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∂E(k)

∂t
+

∂J(k)

∂k
= f(k) − 2νk2E(k)

f(k)2 ∝ Pδ(k − k0)/k
d−1; 1/k0 = 1/L

ν → 0;
∂J(k)

∂k
= 0; J(k) = const = P = E

K41: The IR dynamics are independent upon
viscosity and viscous processes.
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”We therefore conclude that, for the large
(IR) eddies which are the basis of any turbu-
lent flow, the viscossity is unimportant and
may be equated to zero, so that the motion of
these eddies obeys Euler’s equation. ...

The viscosity of the fluid becomes important
only for the smallest eddies, whose Reynolds
number is comparable with unity ”.

”... we may say that none of the quanti-
ties pertaining to the eddies of sizes r >> ηK
can depend on ν (more exactly, these quanti-
ties cannot be changed if ν varies but other
conditions of the motion are unchanged).”

Landau and Lifshitz, ”Fluid Mechanics”.

This seems to be correct. Does it means
that the viscous processes do not play role in
the IR dynamics”
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K41

Sn,m = (δru)n(δrv)m = An,m(EL)
n
3 (

r

L
)ξn,m

The dissipation rate is the only dynamically relevant parameter in

the inertial range:

−E = −νu ·
∂2u

∂x2
i

= −ν limr→η
∂2

∂x2
j

ui(x)ui(x + r) =

ν limr→η
1

2

∂2

∂r2
S2,0(r) ∝ νE

2
3ηξ2−2

ξ2 = 2/3; , ηK ≈ (
ν3

E
)

1
4

.

urms = L = 1; E = 1; ν = 1/Re

ηK ≈ LR−3
4

.

Since E = P, we can say that viscosity disap-
peared Sns. In Kolmogorov’s phenomenology
the dissipation scale is a constant number.
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Some exact relations for isotropic, homoge-
neous and incompressible velocity field.

1

rd−1

∂

∂r
rd−1S2,0 =

d − 1

r
S0,2(r)

φ(x)ui(x′) = 0

1

rd+1

∂

∂r
rd+1S3,0 = (−1)d

12

d
E

The NS equations give:

S3,0(r) = −
12

d(d + 2)
Er

S3,0/S1,2 = 3

From this Kolmogorov concluded that

ξn = n/3

.

This seems to be incorrect.
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VY, 2001

∂Sn,0

∂r
+

d − 1

r
Sn,0 =

(n − 1)(d − 1)

r
Sn−2,2−(n−1)δra(δru)n−2

a = −∇p + ν∇2u

We will assume that

Sn,0 ∝ Sn−2,2 ∝ rξn

At the large scales, the PDF is a gaussian, so

2 + ξ2

2
S2n,0 = (2n − 1)S2n−2,2 = (2n − 1)S2n−2,0S0,2

S2n,0 = (2n − 1)S2n−2,0S2,0; S2n−2,2 = S2n−2,0S0,2

1.35S2n,0 ≈ (2n − 1)S2n−2,2
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Relations between the moments. (VY 2001;

Hill (2002); Kurien-Srenivasan). In the

isotropic and homogeneous turbulence the

Navier-Stokes equations lead to the following

exact relations for the structure functions:

∂S2n,0

∂r
+

d − 1

r
S2n,0 =

(2n − 1)(d − 1)

r
S2n−2,2+(2n−1)δrax(x)(δru)2n−2

(1)

The closure problem. This equation includes both

velocity and Lagrangian acceleration increments and is

not closed. 1. Even orders. In the IR, the dissipation

term disappears by the symmetry and a ≈ −∇p

If turbulent structures follow the Bernoulli-like equa-

tion, then

δr∂xp = O(∂r(δru)2)
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This means that the moments are found from homoge-

neous differential equations and the scaling exponents

are determined by the coefficients leading to anomalous

scaling exponents

ξn =
0.383n

1 + 0.05n

One free parameter.

0.367- (0.366); 0.696- (0.699); 1.277-(1.279)...2.55-(2.45)
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Let us check assumptions (Bernoulli-like pressure, ho-

mogeneous equations, disappearance of dissipation.

Gotoh-Nakano.
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For the odd orders dissipation terms are very

important and the closure problem still ex-

ists.



12

Dissipation anomaly (Polyakov, Duchon,

Robert, Eyink, VY, Sreenivasan). If S3(y) ≈ y3

then ∂yS3(y) → 0. This is in contradiction with

the Kolmogorov’s relation. This means that in

this limit the velocity field is singular leading

to the so called dissipation anomaly.

1. ν → 0; 2. y → 0

x± = x ± y/2

1

2

∂u2

∂t
+

1

2
u · ∇u2 = −∇p · u + νu ·

∂2u

∂x2
i

u(x +
y

2
) · u(x −

y

2
) ≡ u(+) · u(−)

:
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∂u(+) · u(−)

∂t
+ u(+) ·

∂

∂x+
u(+) · u(−) + u(−) ·

∂

∂x−
u(−) · u(+) =

−
∂p(+)

∂x+,i
ui(−) −

∂p(−)

∂x−,i
ui(+) + ν[u(−) ·

∂2

∂x2
+,j

u(+) + u(+) ·
∂2

∂x2
−,j

u(−)]

In the limit y → 0, so that x± → x, this equation gives the energy

balance. Following Polyakov, let us consider two identities:

∂

∂yi
(ui(+) − ui(−))(uj(+) − uj(−))2 =

1

2

∂

∂x+,i
ui(+)u2

j(+) +
1

2

∂

∂x+,i
ui(+)u2

j(−) −
∂

∂x+,i
ui(+)uj(+)uj(−) +

1

2

∂

∂x−,i
ui(−)u2

j(−) +
1

2

∂

∂x−,i
ui(−)u2

j(+) −
∂

∂x−,i
ui(+)uj(−)uj(+)

and

ui(+)
∂2

∂x2
−,j

ui(−) + ui(−)
∂2

∂x2
−,j

ui(+) =

−4(ui(+) − ui(−))
∂2

∂y2
j

(ui(+) − ui(−)) + ui(+)
∂2

∂x2
+,j

ui(+) +

ui(−)
∂2

∂x2
−,j

ui(−)

............................................
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−
∂

∂yi
δyui|δyu|

2+
1

2
(

∂

∂x+,i
ui(+)uj(−)2+

∂

∂x−,i
ui(−)uj(+)2) =

−2δyu · δya

This equation is locally exact. We have an

estimate:

y → η

ν ≈ ηδηu

The dissipative structures are those with the LOCAL

Re = 1. The characteristic dissipation scale:

η ≈ ν/δηu

THE DISSIPATION SCALE IS A RANDOM

FIELD AND NOT A NUMBER AS IN K41!
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Multifracal theory has similar feature with the dis-

sipation scale depending on codimention h. Here the

situation is somewhat different.

Extrapolating the expression for dissipation

anomaly to y → r where r is in the IR, we

have:

∂

∂r
δru|δru|

2 ≈ δra · δru = O(1)

This is the mechanism of viscosity disappear-

ance from the equations for the IR structure

functions. However, we see that the magni-

tudes of anomalous exponents are strongly in-

fluenced by the O(1) viscous terms. Thus, bar-

ring some very special singularities, the Euler

equation cannot correctly describe anomalous

scaling exponents.



16

Acceleration:

a =
du

dt
≈

δηu

τ
≈ (δηu)η ≈ (δηu)3/ν

∂S2n,0

∂r
+

d − 1

r
S2n,0 =

(2n − 1)(d − 1)

r
S2n−2,2 + (2n − 1)Re(δηu)3(δru)2n−2(2)

This equation is valid everywhere including

r → η2n. Thus,

η2n ∝ L Re
1

ξ2n−ξ2n+1−1

DISSIPATIONS SCALES OF MOMENTS

S2n DECREASE WITH BOTH MOMENT-

ORDER n AND RE.
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CALCULUS.

∂u

∂x
= lim

y→0

u(x + y) − u(x)

y
≈ δηu/η

This is correct due to analyticity of velocity

at y → 0.

(
∂u

∂x
)n ≈ (

δηu

η
)n ≈ ν−n(δηu)2n ∝ Renηξ2n

2n ∝ Reρn

ρn = n +
ξ2n

ξ2n − ξ2n+1 − 1

En ∝ Ren(δηu)4n ∝ Redn

dn = n +
ξ4n

ξ4n − ξ4n+1 − 1

an = Reαn
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αn = n +
ξ3n

ξ4n − ξ3n+1 − 1

< En >∝ ηξ4n
4n

To evaluate moments of velocity derivatives,

the following constraint must be satisfies: the

resolution must be high enough to resolve at

least past of the analytic range, i.e.

S4n(∆) ∝ ∆4n

It is almost never satisfied.
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FIG. 1: Structure functions Sn; a. n = 2; Rλ = 10; 24; 42; 63; b and c Sn for Rλ = 63. Different

rescalings.

Schumacher, Sreenivasan, VY (2006)

10243, Rλ = 10; 24. 42. 63. Trying to resolve

analytic ranges.
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FIG. 2: LogLog plots of compensated structure functions: Sn(r)/r
n

vs r; a. Rλ = 63 b. S10(r)/r
10; .Rλ = 24; 42; 63;

Schumacher, Sreenivasan, VY (2006)

10243, Rλ = 10; 24; 42; 63;. Trying to resolve

analytic ranges.

1. At Rλ = 10 the dissipation field is gaussian !
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FIG. 3: Moments of dissipation rate.

2.

3. At Rλ = 24- it is anomalous with

asymptotic exponents.
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FIG. 4: Moments of velocity derivatives.

The measured numbers are to be compared

with theoretical obtained from calculus:
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ρ1. = 0.455. ρ3 = 1.478. d2 = 0.152. d3 = 0.476. d4 = 0.978.

ρ1 = 0.465. ρ3 = 1.548. d2 = 0.157. d3 = 0.489. d4 = 0.944.

ξ2 = 0.706

Fifth moment of the dissipation rate did not

converge.
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THE EXPONENTS OF THE MOMENTS

OF DERIVATIVES, OBTAINED IN THE

LOW Re-FLOWS, LACKING EVEN

TRACES OF INERTIAL RANGE ARE

EXPRESSED IN TERMS OF THE IR

EXPONENTS ξn DERIVED IN THE LIMIT

Re → ∞. THIS MEANS THAT THE IR

EXPONENTS ARE PRESCRIBED BY THE

MATCHING CONDITIONS ON UV

CUT-OFFS.


