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Inertial particles in one dimension

Inertial particles are placed in one dimensional random 
fluid flow. Because of the inertia the velocity of 
particles is different from the velocity of the flow.

After some time the breakdowns happen, and particles 
with different velocities meet at the same point.  The 
problem turns from hydrodynamic to kinetic.
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Lagrangian vs Eulerian volumes

We consider an imaginary string with Lagrangian markers

Because of external velocity the markers move and cluster

Sometimes the markers pass through each other and a 
folding appears:

The Lagrangian volume grows, the Eulerian stays constant



Lagrangian concentration

The Lagrangian concentration is defined as an inverse 
distance between neighbour markers:

n =
1

|R|
We are interested in the temporal behavior of the 
concentration moments:

〈n−k〉 ∝ e
γ̃kt



Basic equations

The dynamics of a single particle (marker) is described by 
the Newton equation:

For the distance between two markers we have

dR

dt
= v

d2rs

dt2
= −τ−1

(

u(t, rs) −
drs

dt

)

R = rs+1 − rs, v = v(t, rs+1) − v(t, rs), ζ =
∂v

∂r

dv

dt
= −τ−1v + ζR



Basic equations

The velocity gradient field is a random gaussian process:

〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′)

Stokes number St = Dτ is a degree of inertiality.

We will consider small particles with low Stokes 
numbers. This limit corresponds to the weakly 
compressible effective flows. However, the folding 
events can not be accounted in the framework of usual 
perturbative approach.



Properties of the solution

One can rewrite the equations in the following form

Ṙ = σR

σ̇ = −σ/τ − σ2
+ ζ

with σ = R/v

There is a finite probability of breakdown in a finite time. 
The probability distribution does not have a form of Gibbs 
distribution and corresponds to a finite flux.



Properties of the solution

0
!

U
(!
) σ̇ = −U ′(σ) + ζ

There is formal analogy 
with the Langevin equation:

However the usual Gibbs 
solution
can not be normalized

The real stationary solution corresponds to a finite flux:

P (σ) =
F

D
exp

[

−

U(σ)

D

]

σ
∫

−∞

exp

[

U(σ′)

D

]

dσ
′

P (σ) = C exp [−U(σ)/D]



Properties of the solution

It is possible to find the probabilities of having a breakdown 
at time T:

P (T ) ∝ exp

(

−
cτ2

DT 3

)

, T # τ

P (T ) ∝ T exp

(

−
1

6Dτ

)

, τ # T # τ exp

(

1

6Dτ

)



Properties of the solution

One can derive the closed set of equations for the moments 
in the case of delta-correlated velocity field: 

Rl,k = 〈σl
Rk〉 = 〈vl

R
k−l〉

Ṙl,k = −lRl,k/τ − (l − k)Rl+1,k + l(l − 1)DRl−2,k

Substituting Rl,k ∝ exp(γkt) one obtains the set of 
algebraic equations for γk

γ2(γ2 + τ−1)(γ2 + 2τ−1) = 4D

γ1(γ1 + τ
−1) = 0

For even   these equations give the exponents of 
concentration moments growth rates.

k



Properties of the solution

For          we have:k = 1

〈R〉 = const Conservation of Eulerian volume

〈n−1〉 = 〈|R|〉 ∝ e
γ̃1t Growth of Lagrangian volume

It is possible to find the exact expression  ̃γ1 =
St

π
exp

[

−

1

6St

]

The result is strongly non-perturbative in the Stokes number 



Main results

• Stationary distribution for  

• Algebraic equations for 

• Exact expression for 

P (σ)

γ2k = γ̃2k

γ̃1


