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Plan.

The model of cluster-cluster aggregation with inputs ("Mass
Model").

Scaling analysis of mass model (MM).

Stochastic Smoluchowski equation.

Perturbative RG treatment of MM in d ≤ 2. Numerical
confirmation of theoretical results.

Non-perturbative confirmation of multi-scaling.

Multi-scaling and fluctuations of the mass flux.

Conclusions.

References: PRL 94, 194503 (2005); cond-mat/0510389 (to appear
in the special issue of Physica D on coagulation, 2006)
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Cluster-Cluster Aggregation with Deposition (MM).

Mass Model. Particles of mass m0 are deposited into R
d at a rate of

J kilograms per unit volume per second. Deposited particles diffuse
at rate D and coagulate on contact at rate λ conserving mass.
Questions:

What is the average mass distribution of particles in the steady

state, C1(m) = limt→∞ E

(

Pt(~x,m)

)

, where Pt(~x,m) is local

mass distribution?

What is the p. d. f. of n-particle configurations in MM,
Cn(m1, . . . mn) =

limt→∞ E

(

Pt(~x + ~l1,m1) · · ·Pt(~x + ~ln,mn)

)

?
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Scaling analysis of Mass Model.

Dimensions of relevant quantities: [Cn] = M−nL−dn,
[J ] = M

LdT
, [D] = L2

T
, [P ] = 1

LdM
. Can set D = 1. Then

Cn(m) = F (m,m0, J, λ, l).

Kolmogorov-Zakharov spectra in d > 2: For typical masses »
m0, Cn is a function of mass, reaction rate λ and average flux J

only. Also, Cn ∼ Jn/2. Therefore,

Cn(m) ∼ m−
3

2
n,

Smoluchowski theory for d < 2: Reaction is diffusion-limited
⇒ Cn = F (m, l, J) For n = 1, no l-dependence, hence

Cn(m) ∼ m−γ(1),

where γ(1) = 2d+2
d+2

. n > 1?
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The Mass Model on the Lattice

Consider a lattice in d dimensions with particles of integer masses.
Nt(x,m)=number of particles of mass m on site x at time t.

Diffusion Nt(x,m) → Nt(x,m) − 1

Nt(x + n,m) → Nt(x + n,m) + 1
Rate: DNt(x,m)/2d

Aggregation
Nt(x,m1) → Nt(x,m1) − 1

Nt(x,m2) → Nt(x,m2) − 1

Nt(x,m1 + m2) → Nt(x,m1 + m2) + 1
Rate : λK(m1,m2)Nt(x,m1)Nt(x,m2)

Injection
Nt(x,m) → Nt(x,m) + 1

Rate: J
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Relation Between Interacting Particle Systems and
Stochastic Evolution Equations.

Evolution of a Markovian IPS is governed by Master Equation
for the probability measure on the space of all configurations
{N(~x,m)}~x∈Zd,m∈R+ .

Master equation is linear and is of the first order of time.

Its solution admits path integral representation.

If interactions are local and binary, corresponding interacting
field theory can be mapped to a stochastic evolution equation
for an effective field P̃ (~x,m, t) using Hubbard-Stratonovich
transformation.

All correlation functions of the IPS can be expressed in terms
of correlation functions of the field P̃ .
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Stochastic Smoluchowski Equation.

(∂t − D∆) P̃m =
λ

2

∫

∞

0

dm1dm2 P̃m1
P̃m2

δ(m−m1−m2)

− λ

2

∫

∞

0

dm1dm2 P̃mP̃m1
δ(m2−m−m1)

− λ

2

∫

∞

0

dm1dm2 P̃mP̃m2
δ(m1−m2−m)

+
J

m
δ(m − m0)P̃m − 2i

√
λξ(x, t)P̃m.

Noise, ξ(x, t), is standard Gaussian and white.
〈

P̃m

〉

ξ
= 〈Pm〉RD,

〈

(P̃m)n
〉

ξ
= 〈Pm(Pm − 1) . . . (Pm − n + 1)〉RD.

In the low density limit, Cn(m) = 1
n!

〈

(P̃m)n
〉

ξ
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SSE and A + A → A system: an exact mapping.

Integro-differential SSE can be converted into an SPDE by
Laplace Transform:

Rµ(x, t) =

∫

∞

0

dmPm(x, t) −
∫

∞

0

dmPm(x, t) e−µm

SSE becomes

(∂t − D∆)Rµ = −λR2
µ + J

(1 − e−m0µ)

m0

+ 2i
√

λRµξ(x, t)

To compute n-point correlation functions of P̃ , one has to
compute correlation functions of fields Rµ1

, . . . Rµn
, which are

pairwise correlated via the common noise term.
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Loop Expansion.

Perturbative solution of SSE w. r. t. noise is equivalent to loop
expansion around mean field (Smoluchowski) solution.

In d ≤ 2, expansion parameter is g(m)
2

d+2 , where

g(m) = λ
(

Dm
J

)
ε

d+2 is a dimensionless aggregation rate. Here
ε = 2 − d and m is a typical mass.

If d < dc = 2, loop expansion becomes useless as m → ∞.

A re-summation of loop expansion has to be performed. Unlike
Navier-Stokes turbulence, this can be done for MM using the
formalism of perturbative RG.
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Renormalisation of the Aggregation Rate

There are no diagrams correcting the propagator. Hence there is
no field renormalization.

Only vertex functions with two incoming lines and one or two
outgoing lines are relevant.

Diagrams correcting λ form a geometric series and can be
summed exactly:

λ → λR(m) =
λ

1 + λC(ε)(DJ−1m)
ε

d+2

where ε = 2 − d.

The β-function is β(g) = g2 − gg∗, where g∗ ∼ ε.
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Average mass distribution.

m → ∞ asymptotics of C1 can be determined exactly: Firstly,
ZP̃ = 1. Secondly, as m → ∞, g(m,M) → g∗, where g(m,M) is
the running coupling.

Results :

Nm = C1m
−

3

2 , d > 2

Nm = C2m
−

2d+2

d+2 , d < 2

Nm = C3

√
log m m−

3

2 , d = 2

Kolmogorov-Zakharov theory is incorrect for d < 2.

Smoluchowski (renormalized MF) theory is correct for d ≤ 2.
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The Origin of Multi-Fractal Scaling in d ≤ 2.

Loop expansion of C2(m) looks as follows:

+ +

+

Connected one-loop diagram is primitively divergent, but this
divergence cannot be eliminated using coupling constant
renormalization.

As a result, ZP̃ 2 = 1 + C(ε)
ε

g + O(g2) 6= 1. Analogously,

ZP̃n = 1 + n(n−1)
2

C(ε)
ε

g + O(g2).
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Multi-scaling MM.

Solving Callan-Symancyk Equation at the fixed point of the RG
flow we find: Cn(m) ∼ m−γn , where
γn = 2d+2

d+2
n + εn(n−1)

2(d+2)
+ O(ε2).

In two dimensions, Cn ∼ ln(m)n(2−n)/2m−
3

2
n.

Solving for moments of Pm in terms of moments of P̃m, one
finds that E(P n

m) = E(Pm) (extreme anomalous scaling.)

Self-similarity is violated due to anti-correlation between
particles: Cn(m)/C1(m)n → 0 as m → ∞.

Warwick, July 2006 – p. 13/17



Numerical verification of multi-scaling of MM.
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Non-perturbative confirmation of multi-scaling of MM in d ≤ 2.

The answer for γ1 is exact to all orders in ε as ZP̃ = 1 and
β-function is known exactly.

γ2 is also exact to all orders in ε: averaging SSE,

(∂t − D∆)Rµ = −λR2
µ + J

(1 − e−m0µ)

m0

+ 2i
√

λRµξ(x, t),

in Fourier space, one gets C2(µ) ∼ µ for µm0 << 1. Hence,
γ2 = −3 exactly. This is a counterpart of the 4/5 law (or CFR)
in cluster-cluster aggregation, as explained by Rajesh.

γ0 = 0, γ1 = −2d+2
d+2

and γ2 = −3 do not lie on a straight line
for d < 2.
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Multi-scaling and fluctuations of the mass flux.

J(m) = λ
∫ m

0
dm1m1

∫ m1

0
dm2P̃ (~x,m2)P̃ (~x,m − m2) + . . ..

Assume that E(J(m)n) ∼ mµn .

Then −3
2
n + µn/2 = γn (!).

γn = −3
2
n + δγ(n), where δγn = − ε

8
n(n − 2) + O(ε).

RSS ⇒ µn = − ε
2
n(n − 1) + O(ε)

Intermittency of flux → multi-scaling.

Random cascade model of mass flux: Jm = JMW1W2...Wn,
n = ln(M/m). Wk’s are i. i. d.’s lognormal: E(Wk) = 1
Wk = ex

k, where E(xk) = − ε
2
, var(xk) = ε.
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Conclusions.
Stochastic aggregation models provide an excellent testing
ground for theories of non-equilibrium statistical mechanics.

There are analogies with strong turbulence including constant
flux relation, bi-fractality, multi-scaling, refined self-similarity.

Can we do anything with the non-constant kernel cases?

Application of lessons learned here to other systems, in
particular to wave turbulence (see CC’s talk tomorrow).

Large deviations analysis?

Can we solve the model exactly in d = 1? Done for decaying
A + A → A reaction (Ranjiva Munasinghe, RR, Roger Tribe,
OZ, math.PR/0512179, to appear in CMP, 2006) using
probabilistic methods. Hopefully, one can construct a
"physicist’s solution" using Bethe Anzats for hard core 1D
bosons (John Cardy, OZ, in progress).
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