
Numerical Verification of the Hasselmann equation.

A.O. Korotkevich1, A. Pushkarev2,5, D. Resio4, V.E. Zakharov3,2,1,5

1L.D. Landau Institute for Theoretical Physics RAS, Moscow
2P.N. Lebedev Physical Institute RAS, Moscow

3Department of Mathematics, University of Arizona, Tucson,
4Coastal and Hydraulics Laboratory,

U.S. Army Engineer Research and Development Center, Vicksburg
5Waves and Solitons LLC, Phoenix

July 19, 2006

Abstract

– Non-equilibrium statistical mechanics and turbulence – Warwick, 2006



Numerical Verification of the Hasselmann equation.

Theory of weak turbulence is designed for statistical description of weakly-
nonlinear wave ensembles in media with dispersion. The main tool of weak
turbulence theory is kinetic equation for squared wave amplitudes, or a system
of such equations. Since the discovery of the kinetic equation for bosons by
Nordheim (1928) and also paper by Peierls (1929) in the context of solid state
physics, this quantum-mechanical tool was applied to wide variety of classical
problems, including wave turbulence in hydrodynamics, plasmas, liquid helium,
nonlinear optics, etc.

Such kinetic equations have rich families of exact solutions describing weak-
turbulent Kolmogorov spectra. Also, kinetic equations for waves have self-similar
solutions describing temporal or spatial evolution of weak – turbulent spectra.

However, one of the most remarkable example of weak turbulence is wind-
driven sea. The kinetic equation describing statistically the gravity waves on the
surface of ideal liquid was derived by Hasselmann (1962). Since this time the
Hasselmann equation is widely used in physical oceanography as foundation for
development of wave-prediction models: WAM, SWAN and WAVEWATCH.

In spite of tremendous popularity of the Hasselmann equation, its validity and
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applicability for description of real wind-driven sea has never been completely
proven. It was criticized by many respected authors, not only in the context of
oceanography.

The verification of the weak turbulent theory is an urgent problem, important
for the whole physics of nonlinear waves. The verification can be done by
direct numerical simulation of the primitive dynamical equations describing wave
turbulence in nonlinear medium.

In this article we present results of new seria of numerical experiments on
modelling of swell propagation withing frameworks of both dynamical and kinetic
equations. In this case we used fine anisotropic grid containing 512 × 4096
modes. We think that our results can be considered as first direct verification of
wave kinetic equation.
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Problem formulation

Let us consider a potential flow of an ideal fluid of infinite depth with a free surface.
We use standard notations for velocity potential φ(~r, z, t), ~r = (x, y);~v = ∇φ and
surface elevation η(~r, t). Fluid flow is incompressible (∇~v) = △φ = 0. The total
energy of the system can be presented in the following form

H = T + U,

T =
1

2

∫

d2r

η
∫

−∞

(∇φ)2dz, (1)

U =
1

2
g

∫

η2d2r, (2)

here g is the gravity acceleration.
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Hamiltonian expansion

It was shown by Zakharov (1966) that under these assumptions the fluid is a
Hamiltonian system

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δη
, (3)

where ψ = φ(~r, η(~r, t), t) is a velocity potential on the surface of the fluid. In order to
calculate the value of ψ we have to solve the Laplas equation in the domain with varying
surface η. One can simplify the situation, using the expansion of the Hamiltonian in
powers of ”steepness”

H =
1

2

∫

(

gη2 + ψk̂ψ
)

d2r+

+
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

d2r+

+
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η△ψ
]

d2r.

(4)
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Dynamical equations

In this case dynamical equations acquire the following form

η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ]+

+k̂(ηk̂[ηk̂ψ]) + 1
2△[η2k̂ψ] + 1

2k̂[η
2△ψ],

ψ̇ = −gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

−
−[k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]△ψ +D~r + F~r.

(5)

Here D~r is some artificial damping term used to provide dissipation at small scales;
F~r is a pumping term corresponding to external force (having in mind wind blow, for
example). Let us introduce Fourier transform

ψ~k =
1

2π

∫

ψ~re
i~k~rd2r, η~k =

1

2π

∫

η~re
i~k~rd2r.
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Canonical variables

It is convenient to introduce the canonical variables a~k as shown below

a~k =

√

ωk
2k
η~k + i

√

k

2ωk
ψ~k,where ωk =

√

gk. (6)

With these variables the dynamical equations take the following form

ȧ~k = −iδH
δa∗~k

. (7)
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H0 =

∫

ωk|a~k|
2d~k,

H1 =
1

6

1

2π

∫

E
~k0
~k1
~k2

(a~k1
a~k2

a~k0
+ a∗~k1

a∗~k2
a∗~k0

)δ(~k1 + ~k2 + ~k0)d~k1d~k2d~k0+

+
1

2

1

2π

∫

C
~k0
~k1
~k2

(a~k1
a~k2

a∗~k0
+ a∗~k1

a∗~k2
a~k0

)δ(~k1 + ~k2 − ~k0)d~k1d~k2d~k0,

H2 =
1

4

1

(2π)2

∫

W~k1
~k2
~k3
~k4

(a~k1
a~k2

a~k3
a~k4

+ a∗~k1
a∗~k2

a∗~k3
a∗~k4

)×

×δ(~k1 + ~k2 + ~k3 + ~k4)d~k1d~k2d~k3d~k4+

+
1

4

1

(2π)2

∫

F~k1
~k2
~k3
~k4

(a∗~k1
a~k2

a~k3
a~k4

+ a~k1
a∗~k2

a∗~k3
a∗~k4

)×

×δ(~k1 − ~k2 − ~k3 − ~k4)d~k1d~k2d~k3d~k4+

+
1

4

1

(2π)2

∫

D~k1
~k2
~k3
~k4

(a~k1
a~k2

a∗~k3
a∗~k4

δ(~k1 + ~k2 − ~k3 − ~k4)d~k1d~k2d~k3d~k4.

(8)

The dispersion relation in the case of gravity waves on a deep water is of the ”non-decay
type” and equations

ωk1 = ωk2 + ωk3,
~k1 = ~k2 + ~k3 (9)
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have no real solution. It means that in the limit of small nonlinearity, the cubic terms
in the Hamiltonian can be excluded by a proper canonical transformation
a(~k, t) −→ b(~k, t).

H0 =

∫

ωk|b~k|
2d~k,

H1 = 0,

H2 =
1

2

1

(2π)2

∫

T~k1
~k2
~k3
~k4

(b∗~k1
b∗~k2
b~k3
b~k4
δ(~k1 + ~k2 − ~k3 − ~k4)d~k1d~k2d~k3d~k4.

(10)
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Pair correlation functions

For statistical description of a stochastic wave field one can use a pair correlation
function

< a~ka
∗

~k′
>= nkδ(~k − ~k′). (11)

The n~k is measurable quantity, connected directly with observable correlation functions.
For instance, from a~k definition one can get

Ik =< |η~k|
2 >=

1

2

ωk
g

(nk + n−k). (12)

In the case of gravity waves it is convenient to use another correlation function

< b~kb
∗

~k′
>= Nkδ(~k − ~k′). (13)

The function Nk cannot be measured directly.
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Kinetic equation

The relation connecting nk and Nk is very simple (in the case of deep water)

nk −Nk
nk

≃ µ, (14)

where µ = (ka)2, here a is a characteristic elevation of the free surface. In the case
of the weak turbulence µ≪ 1.
The correlation function Nk obey the kinetic equation (Nordheim,1929; Hasselmann,
1962; Zakharov, 1966)

∂Nk
∂t

= st(N,N,N) + fp(k) − fd(k), (15)

– Non-equilibrium statistical mechanics and turbulence – Warwick, 2006 10



Numerical Verification of the Hasselmann equation.

Here

st(N,N,N) = 4π

∫

∣

∣

∣
T~k,~k1,~k2,~k3

∣

∣

∣

2

×
×(Nk1Nk2Nk3 +NkNk2Nk3 −NkNk1Nk2−
−NkNk1Nk3)δ(

~k + ~k1 − ~k2 − ~k3)d~k1d~k2d~k3.

(16)
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Kolmogorov solutions

Let us consider stationary solutions of the kinetic equation assuming that

• The medium is invariant with respect to rotations;

• Dispersion relation is a power-like function ω = akα;

• T~k,~k1,~k2,~k3
is a homogeneous function: Tǫ~k,ǫ~k1,ǫ~k2,ǫ~k3

= ǫβT~k,~k1,~k2,~k3
.

Under this assumptions one can get Kolmogorov solutions

n
(1)
k = C1P

1/3k−
2β
3 −d,

n
(2)
k = C2Q

1/3k−
2β−α

3 −d.
(17)

Here d is a spatial dimension (d = 2 in our case). In the case of deep water ω =
√
gk

and, apparently, β = 3.
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Kolmogorov solutions (deep water)

It is known since (Zakharov and Filonenko, 1967) that on deep water

n
(1)
k = C1P

1/3k−4. (18)

In the same way (Zakharov, 1968) for second spectrum

n
(2)
k = C2Q

1/3k−23/6. (19)

Here we will explore the first spectrum (energy cascade):

Ik =
C1g

1/2P 1/3

k7/2
. (20)
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Numerical simulation

Let us recall dynamical equations

η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ]+

+k̂(ηk̂[ηk̂ψ]) + 1
2△[η2k̂ψ] + 1

2k̂[η
2△ψ],

ψ̇ = −gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

−
−[k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]△ψ +D~r + F~r.

(21)

To solve these equations one can use splitting method. Let us represent some dynamical
equation in the following form

ψ̇ = Rnl(η, ψ) − γkψ~k + fk
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Splitting method

ψ̇ = Rnl(η, ψ) − γkψ~k + fk

On one time step τ we can use the following scheme







ψ̇
(1)
~k

= Rnl(η
(1)
~k
, ψ

(1)
~k

),

initial conditions

ψ
(0)
~k
, η

(0)
~k






−→







ψ̇
(2)
~k

= −γkψ(2)
~k
,

initial conditions

ψ
(1)
~k
, η

(1)
~k






−→







ψ̇~k = fk,
initial conditions

ψ
(2)
~k
, η

(2)
~k













HIA,
result

ψ
(1)
~k
, η

(1)
~k






−→







ψ
(2)
~k

= ψ
(1)
~k

exp(−γkτ),
result

ψ
(2)
~k
, η

(2)
~k






−→







ψ~k = ψ
(1)
~k

+ fkτ,

result
ψ~k, η~k
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Hamiltonian integration algorithm (HIA)

Let us consider difference of Hamiltonian function from n-th to (n + 1)-th steps.
Time step is equal to τ .

∆H

τ
=
Hn+1 −Hn

τ
=
δH

δψ

ψn+1 − ψn

τ
+
δH

δη

ηn+1 − ηn

τ
= 0. (22)

Here ∆H represents difference from one step to another.

ηn+1 − ηn

τ
=
δH

δψ
[ηn, ηn+1, ψn, ψn+1],

ψn+1 − ψn

τ
= −δH

δη
[ηn, ηn+1, ψn, ψn+1].

(23)
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Iteration scheme

One can rewrite numerical scheme

ηn+1
~k

= A(k, τ)ηn~k +B(k, τ)ψn~k + C(k, τ)Rη +D(k, τ)Rψ,

ψn+1
~k

= E(k, τ)ηn~k +A(k, τ)ψn~k + F (k, τ)Rη + C(k, τ)Rψ,
(24)

Let us introduce ηn+1,s
~k

, here s is an iteration number.

• s = 0 : ηn~k ;

• s = 1 : (ηn+1
~k

:= ηn~k ) −→ ηn+1,1
~k

;

• s = 2 : (ηn+1
~k

:= ηn+1,1
~k

) −→ ηn+1,2
~k

;

• ...
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Iteration scheme convergence control

One can get from dynamical equations the following part

ψ̇ = −gη − 1

2
(∇ψ)2 + ...

Let us introduce N — number of iterations for desirable accuracy, Nmax — maximum
numbers of iterations acceptable, Nmin — minimum numbers of iterations acceptable.
Rule is the following (ζ < 1)

IF N > Nmax τ = ζτ ;
ELSE IF N < Nmin τ = τ/ζ;

ELSE τ = τ.
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Direct cascade. Numerical scheme parameters

Let us add damping and pumping in dynamical equations

η̇~k = ...− γkη~k,

ψ̇~k = ...− γkψ~k + Fk.
(25)

Fk = fke
iR~k(t),

fk = 4F0
(k − kp1)(kp2 − k)

(kp2 − kp1)2
;

D~k = γkψ~k,
γk = −γ1, k ≤ kp1,
γk = −γ2(k − kd)

2, k > kd.

(26)

Here R~k(t) — uniformly distributed random number in interval (0, 2π). Simulation
region Lx = Ly = 2π with double periodic boundary conditions.
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Pumping and damping parameters: F0 = 2 × 10−4, kp1 = 5, kp2 = 10.

[128 × 128, kd = 32] −→ [256 × 256, kd = 64] −→ [512 × 512, kd = 128].
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Direct cascade. Hamiltonian as a function of time
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Direct cascade. Spectrum
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Direct cascade. Compensated spectra
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Direct cascade. Different grids

10
−5

10
−4

10
−3

10 100

<
|η

k|2 >
 k

7/
2

k

512x512
256x256
128x128

– Non-equilibrium statistical mechanics and turbulence – Warwick, 2006 24



Numerical Verification of the Hasselmann equation.

Direct cascade. Different pumping
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Inverse cascade. Swell simulation. Dynamical equations

We solved the dynamical equations in a box 2π × 2π by the same spectral code.
The number of harmonics was 512× 4096 = 221 ≃ 2× 106. To figure out a minimal
size of corresponding tank, we can assume, that minimal wave-length of a gravitational
wave in an absence of capillary effects can be estimated as λmin = 5 cm. Thus, the
minimal equivalent wave tank should be 25 × 200 m.

Pseudo-viscious damping was chosen as follows

γk =

{

0, k < kd,
−γ(k − kd)

2, k ≥ kd,
kd = 1024, γ = 5.92 × 103, τ = 4.22 × 10−4.

(27)
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Inverse cascade. Initial conditions

As initial condition, we used a Gauss-shaped distribution on a long axis of the
wavenumbers plane























|a~k| = Ai exp






−1

2

∣

∣

∣

~k − ~k0

∣

∣

∣

2

D2
i






,
∣

∣

∣

~k − ~k0

∣

∣

∣
≤ 2Di,

|a~k| = 10−12,
∣

∣

∣

~k − ~k0

∣

∣

∣
> 2Di,

Ai = 0.92 × 10−6, Di = 60, ~k0 = (0; 300), ω0 =
√

gk0.

(28)

The initial phases of all the harmonics were random. g = 1. The average steepness of
this initial condition was µ =< |∇η| >≃ 0.101.
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Inverse cascade. Initial conditions. |a~k|2 spectrum
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Inverse cascade. Initial conditions. |a~k|2 spectrum
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Inverse cascade. Final stage. |a~k|2 spectrum
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Inverse cascade. Initial conditions. Surface elevation
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Inverse cascade. Final stage. Surface elevation
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Inverse cascade. Kolmogorov spectrum. ω-space
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Inverse cascade. Action
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Inverse cascade. PDF of surface elevation
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Figure 1: PDF for surface elevation η at initial moment of time. t = 0.
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Figure 2: PDF for surface elevation η at sime middle moment of time. t ≃ 70T0.
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Figure 3: PDF for surface elevation η at final moment of time. t ≃ 933T0.
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Inverse cascade. PDF of surface gradients in longitudinal

direction
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Figure 4: PDF for (∇η)y at initial moment of time. t = 0.
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Figure 5: PDF for (∇η)y at some middle moment of time. t ≃ 14T0.
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Figure 6: PDF for (∇η)y at final moment of time. t ≃ 933T0.
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Inverse cascade. Surface elevation at the moment of

maximum roughness
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Inverse cascade. Initial conditions. Hasselman equations
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Inverse cascade. Initial conditions. Hasselman equations
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Inverse cascade. Initial conditions. Hasselman equations

Figure 7: Logarithm of distribution function of |a~k|2/ < |a~k|2 >.
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Inverse cascade. Mesoscopic tubulence

One should remember, that the bold lines in previous figures are results of averaging
over a million of harmonics. Among them there is a population of ”selected few” or
”oligarchs” with amplitude exceeding the average value more than ten times. The
”oligarchs” do exist because our grid is still not fine enough. The resonant conditions

ωk + ωk1 = ωk2 + ωk3,
~k + ~k1 = ~k2 + ~k3,

(29)

give us five-dimensional hypersurface in six-dimensional space ~k,~k1, ~k2. In any finite
system, (29) turns to Diophantine equation. However in reality energy transport is
realized not by exact, but by ”approximate” resonances, posed in a layer near the
resonant surface and defined by condition

|ωk + ωk1 − ωk2 − ωk+k1−k2| < γ, (30)
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here γ — is a characteristic inverse time of nonlinear interaction.

In a finite system ~k,~k1, ~k2 take values in nodes of the discrete grid. The weak
turbulent approach is valid, if the density of discrete approximate resonanses inside
the layer (30) is high. In our case the lattice constant ∆k = 1, and typical relative
deviation from the resonance surface

∆ω

ω
≃ ω′

k

ω
∆k =

ω′

k

ω
≃ 1

600
≃ 2 × 10−3. (31)

Inverse time of interaction γ can be estimated from our numerical experiments: wave
amplitudes change essentially during 30 periods, and one can assume: γ/ω ≃ 10−2 ≫
δω
ω . It means that the condition for the applicability of weak turbulent theory is typically
satisfied but the ”reserve” for the validity is rather modest. As a result some particular
harmonics, posed in certain ”privileged” point of k-plane could form a ”network” of
almost resonant quadruplets and realize significant part of energy transport. Amplitudes
of these harmonics exceed the average level essentially. This effect was described in
the previous article, where such ”selected few” harmonics were called ”oligarchs”. If
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”oligarchs” realize most part of energy flux, the turbulence is ”mesoscopic”, not weak.

In our case ”oligarchs” do exist, but their contribution in the total wave action is
not more 4%.
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Inverse cascade. Instant spectrum snapshot. Dynamical

equations
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Inverse cascade. Spectrum averaged over 244 periods.

Dynamical equations
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From dynamical equations to Hasselmann equation.

Standard setup for numerical simulation of the dynamical equations, implies 2π×2π
domain in real space and gravity acceleration g = 1. Usage of the dimension of 2π is
convenient because in this case wavenumbers are integers.

In the contrary to dynamical equations, the kinetic equation solution algorithm
is formulated in terms of real physical variables and it is necessary to describe the
transformation from the “dynamical” variables into to the “physical” ones.

Scaling from “dynamical” to “real” variables is the following:

η~r = αη′~r′,
~k =

1

α
~k′, ~r = α~r′, g = νg′, (32)

t =

√

α

ν
t′, Lx = αL′

x, Ly = αL′

y (33)

where prime denotes variables corresponding to dynamical equations.
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In current simulation we used stretching coefficient α = 800.00, which allows to
define physical dimensions of the discussed simulation: we considered 5026m×5026m
ocean domain with characteristic wavelength of the initial condition around 22m.
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Inverse cascade. Comparison of deterministic and statistical

experiments.

Figure 8: Total wave action as a function of time for artificial viscosity case
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Figure 9: Total wave energy as a function of time for artificial viscosity case
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Figure 10: Average waves slope as a function of time for artificial viscosity case
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Figure 11: Mean wave frequency as a function of time for artificial viscosity case.
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Figure 12: Total wave energy time derivative as a function of time for artificial viscosity
case.
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Figure 13: Angle-averaged spectrum as a function of time for dynamical and
Hasselmann equations for artificial viscosity case.
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Inverse cascade. WAM1 and WAM2 dissipation terms in

Hasselmann equation.

Viscous terms referred as WAM1 and WAM2 are “white-capping” terms,
describing energy dissipation by surface waves due to wave breakings, as used in
SWAN and WAM wave forecasting models:

γ~k = Cdsω̃
k

k̃

(

(1 − δ) + δ
k

k̃

)

(

S̃

S̃pm

)p

(34)

where k and ω are wave number and frequency, tilde denotes mean value; Cds, δ and p
are tunable coefficients; S = k̃

√
H is the overall steepness; S̃PM = (3.02×10−3)1/2

is the value of S̃ for the Pierson-Moscowitz spectrum (note that the characteristic
steepness µ =

√
2S).

Values of tunable coefficients for WAM1 case (corresponding to WAM cycle 3
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dissipation) are:

Cds = 2.36 × 10−5, δ = 0, p = 4. (35)

Values of tunable coefficients for WAM2 case (corresponding to WAM cycle 4

dissipation) are:

Cds = 4.310 × 10−5, δ = 0.5, p = 4. (36)
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Figure 14: Angle-averaged spectrum as a function of time for dynamical and
Hasselmann equations a function of time for WAM1 case.
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Figure 15: Total action as a function of time for WAM1 case
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Figure 16: Total wave energy as a function of time for WAM1 case
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Figure 17: Average waves slope as a function of time for WAM1 case
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Figure 18: Mean wave frequency as a function of time for WAM1 case.
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Figure 19: Angle-averaged spectrum as a function of time for dynamical and
Hasselmann equations a function of time for WAM2 case.
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Figure 20: Total action as a function of time for WAM2 case
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Figure 21: Total wave energy as a function of time for WAM2 case
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Figure 22: Average waves slope as a function of time for WAM2 case
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Figure 23: Mean wave frequency as a function of time for WAM2 case.
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Figure 24: Energy spectrum spreading.
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Figure 25: Isolines of the spectrum. Dynamical equations. t = 67T0.
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Figure 26: Isolines of the spectrum. Hasselmann equation. t = 67T0.
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Figure 27: Isolines of the spectrum. Dynamical equations. t = 674T0.
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Figure 28: Isolines of the spectrum. Hasselmann equation. t = 674T0.
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Figure 29: Isolines of the spectrum. Dynamical equations. t = 1447T0.
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Figure 30: Isolines of the spectrum. Hasselmann equation. t = 1447T0.
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Inverse cascade. Frequency spectrum of action point.
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations

0.0x100

5.0x10-13

1.0x10-12

1.5x10-12

2.0x10-12

2.5x10-12

3.0x10-12

 4  6  8  10  12  14  16  18

|F
[a

k]
|2

ω

Frequency spectrum for a point of action surface ak at k=(0;200).

– Non-equilibrium statistical mechanics and turbulence – Warwick, 2006 80



Numerical Verification of the Hasselmann equation.

Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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Inverse cascade. Frequency spectrum of action point.

Dynamical equations
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