:
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Periodic axial flows with period and amplitudes
τ = [0,7.5,20]s A = 0,5,20 %

They show a decrease of the threshold.

4/16



Influence of slow scales on the dynamo action. Hydrodynamics: Water Experiment

Instabilities and Turbulence in MHD flows, 26th June - 1st July 2006

Water experiment

Experimental setup:

Cylindrical volume
D = 0.1−0.4m, H = 0.1−0.5m

Two counter rotating propellers

Frequency: f = 1−20Hz

Re: propeller frequency and spatial dimensions
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Water experiment

Typical propeller:
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Velocity measurements

PIV (spatial evolution) ⇔ LDA (temporal evolution)

spatial resolution ↑ temporal resolution ↑

temporal resolution ↓ spatial resolution ↓
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Measured velocity flow

Time averaged (LDA):

Not symmetric around z= 100
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Vortices

fprop = 4.75Hz

8/16



Influence of slow scales on the dynamo action. Hydrodynamics: Water Experiment

Instabilities and Turbulence in MHD flows, 26th June - 1st July 2006

Vortices

Vortices in similar configurations:

Experiments:

Louis Marié, Ph.D thesis, CEA / Université Paris 7, France.

Numerics:

C.Nore, L.S.Tuckerman, O.Daube, S.Xin. J. Fluid Mech 977 (2003) p.51
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Dissymmetry

Why is there a dissymmetry?

Experimental inhomogeneities?

Propellers are identical to 10µm

Propeller velocities are constant in time
(fluctuations are less than 0.5%)

Deviations from real to expected values
in spatial dimensions are less than one mm.

Difference between frequencies of both propellers
is below 0.5%
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Dissymmetry

Test: fL = const, fR = fL ±∆ f

fL > fR
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Dissymmetry

When ∆ f → 0:
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Vortex velocity

In a symmetric flow ([θ,z] plane at r = R):

+

Mean flow Cat’s Eyes

N

S

Steady vortices
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Vortex velocity

In a non-symetric flow ([θ,z] plane at r = R):

+
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Vortex Velocity

The vortex must move!
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Vortex velocity

Absolute velocity:
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Vortex velocity

Consequences:

Relationship between fvortex and fpropeller is around 1/3.

A peak in the power spectrum appears
around fpropeller/3

Two solutions allowed for ∆ fprop = 0

No steady vortices have been found.
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Kinematic dynamo

Main characteristics:

Pseudo-spectral code:

Finite differences in r
Periodic (Fourier) in θ,z

5th order in space

Single-step mixed Adams-Bashforth/Adams-Moulton

scheme (2nd order)

~B(~s, t) = ∑
n,m

~bn,m(r)exp [i(mθ+n2πz/H)]
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Kinematic dynamo

TIme-dependent velocity fields:

Rotating vortices? → PIV

Slowly evolving axisymmetric flows:

u(t) =

(

u1 +u2

2

)

+

(

u1 −u2

2

)

sin(ωt)

where u1 and u2 are dynamo-producing velocity fields.

Output:

Magnetic energy growthrates:

Em,n = eσn,mt
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Magnetic energy evolution

f = 1 Rm= 80
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Magnetic energy evolution

f = 1 Rm= 100
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Magnetic energy evolution

f = 1000 Rm= 80,100
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Growth rates

Growth rates vs. the frequency
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Conclusions

Hydrodynamics analysis:

Slow scales can be very important→ vortices

Vortices → bistable (hysteresis?)

fvort ∼ fprop/κ, where κ ∈ [3,5]

MHD analysis:

Using axisymmetric time-evolving flows
dynamo threshold is increased

This effect is more important for low frequencies

It dissapears for large frequencies
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